认知控制对基于记忆的注意引导过程的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对注意选择的研究发现,不仅物理特征凸显的刺激能捕获注意,视觉工作记忆内容对注意也具有引导作用(即,基于记忆的注意引导过程)。空间维度方面,研究普遍发现工作记忆内容的保持依赖于对记忆位置的持续注意;处于记忆位置上的刺激会得到更快更好的加工。而客体维度方面,在工作记忆内容是否能捕获注意这一问题上现有研究却还存在很大争议。偏向竞争模型假设工作记忆内容即是注意模板;与记忆内容匹配的刺激总会捕获注意。而视觉注意理论(TVA)则认为工作记忆内容对注意选择的影响更为灵活。实验研究中,也存在大量矛盾对立的结果:一些研究发现客体工作记忆内容对注意的捕获作用是机械的、不随意的;另一些研究则指出,客体工作记忆内容对注意的引导过程是灵活可控的。当客体工作记忆内容与当前任务无关时,与记忆内容匹配的刺激可以受到抑制。为了解决现有研究的矛盾,本研究着眼于认知控制对基于记忆的注意引导过程的影响,结合行为方法与ERP技术,深入探讨(1)客体工作记忆内容是否一定会捕获注意;(2)客体工作记忆对注意的引导过程中认知控制的作用及其时程特点。
     本研究采用工作记忆与视觉搜索双任务范式,要求被试在保持一个记忆项目的同时完成一项视觉搜索任务。研究的关键操作之一是:搜索任务中是否有分心物与记忆项目匹配(实验1-6)。记忆匹配刺激在匹配试次中出现,而在控制试次中不出现。记忆匹配刺激对搜索任务的影响反映了客体工作记忆内容对注意的引导过程。
     研究一探讨认知控制倾向对基于记忆的注意引导过程的影响。通过改变任务提示语来操纵被试的认知控制倾向。实验1指导语明确提示被试“记忆项目永远不同于搜索目标”。结果发现,匹配试次搜索反应时快于控制试次。即记忆匹配刺激受到了抑制,从而促进了搜索任务表现。实验2指导语不作上述提示。结果发现,匹配试次搜索反应时更慢。即记忆匹配刺激先于搜索目标捕获了注意,从而干扰了搜索任务表现。研究一结果表明:(1)客体工作记忆内容既可以捕获注意,又可以受到抑制;(2)诱发抑制性认知控制作用的前提是:个体清楚工作记忆内容与当前任务无关。
     研究二进一步探讨认知控制强度对基于记忆的注意引导过程的影响及其时程特点。通过改变记忆匹配刺激的出现概率来操作被试的认知控制强度;概率越高,认知控制强度越大。同时,在研究二(以及研究三)中始终明确告知被试记忆项目与搜索目标无关。实验3(行为实验)结果发现,80%条件下(高强度),记忆匹配刺激受到了有效抑制,搜索速度更快;20%条件下(低强度),记忆匹配刺激捕获了注意,延缓了搜索速度。实验4利用ERP技术探讨:不同加工阶段,认知控制强度对基于记忆的注意引导过程的影响。主要考察的指标包括:(1)N2pc成分(200-300ms左右);(2)N2pc消失后出现的差异正波(300ms以后)。前者反映了刺激对注意的捕获作用;后者则与注意捕获后的抑制过程有关。结果发现,20%条件下,记忆匹配刺激仅诱发了N2pc成分;50%和80%条件下,记忆匹配刺激先诱发了N2pc成分,后诱发了抑制性差异正波。并且,80%条件下N2pc波幅更小,差异正波波幅更大。同时,N2pc潜伏期随着认知控制强度的增大而缩短。研究二结果表明:(1)虽然行为指标上显示记忆匹配刺激受到了抑制,但ERP指标却证明客体工作记忆内容总会捕获注意;(2)客体工作记忆内容捕获注意后还可能受到抑制,该过程的效力和时程受到认知控制强度的调节。
     研究三从资源有限性的角度入手,着眼于认知控制负载对基于记忆的注意引导过程的影响。通过改变次任务类型来操作认知控制负载。高低负载条件下被试在完成双任务的同时还需分别进行减三负运算和发音抑制任务。实验5(行为实验)发现,低负载条件下,记忆匹配刺激受到了抑制;而高负载条件下,记忆匹配刺激既没有捕获注意,也没有受到抑制。实验6利用ERP技术进一步证实,高负载条件下记忆匹配刺激既没有诱发N2pc成分,也没有诱发抑制性差异正波。同时,高负载条件下,P3成分波幅显著小于低负载条件。这表明,当认知控制资源匮乏时,不仅没有多余的资源对任务无关记忆匹配刺激进行抑制,客体工作记忆内容对注意的捕获作用也受到了削减。
     本文通过三个紧密相关的研究深入细致地揭示了客体工作记忆内容对注意的引导过程中认知控制的作用及其时程特点,对已有研究发现进行了整合。首先,基于记忆的注意引导过程是灵活可控的;记忆匹配刺激不仅可以捕获注意,还可以受到抑制。其次,客体工作记忆内对注意的引导过程可以分为两个阶段。当认知控制资源充足时,加工早期客体工作记忆内容总能捕获注意;加工后期客体工作记忆内容可以受到抑制。当认知控制资源匮乏时,早期和晚期的自上而下加工均受到了极大的削弱;客体工作记忆内容既不会捕获注意,也不会受到抑制。因此,本研究一方面支持了偏向竞争模型的观点,证实了加工早期工作记忆内容对注意的捕获效应确实是机械的、不随意的。另一方面也对偏向竞争模型进行了补充,强调基于记忆的注意引导过程受到认知控制强度和负载的调节。
Researches on selective attention suggest not only salient stimuli will capture attention;the contents of visual working memory also have a guide role on attention (i.e.,memory-based attention guidance). In spatial dimension, studies had consistently found theretention of working memory depends on sustained attention to the memorised position.Thus, stimulus processing on the memorised position will be facilitated. However, in objectdimension, the remained question is whether the contents of working memory would alwayscapture attention. According to Bias Competition Model, working memory contents are keptas attention template and stimulus matching memory item would automatically captureattention. In contrast, the Theory of Visual Attention (TVA) proposed the effect of workingmemory on attentional selection in a more flexible way. Experimental studies also found anumber of conflict results. Some researchers found the attention capture effect caused byobject working memory was obligatory. However, others indicated the contents of objectworking memory were not necessary to capture attention. Memory-matching stimulus can berejected if it was task irrelevant. In order to find an interpretation on these conflict findings,the current research investigated the role of cognitive control on the memory-based attentionguidance effect. Specifically, the current research tested (1) whether or not the contents ofobject working memory would involuntarily capture attention and (2) the role of cognitivecontrol and its time course during the guidance effect of working memory on attention.
     The current research employed working memory and visual search dual-task paradigm.Participants were instructed to conduct a visual search task during the retention of a memoryitem (Experiment1-6). One of the key operations throughout the whole research was:whether or not there were some search distracters matching the memory item. Suchmemory-matching items were presented in matching trials and absented in control trials. Theeffects of the memory-matching items on search performance reflect the guidance effect ofobject working memory on attention.
