KMnO_4、KClO_3等无机固体的热分解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体的热分解反应是固体化学的重要研究领域,具有十分广阔的应用背景。很多无机盐产品的生产过程都包含碳酸盐、碱式碳酸盐和硫酸盐等原料或中间产物的煅烧分解工序。探明固体热分解机理,取得高效、适用的催化剂,对于相关产品的生产工艺改革、节能降耗、增加效益等有重要实际意义。CaCO_3是硅酸盐水泥生产中重要的工业原料,它的分解温度对水泥的能耗与质量具有重要的影响。另外,CaCO_3分解反应为一种典型的气固反应,对其反应动力学的研究有助于揭示并建立这一类反应的完整物理化学图景。可以通过对CaCO_3热分解机理尤其是催化热分解机理的研究来加深对固体热分解规律的认识,寻求CaCO_3热分解的高效催化剂并尽快投入应用;同时有助于增加对BaSO_4的热分解规律的认识,推进各种钡盐生产工艺的改革。
     鉴于CaCO_3、BaSO_4等热分解研究的较大难度和对实验条件较高的要求,我们经过长时间认真思考后,决定从一些较常见的、有相似性的、易分解的无机固体开始(实为进入科研启动阶段),熟悉有关的基础理论和研究手段,提高研究能力,积累研究经验,明确并创造研究条件,最终很好地展开、完成这一艰难、巨大的研究开发课题。对于无机固体的热分解,KMnO_4和KClO_3的热分解是人们再也熟悉不过的实例。但我们通过大量认真细致的调研,竟然发现有关的反应机理完全不清楚。为此我们选择从研究KMnO_4、KClO_3的热分解入手,在深厚、宽广的理论基础上,设计、完成了一系列巧妙、新颖的实验,取得一些重要发现。主要工作如下:
     1总结了国内外KClO_3、CaCO_3热分解研究的进展及热分析动力学方法,指出了不足之处,提出了有待解决的问题。
     2采用马弗炉把KMnO_4在一定温度下长时间加热,测定KMnO_4热分解失重率,根据是否失重确定其分解温度,发现KMnO_4热分解温度与其结晶状况有关,分解温度为190℃,不是文献中所载的240℃。首次提出了KMnO_4热分解机理。
     3配制ClO_3~-和微量ClO_2~-混合存在的溶液,ρ(ClO_3~-) = 34.1g/L,ρ(ClO2-) = 208mg/L,尝试以碘量法直接测定其中亚氯酸根离子的含量。考察测定条件及向待测溶液中添加ClO_4~-对分析结果的影响,确定了方法的测定程序、精密度、准确度和该方法可以较方便检测的最低ClO_2~-浓度。测定过程的关键之处是使用约0.5mol/L的盐酸来调节待测溶液的pH值。
     4认真研究了KClO_3热分解行为,发现学者们对KClO_3热分解温度和机理模型有不同看法。我们课题组在各个温度下对KClO_3长时间加热,认为其分解温度为330℃。并发现反应气氛、光辐射都影响KClO_3热分解,其中光辐射可以催化KClO_3热分解。同时提出了一个新的机理模型,该机理模型能够较好地解释一些实验现象。
     5通过对KClO_3和MnO_2混合体系的热分解研究,认为其分解温度与分析纯KClO_3热分解温度相同,为330℃;MnO_2对KClO_3的催化作用属于液-固催化,即MnO_2催化的是熔融态KClO_3的分解,混合体系在固态时MnO_2不起催化作用。同时发现KClO_3颗粒大小、升温速率都影响混合体系的热分解,并指出催化剂MnO_2最合适用量为10%-25%.
     6通过对KClO_3和KMnO_4混合体系的热分解研究,发现原位产生的MnO_2对KClO_3热分解有较强的催化作用。
The thermal decomposition of solid is an important research area of solid chemistry, it has a wide application background. The production process of many inorganic salts includes the decomposition process of the raw materials such as carbonate, basic carbonate, sulfate or inter- mediate products. It is of great important practical significance to the technology reform, saving energy, reducing consumption and increasing efficiency for us to proved thermal decomposition mechanism of the solid, made highly efficient and appropriate catalyst. CaCO_3 is an important industrial raw materials in the production of portland cement, its decomposition temperature has an important effect on the quality and energy consumption in portland cement production. In addition, CaCO_3 decomposition as a simple and typical gas-solid reaction, Studying its reaction dynamics is helpful to reveal this type of reaction and the establishment of a complete principle of physical chemistry. It can make us deepen the understanding on the laws of thermal decomposition by the studying on the thermal decomposition mechanism, especially on catalytic thermal decomposi- tion. This is helpful to seek the efficient catalyst of CaCO_3 thermal decomposition, as soon as possible play its industrial value. Of course, this also contribute to the understanding on the laws of BaSO_4 thermal decomposition, then reform all kinds of barium-salt production process.
     Considering the difficulty and the higher demands of experiment conditions in studying the decomposition of CaCO_3, BaSO_4, we decide to do some works begin from those inorganic solids which are familiar, similar, easy decomposition. Those are helpful to master the basic theories, research means and improve our research capability, accumulate some research experience and complete the hard task. So that we decide to do the research begin from the thermal decomposi- tion of KMnO_4, KClO_3. At present, the mechanism of potassium chlorate thermal decomposition is still very imperfect. Many scholars conducted extensive research on the mechanism of potassium chlorate thermal decomposition. because of the differenent experimental methods, experimental conditions, the researchers come to different mechanism model. None of these mechanism models can give a reasonable explanation completely accepted by us. Therefore, making a further study on the decomposition mechanism of KClO_3 has significant theoretical value. The main achievements of this dissertation are as follows:
     1 Introduce the progress of CaCO_3, KClO_3 thermal decomposition and the main research methods about thermal analysis kinetics at present in China and abroad. Meanwhile,the deficiency and the improvement approach were put forward in this dissertation.
     2 KMnO_4 was heated under a given temperature for long time in Muffle furnace, then we calculated the weight loss rate of KMnO_4. we determine the decomposition temperature of KMnO_4 according to the weight loss rate and found that thermal decomposition temperature of KMnO_4 is 190℃which is related to the crystalled status, not 240℃said in some literature. The mechanism models of KMnO_4 thermal decomposition were also firstly proposed by us.
     3 The mixture solution of ClO_3- and trifle amount ClO_2-, in whichρ(ClO_3- ) = 34.1 g/L,ρ(ClO_2~-) =208 mg/L, was prepared, and the ClO_2- concentration in the solution was tried to be determined directly by iodometricmethod. The influences of varying the detecting conditions and adding ClO_4~- to the solution on the results were investigated. The procedure,precision, accuracy, and the least detectable ClO_2~- concentration of the method,were obtained. In the analysis process, the pH value of the solution to be detected should be adjusted by 0.5 mol/L HCl.
     4 The researchers have different views on mechanism model and the thermal decomposi- tion temperature of KClO_3. We found that KClO_3 can decomposed at 330℃if it is heated for a long time under a given temperature. And found that reaction atmosphere, light radiation has effect on the thermal decomposition of KClO_3, light radiation can catalyze the thermal decomposition of KClO_3. We also proposed a new mechanism which can explain some experiments very well.
     5 By studying on the thermal decomposition for the mixture system of KClO_3