     The first research investigated whether the memory-based attention guidance effect couldbe affected by cognitive control. Cognitive control behaviours were operated by varying taskinstruction. In Experiment1, participants were directly told that “the memory item is alwaysdifferent from the search target”. The results showed visual search RTs were faster inmatching trials in comparison of control trials, suggesting memory-matching items had beenrejected and search performance had been facilitated. In contrast, search RTs were slowerwith memory-matching items in Experiment2where the above instruction was removed;suggesting object working memory contents captured attention and disrupted the searchperformance. Thus, the first research suggested:(1) the contents of object working memorycould either capture attention or be rejected by attention;(2) participants must be convincedof the irrelevance of working memory contents to search task if memory-matching itemscould be rejected.
     The second research further investigated the effects of cognitive control power on memory-basedattention guidance. The power of cognitive control was operated by varying the proportion ofmatching trials. The higher the proportion is, the stronger the control would be. The results ofExperiment3(behavioural experiment) showed search RTs were faster in matching trials with strongcognitive control and was slower in matching trials with weak control. Experiment4employed ERPtechnology to investigate how the effect of cognitive control varies over time. The main indexes were(1) N2pc component (about200-300ms) and (2) the positive difference waves after N2pc. The formerrelated to the attention capture effect, the later related to an inhibitory effect after attention capture.Memory-matching item only elicited the N2pc component with weak control. In contrast, both theN2pc component and the positive difference waves after N2pc caused by memory-matching itemwere found with stronger control. Furthermore, as the power of cognitive control increased, both theamplitude and the latency of N2pc component reduced, whereas the amplitude of the positivedifference waves increased. The second research suggested:(1) the contents of object workingmemory would always capture attention in the earlier process stage (about200-300ms).(2) Thecontents of object working memory could be rejected after capturing attention. The efficiency andtime course of such inhibitory effect depend on the power of cognitive control.
     The third research investigated the effect of cognitive load on memory-based attention guidance.The load of cognitive control was operated by conducting different secondary tasks. Participants hadto additionally conduct either a backward counting task in steps of3(high load) or an articulatorysuppression task (low load) during each trial. Experiment5(behavioural experiment) showedmemory-matching items had been rejected with low load. In contrast, they had neither capturedattention nor been rejected with high load. Experiment6used ERP technology convinced that thememory-matching item elicited neither N2pc component nor the positive difference waves afterN2pc. Moreover, the amplitude of P3component was reduced with the increase of cognitive load.The third research suggested the top-down processing during the memory-based attention guidancewas widely eliminated by the lack of cognitive resource.
     The current research revealed the effects of cognitive control and its time course duringmemory-based attention guidance, suggesting a powerful interpretation on previous conflict results interms of cognitive control. Firstly, the memory-based attention guidance effect was highly flexible.Memory-matching item could either capture attention or be rejection. Secondly, memory-basedattention guidance includes two phases. The contents of object working memory would alwayscapture attention during the earlier processing stage and could only be rejected in the later processingstage with sufficient cognitive resource. However, top-down processes in both the earlier and thelater phases would be greatly disrupted by the lack of cognitive resource. Broadly, the presentresearch supported the Bias Competition Model by showing that the contents of working memorywould involuntarily capture attention during earlier processing. However, such memory-basedattention capture is affected by both the power and the load of cognitive control.
引文
Anderson, E. J., Mannan, S., Rees, G., Sumner, P.,&Kennard, C.(2010). Overlapping functionalanatomy for working memory and visual search. Experimental Brain Research,200,91–107.
    Awh, E., Anllo-Vento, L., Hillyard, S., A.(2000). The role of spatial selective attention in workingmemory for locations: evidence from event-related potentials. Journal of Cognitive Neuroscience,12(5),840–847.
    Awh, E.&Jonides, J.(1998) Spatial selective attention and spatial working memory. In: The attentivebrain (Parasuraman, R. Ed); pp353–380, Cambridge, MA: MIT Press.
    Awh, E.&Jonides, J.(2001). Overlapping mechanisms of attention and spatial working memory.Trendsin Cognitive Sciences,5(3),119–126.
    Awh, E., Jonides, J.,&Reuter-Lorenz, P. A.(1998). Rehearsal in spatial working memory. Journal ofExperimental Psychology-Human Perception and Performance,24(3),780–790.
    Awh, E., Jonides, J., Smith, E. E., Buxton, R. B., Frank, L. R., Love, T., et al.(1999). Rehearsal in spatialworking memory: Evidence from neuroimaging. Psychological Science,10(5),433–437.
    Awh, E., Vogel, E. K.,&Oh, S. H.(2006). Interactions between attention and working memory.Neuroscience,139,201–208.
    Bacon, W. F.&Egeth, H. E.(1994). Overriding stimulus-driven attentional capture. Perception&Psychophysics,55,485496.
    Baddeley, A. D.(2001). Is working memory still working? American Psychologist,11,851–864.
    Baddeley, A. D.(1986) Working memory. Oxford, UK: Oxford University Press.
    Baddeley, A. D.(2003). Working memory: Looking back and looking forward. Nature ReviewsNeuroscience,4,829–839.
    Baddeley, A. D.&Hitch, G.(1974). Working memory. In: Recent Advances in Learning and Motivation(G. Bower Ed.), New York: Academic Press.
    Bisley, J.&Goldberg, M. E.(2003). Neuronal activity in the lateral intraparietal area and spatial attention.Science,299(5603),81–86.
    Brand-D’Abrescia, M.,&Lavie, N.(2008). Task coordination between and within sensory modalities:Effects on distraction. Perception&Psychophysics,70,508–515.
    Brisson, B., Robitaille, N.,&Jolicoeur, P.(2007). Stimulus intensity affects the latency but not theamplitude of the N2pc. NeuroReport,18,1627–1630.
    Bundesen, C.(1990). A theory of visual attention.Psychological Review,97,523547.
    Bundesen, C., Habekost, T.,&Kyllingsbaek, S.(2005). A neural theory of visual attention: Bridgingcognition and neurophysiology. Psychological Review,112,291328.
    Burnham, B. R.(2007). Display wide visual features associated with a search display's appearance canmediate attentional capture. Psychonomic Bulletin Review,14(3),392422.
    Carlisle, N. B.,&Woodman, G. F.(2011a). When Memory Is Not Enough: Electrophysiological Evidencefor Goal-dependent Use of Working Memory Representations in Guiding Visual Attention. Journalof Cognitive Neuroscience23(10),2650–2664.
    Carlisle, N. B.,&Woodman, G. F.(2011b). Automatic and strategic effects in the guidance of attention byworking memory representations. Acta Psychologica,137(2),217–225.
    Carlisle, N. B., Arita, J. T., Pardo, D.,&Woodman, G. F.(2011). Attentional Templates in Visual WorkingMemory. The Journal of Neuroscience,31(25),9315–9322.
    Chelazzi, L.&Corbetta, M.(2000). Cortical mechanisms of visuospatial attention in the human brain. In:The new cognitive neurosciences (Gazzaniga MS, ed), pp667–686. Cambridge: MIT Press.
    Chelazzi, L., Miller, E. K., Duncan, J.,&Desimone, R.(1993). A neural basis for visual search in inferiortemporal cortex. Nature,363,345-347.
    Corbetta, M, Kincade, J. M., Shulman, G. L.(2002). Neural systems for visual orienting and theirrelationships to spatial working memory. Journal of Cognitive Neuroscience,14,508–523.
    Corbetta, M.&Shulman, G. L.(2002). Control of goal-directed and stimulus-driven attention in the brain.Nature Neuroscience,3,201215.
    Courchesne, E., Hillyard, S. A.,&Galambos, R.(1975). Stimulus novelty, task relevance and the visualevoked potential in man. Electroencephalography and Clinical Neurophysiology,39,131-143.
    Cowan, N.(2000). The magical number4in short-term memory: A reconsideration of mental storagecapacity. Behavioral and Brain Sciences,24,87–185.
    Dalton, P.&Lavie, N.(2007). Overriding auditory attentional capture. Perception&Psychophysics,69(2),162171.
    Dalton, P., Lavie, N.,&Spence, C.(2009). The role of working memory in tactile selective attention.Quarterly Journal of Experimental Psychology,62,635–644.
    De Fockert, J., Rees, Geraint, Frith, C. D.,&Lavie, N.(2001).The Role of Working Memory in VisualSelective Attention. Science,291,1803-1806.
    Desimone, R.&Ungerleider, L. G.(1989). Neural mechanisms of visual processing in monkeys. In:handbook of Neropsychology (Bolloer F, Grafman J, ed), pp.267-299. New York: Elsevier.
    Desimone, R.&Duncan, J.(1995). Neural mechanisms of selective visual attention. Annual Review ofNeuroscience,18,193-222.
    Donk, M.&van Zoest, W.(2008). Effects of salience are short-lived. Psychological Science,19(7),733739.
    Downing, P.(2000). Interactions between visual working memory and selective attention. PsychologyScience,11(6),467–473.
    Downing, P.&Dodds, C.(2004). Competition in visual working memory for control of search. VisualCognition11(6),689–703.
    Egeth, H. E.&Yantis, S.(1997).Visual attention: control, representation, and time course. Annual Reviewof Neuroscience,48,269-97.
    Egeth, H., Jonides, J.,&Wall, S.(1972). Parallel processing of multielement displays. CognitivePsychology,3(4),674-698
    Eimer, M.(1995). Event-related potential correlates of transient attention shifts to color and location.Biological Psychology,41(2),167182.
    Eimer, M.&Kiss, M.(2007). Attentional capture by task-irrelevant fearful faces is revealed by the N2pccomponent. Biological Psychology,74(1),108112.
    Eriksen, C. W.&Hoffman, J. E.(1972).Temporal and spatial characteristics of selective encoding fromvisual displays. Perception&Psychophysics,12,201–204.
    Farah, M. J.(1985). Psychophysical evidence for shared representational medium for mental images andpercepts. Journal of Experimental Psychology: General,114(1),91–103.
    Folk, C. L.&Remington, R.(2006). Top–down modulation of preattentive processing: Testing therecovery account of contingent capture.Visual Cognition,14(4–8),445465.
    Folk, C. L., Remington, R. W.,&Johnston, J. C.(1992). Involuntary covert orienting is contingent onattentional control settings. Journal of Experimental Psychology: Human Perception andPerformance,18(4),10301044.
    Forster, S.,&Lavie, N.(2007). High perceptual load makes everybody equal: Eliminating individualdifferences in distractibility with load. Psychological Science,18,377–382.
    Forster, S.,&Lavie, N.(2008). Failures to ignore entirely irrelevant distractors: The role of load. Journalof Experimental Psychology: Applied,14,73–83.
    Gomarus, H. K., Althaus, M., Wijers, A. A.,&Minderaa, R. B.(2006). The effects of memory load andstimulus relevance on the EEG during a visual selective memory search task: An ERP andERD/ERS study. Clinical Neurophysiology,117,871–884.
    Goodale, M. A.&Milner, A. D.(1992). Separate visual pathways for perception and action. Trends inneurosciences,15,20–25.
    Han, S. W.,&Kim, M. S.(2009). Do the Contents of Working Memory Capture Attention? Yes, ButCognitive Control Matters. Journal of Experimental Psychology: Human Perception andPerformance,35(5),1292–1302.
    Handy, T. C.&Mangun, G. R.(2000). Attention and spatial selection: electrophysiological evidence formodulation by perceptual load. Perception&Psychophysics,62,175–86.
    Hickey, C., Di Lollo, V.,&McDonald, J. J.(2009). Electrophysiological indices of target and distractorprocessing in visual search. Journal of Cognitive Neuroscience,21,760-775.
    Hickey, C., McDonald, J. J.,&Theeuwes, J.(2006). Electrophysiological evidence of the capture ofvisual attention. Journal of Cognitive Neuroscience,18(4),604613.
    Hillyard, S. A.&Picton, T. W.(1979). Event-related brain potentials and selective information processingin man Progress in clinical neurophysiology. In: Cognitive components in cerebral event-relatedpotentials and selective attention,(Basel, ed): pp.1–52. Switzerland: Karger.
    Hillyard, S. A.&Anllo-vento, L.(1998). Event-related brain potentials in the study of visual selectiveattention. Proc. Natl. Acad. Sci.,95,781-787.
    Hollingworth, A.&Luck, S.(2009). The role of visual working memory (VWM) in the control of gazeduring visual search. Attention, Perception,&Psychophysics,71(4),936-949.
    Houtkamp, R.&Roelfsema, P. R.(2006). The effect of items in working memory on the deployment ofattention and the eyes during visual search. Journal of Experimental Psychology: HumanPerception and Performance,32,426–442.
    Hu, Y. M., Xu, Z.,&Hitch, J. G.(2011). Strategic and Automatic Effects of Visual Working Memory onattention in Visual Search. Visual Cognition,19(6),799–816.
    Huang,&Pashler, H.(2007). Working memory and the guidance of visual attention: Consonance-drivenorienting. Psychonomic Bulletin and Review,14(1),148–153.
    Jeannerod, M.&Rossetti, Y.(1993). Visuomotor coordination as a dissociable visual function:experimental and clinical evidence. Bailliere's clinical neurology,2,439–460.
    Jha, A.(2002). Tracking the time-course of attentional involvement in spatial working memory: anevent-related potential investigation. Cognitive Brain Research,15,61–69.
    Jonides, J.,&Yantis, S.(1988). Uniqueness of abrupt visual onset in capturing attention. Perception&Psychophysics,43,346354.
    Kastner, S.,&Ungerleider, L. G.(2000). Mechanisms of visual attention in the human cortex. AnnualReview of Neuroscience,23,315–341.
    Kelley, T. A., and Lavie, N.(2010). Working memory load modulates distractor competition in primaryvisual cortex. Cerebral Cortex,21,659–665.
    Kiss, M., Van Velzen, J.,&Eimer, M.(2008). The N2pc component and its links to attention shifts andspatially selective visual processing. Psychophysiology,45(2),240249.
    Klever, P.&Talsma, D.(2013). Behind the scenes: How visual memory load biases selective attentionduring processing of visual streams. Psychophysiology,50(11),1133-1146.
    Kok A.(2001). On the utility of P3amplitude as a measure of processing capacity. Psychophysiology,38,557–577.
    Kumada, T.(1999). Limitations in attending to a feature value for overriding stimulusdriven interference.Perception&Psychophysics,61,6179.
    Kumar, S., Soto, D.,&Humphreys, G. W.(2007). Electrophysiological evidence for attentional guidanceby the contents of working memory. European Journal of Neuroscience,30,307–317.
    Kutas, M., McCarthy, G.,&Donchin, E.(1977). Augmenting mental chronometry: P300as a measure ofstimulus evaluation time. Science,197,792–795.
    Lavie, N.(2005). Distracted and confused? Selective attention under load. Trends in Cognitive Sciences,9,75–82.
    Lavie, N.(2010). Attention, distraction, and cognitive control under load. Current Directions inPsychological Science,19(3),143-148.
    Lavie, N.,&De Fockert, J.W.(2005). The role of working memory in attentional capture. PsychonomicBulletin&Review,12,669–674.
    Leber, A. B.&Egeth, H. E.(2006). It's under control: Top–down search strategies can override attentionalcapture. Psychonomic Bulletin&Review,13(1),132138.
    Logan, G. D.(1978). Attention in character classification tasks: Evidence for the automaticity ofcomponent stages. Journal of Experimental Psychology: General,107,32–63.
    Logan, G. D.(1979). On the use of a concurrent memory load to measure attention and automaticity.Journal of Experimental Psychology: Human Perception and Performance,5,189–207.
    Luck, S. J.&Hillyard, S. A.(1994). Electrophysiological correlates of feature analysis duringvisual-search. Psychophysiology,31(3),291308.
    Luck, S. J.&Vogel, E. K.(1997). The capacity of visual working memory for features and conjunctions.Nature,390,279–281.
    Luck, S. J., Woodman, G. F.,&Vogel, E. K.(2000). Event-related potential studies of attention. Trends inCognitive Sciences,4(11),432440
    MacNamaraa, A., Schmidt, J., Zelinsky, G. J.,&Hajcak, G.(2012). Electrocortical and ocularindices of attention to fearful and neutral faces presented under high and lowworking memory load. Biological Psychology,91,349-356
    Magliero, A., Bashore, T. R., Coles, M. G. H., Donchin, E.(1984). On the dependence of P300latency onstimulusevaluation processes. Psychophysiology,21,171–186.
    Mangun, G. R, Hillyard, S. A,&Luck, S. J.(1993). Electrocortical substrates of visual selective attention.In: Attention and performance XIV (Meyer D, Kornblum S, ed); pp.219–43. Cambridge, MA: TheMIT Press.
    Mangun, G. R.&Hillyard, S. A.(1991). Modulation of sensory-evoked brain potentials provide evidencefor changes in perceptual processing during visual–spatial priming. Journal of ExperimentalPsychology: Human Perception and Performance,17,1057–74.
    Mangun, G. R.&Hillyard, SA.(1990). Electrophysiological studies of visual selective attention inhumans. In: The neurobiological foundations of higher cognitive function (Scheibel AB, WechslerA, ed), pp.271–295. New York: Guilford Press.
    Mannan, S. K., Kennard, C., Potter, D., Pan, Y.,&Soto, D.(2010). Early oculomotor capture by newonsets driven by the contents of working memory. Vision Research,50,1590–1597.
    Mayer, J. S., Bittner, R. A., Nikoli, D., Bledowski, C., Goebel, R.,&Lindena, D. E. J.(2007). Commonneural substrates for visual working memory and attention. NeuroImage,36,441–453.
    Miller, E. K., Erickson, C. A.,&Desimone, R.(1996). Neural mechanisms of visual working memory inprefrontal cortex of the macaque. Journal of Neuroscience,16,5154–5167.
    Morgan, H. M., Klein, C., Boehm, S. G., Shapiro, K. L.,&Linden, D. E. J.(2008). Working memory loadfor faces modulates P300, N170, and N250r. Journal of Cognitive Neuroscience,20(6),989–1002.
    Mounts, J. R. W.(2000). Evidence for suppressive mechanisms in attentional selection: Feature singletonsproduce inhibitory surrounds. Perception&Psychophysics,62,969983.
    Mulder, G, Gloerich, A. B. M., Brookhuis, K. A., Van Dellen, H. J.,&Mulder, L. J.(1984). Stageanalysis of the reaction process using brain-evoked potentials and reaction time. PsychologicalResearch,46,15–32.
    Müller, H. J., Geyer, T., Zehetleitner, M.,&Krummenacher, J.(2009). Attentional capture by salient colorsingleton distractors is modulated by top–down dimensional set. Journal of ExperimentalPsychology: Human Perception and Performance,35(1),116.
    Müller, H. J., Reimann, B.,&Krummenacher, J.(2003). Visual search for singleton feature targets acrossdimensions: Stimulus and expectancy-driven effects in dimensional weighing. Journal ofExperimental Psychology: Human Perception and Performance,29,10211035.
    Neisser, U.(1967). Cognitive psychology. New York: Appleton Century Crofts.
    Neo, G.,&Chua, F. K.(2006). Capturing focused attention. Perception&Psychophysics,68,1286–1296.
    Nothdurft, H. C., Gallant, J. L.,&Van Essen, D. C.(1999). Response modulation by texture surround inprimate area V1: Correlates of “popout” under anesthesia. Visual Neuroscience,16(1),1534.
    Oh, S. H.&Kim, M. S.(2004). The role of spatial working memory in visual search efficiency.Psychonomic Bulletin Review,11(2),275–281.
    Olivers, C. N. Meijer, F.,&Theeuwes, J.(2006) Feature-based memory-driven attentional capture: visualworking memory content affects visual attention. Journal of Experimental Psychology: HumanPerception and Performance,32,1243–1265.
    Olivers, C. N. L.(2009). What drives memory-driven attentional capture? The effects of memory type,display type, and search type. Journal of Experimental Psychology: Human Perception andPerformance,35,1275–1291.
    Olivers, C. N. L., Peters, J., Houtkamp, R.,&Roelfsema, P. R.(2011). Different states in visual workingmemory when it guides attention and when it does not. Trends in Cognitive Sciences,15(7),327–334.
    Pan, Y.,&Soto, D.(2011). The modulation of perceptual selection by working memory is dependent onthe focus of spatial attention. Vision Research,50,1437–1444.
    Pan, Y., Xu, B.,&Soto, D.(2009). Dimension-based working memory-driven capture of visual selection.The Quarterly Journal of Experimental Psychology,62(6),1123-1131
    Park, S., Kim, M.,&Chun, M.(2007). Concurrent Working Memory Load Can Facilitate SelectiveAttention:Evidence for Specialized Load. Journal of Experimental Psychology: Human Perceptionand Performance,33(5),1062–1075.
    Patt, N., Willoughby, A.,&Swick, D.(2011). Effects of working memory load on visual selectiveattention: behavioral and electrophysiological evidence. Frontiers in Human Neuroscience,5,1-9.
    Peters, J., Goebel, R.,&Roelfsema, R. P.(2008). Remembered but Unused The Accessory Items inWorking Memory that Do Not Guide Attention. Journal of Cognitive Neuroscience,21(6),1081–1091.
    Pinto, Y., Olivers, C. N. L.,&Theeuwes, J.(2005). Target uncertainty does not lead to more distraction bysingletons: Intertrial priming does. Perception&Psychophysics,67(8),13541361.
    Polich, J.(1987). Task difficulty, probability, and inter-stimulus interval as determinants of P300fromauditorystimuli. Electroencephalography and Clinical Neurophysiology,68,311–320.
    Polich, J.(2007). Updating P300: An Integrative Theory of P3a and P3b. Clinical Neurophysiology,118(10),2128–2148.
    Posner, M. I.(1980). Orienting of attention, the VIIth Sir Frederic Bartlett lecture. Quarterly Journal ofExperimental Psychology,32,3–25.
    Postle, B. R., Awh, E., Jonides, J., Smith, E. E.,&D’Esposito, M.(2004). The where and how ofattention-based rehearsal in spatial working memory. Cognitive Brain Research,20,194–205.
    Rainer, G., Asaad, W. F.,&Miller, E. K.(1998, June11). Selective representation of relevant informationby neurons in the primate prefrontal cortex. Nature,393,577–579.
    Rauschenberger, R.(2003). Attentional capture by auto-and allo-cues. Psychonomic Bulletin&Review,10(4),814842.
    Ruchkin, D., S.&Sutton, S.(1983). Positive slow wave and P300: association and disassociation. In:Tutorials in ERP research: endogenous components (Gaillard A, Ritter W. eds), pp:233-250.North-Holland Press.
    Sawaki, R.&Luck, S. J.(2011). Active suppression of distractors that match the contents of visualworking memory. Visual Cognition,19(7),956–972.
    Schub, A.(2009). Salience detection and attentional capture. Psychological Research PsychologischeForschung,73(2),233243.
    Smyth, M. M.&Scholey, K. A.(1994). Interference in immediate spatial memory. Memory&Cognition,22(1),1–13.Soto, D.&Humphreys, G. W.(2007). Automatic Guidance of Visual Attention From Verbal WorkingMemory. Journal of Experimental Psychology: Human Perception and Performance,33(3),730–757.
    Soto, D.,&Humphreys, G. W.(2008). Stressing the mind: The effect of cognitive load and articulatorysuppression on attentional guidance from working memory. Perception&Psychophysics,70(5),924–934.
    Soto, D., Heinke, D., Humphreys, G. W.,&Blanco, M. J.(2005). Early, involuntary top-down guidanceof attention from working memory. Journal of Experimental Psychology: Human Perception andPerformance,31,248–261.
    Soto, D., Hodsoll, J., Rotshtein, P.,&Humphreys, G., W.(2009). Automatic guidance of attention fromworking memory. Trends in Cognitive Science,12(9),342-348.
    Soto, D., Humphreys, G. W.&Rotshtein, P.(2007). Dissociating the neural mechanisms ofmemory-based guidance of visual selection. Proc. Natl. Acad. Sci.,104(43),17186-17191.
    Soto, D., Humphreys, G. W.,&Heinke, D.(2006). Working memory can guide pop-out search. VisionResearch,46,1010-1018.
    Soto, D., Mok, A. Y. F., McRobbie, D., Quest, R., Waldman, A.,&Rotshtein, P.(2011). Biasing visualselection: Functional neuroimaging of the interplay between spatial cueing and feature memoryguidance. Neuropsychologia,49,1537–1543.
    Soto, D., Wriglesworth, A., Bahrami-Balani, A.,&Humphreys, G. W.(2010).Working Memory EnhancesVisual Perception: Evidence From Signal Detection Analysis. Journal of Experimental Psychology:Learning, Memory, and Cognition,36(2),441–456.
    Stigchel, S. V., Belopolsky, A. V., Peters, J. C., Wijnen J. G., Meeter, M.,&Theeuwes, J.(2009) Thelimits of top-down control of visual attention. Acta Psychologica,132(3),201–212.
    Theeuwes, J.(1989). Effects of location and form cuing on the allocation of attention in the visual field.Acta Psychologica,72,177–192.
    Theeuwes, J.(1991). Cross-dimensional perceptual selectivity. Perception&Psychophysics,50(2),184193.
    Theeuwes, J.(1992). Perceptual selectivity for color and form. Perception&Psychophysics,51(6),599606.
    Theeuwes, J.(1994a). Endogenous and exogenous control of visual selection. Perception,23(4),429440.
    Theeuwes, J.(1994b). Stimulus-driven capture and attentional set—Selective search for color and visualabrupt onsets. Journal of Experimental Psychology: Human Perception and Performance,20(4),799806.
    Theeuwes, J.(1995). Temporal and spatial characteristics of preattentive and attentive processing. VisualCognition,2(1),221233.
    Theeuwes, J.(2004). Top–down search strategies cannot override attentional capture. PsychonomicBulletin&Review,11(1),6570.
    Theeuwes, J.&Burger, R.(1998). Attentional control during visual search: The effect of irrelevantsingletons. Journal of Experimental Psychology: Human Perception and Performance,24(5),13421353.
    Theeuwes, J.&Chen, C. Y. D.(2005). Attentional capture and inhibition (of return): The effect onperceptual sensitivity. Perception&Psychophysics,67(8),13051312
    Theeuwes, J.&Godijn, R.(2001). Attention and oculomotor capture. In: Attraction, distraction, andaction: Multiple perspectives on attentional capture (Folk CL, Gibson BS, eds). New York: ElsevierScience.
    Theeuwes, J.&Godijn, R.(2004). Inhibition-of-return and oculomotor interference. Vision Research,44(12),14851492.
    Theeuwes, J.&Van der Burg, E.(2008). The role of cueing in attentional capture. Visual Cognition,16(2–3),232247.
    Theeuwes, J.,(2010). Top–down and bottom–up control of visual selection, Acta Psychologica,135(2),77–99.
    Theeuwes, J., Belopolsky, A.,&Olivers, N. L.(2009). Interactions between working memory, attentionand eye movements. Acta Psychologica,132,106–114.
    Theeuwes, J., Reimann, B.,&Mortier, K.(2006). Visual search for featural singletons: No top–downmodulation, only bottom–up priming. Visual Cognition,14(4–8),466489.
    Treisman, A. M.,&Gelade, G.(1980). A feature-integration theory of attention. Cognitive Psychology,12,97136.
    Ungerleider, L. G., Courtney, S., M.,&Haxby, J. V.(1998). A neural system for human visual workingmemory. Proc. Natl. Acad. Sci.,95,883-890.
    Van der Stigchel, Belopolsky, A. V., Peters, J. C., Wijnen, J. G., Meeter, M.,&Theeuwes, J.(2009). Thelimits of top-down control of visual attention. Acta Psychologica,132(3),201-212.
    Van Zoest, W., Donk, M.,&Theeuwes, J.(2004). The role of stimulus-driven and goaldriven control insaccadic visual selection. Journal of Experimental Psychology: Human Perception andPerformance,30(4),746759.
    Verleger, R., Ja^kowskis, P.,&Wascher, E.(2005). Evidence for an integrative role of P3b in linkingreaction toperception. Journal of Psychophysiology,19,150–150.
    Verleger R.(1997). On the utility of P3latency as an index of mental chronometry. Psychophysiology,34,131–156.
    Vogel, E. K., Woodman, G. F.,&Luck, S. J.(2001). Storage of features, conjunctions, and objects invisual working memory. Journal of Experimental Psychology: Human Perception and Performance,27(1),92–114.
    Wijers, A. A., Mulder, G., Gunter, T. C.,&HGOM, S.(1996). Brain potential analysis of selectiveattention. In: Handbook of perception and action. Attention, vol.4(Neumann OE, Sanders AE,eds.), pp.333–87. London: Academic Press.
    Wolfe, J. M.,&Horowitz, T. S.(2004). What attributes guide the deployment of visual attention and howdo they do it? Nature Reviews Neuroscience,5(6),495–501.
    Wolfe, J. M., Butcher, S. J., Lee, C.,&Hyle, M.(2003). Changing your mind: On the contributions oftop–down and bottum–up guidance in visual search for feature singeltons. Journal of ExperimentalPsychology,29(2),483502.
    Woodman, G. F., Vogel, E. K., Luck, S. J.(2001). Visual search remains efficient when visual workingmemory is full. Psychological Science,12(3),219–224.
    Woodman, G. F.(2010). A brief introduction to the use of event-related potentials in studies of perceptionand attention. Attention, Perception,&Psychophysics,72(8),2031–2046
    Woodman, G. F.,&Luck, S. J.(1999). Electrophysiological measurement of rapid shifts of attentionduring visual search. Nature,400(6747),867869.
    Woodman, G. F.&Luck, S. J.(2003). Serial deployment of attention during visual search. Journal ofExperimental Psychology: Human Perception and Performance,29,121–138.
    Woodman, G. F.&Luck, S. J.(2007). Do the contents of visual working memory automatically influenceattentional selection during visual search? Journal of Experimental Psychology: Human Perceptionand Performance,33,363–377.
    Wykowska, A.&Schub, A.(2011). Irrelevant singletons in visual search do not capture attention but canproduce nonspatialfiltering costs. Journal of Cognitive Neuroscience,23(3),645-660.
    Yantis, S.&Jonides, J.(1996). Attentional capture by abrupt visual onsets: new perceptual objects orvisual masking? Journal of Experimental Psychology: Human Perception and Performance,22(6),1505-1513.
    Yantis, S.&Johnson, D. N.(1990). Mechanisms of attentional priority. Journal of ExperimentalPsychology: Human Perception and Performance,16,812–825.
    Zhang, B., Zhang, J. X., Huang, S., Kong, L. Y.,&Wang, S. P.(2011). Effects of load on the guidance ofvisual attention from working memory. Vision Research,51,2356–2361.
    Zhang, B., Zhang, J. X., Kong, L., Huang, S., Yue, Z.,&Wang, S.(2010). Guidance of visual attentionfrom working memory contents depends on stimulus attributes. Neuroscience Letters,486,202–206.
    白学军,尹莎莎,杨海波,吕勇,胡伟,罗跃嘉.(2011).视觉工作记忆内容对自上而下注意控制的影响:一项ERP研究.心理学报,43(10),1103-1113.
    潘毅.(2010).基于工作记忆内容的视觉注意.心理科学进展,18(2),210–219.
    胡艳梅,张明,徐展,李毕琴.(2013).客体工作记忆对注意的导向作用:抑制动机的影响.心理学报,45(2),127–138.
    姚树霞,杨东,齐森青,雷燕, Ding, C.(2012).视觉空间注意研究中的N2pc成分述评.心理科学进展,20(3),365-375.
    张明,王爱君.(2012).视觉搜索中基于工作记忆内容的注意捕获与抑制.心理科学进展,20(12),1899-1907.
    张明,王爱君,李毕琴,张阳.(2013).颜色凸显条件下基于工作记忆内容的视觉注意.心理科学,36(3),1307-1311.
    张明,张阳.(2007).工作记忆与选择性注意的交互关系.心理科学进展,15(1),8–15.
    张豹,金志成,陈彩琦.(2008).视觉工作记忆对前注意阶段注意定向的调节.心理学报,40(5),552–561.
    张豹,黄赛,祁禄.(2013).工作记忆表征引导视觉注意选择的眼动研究.心理学报,45(2),139–148.
    张豹,黄赛,侯秋霞.(2014).工作记忆表征捕获眼动中的颜色优先性.心理学报,46(1),17-26.
    张豹,黄赛.(2012).刺激属性在基于工作记忆表征的视觉注意中的作用.广州大学学报(自然科学版),11(5),82–87.
    张豹,黄赛.(2013).工作记忆表征对视觉注意的引导机制.心理学报,21(9),1578-1584.
    储衡清,周晓林.(2004).注意捕获与自上而下的加工过程.心理科学进展,12(5),680-687.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700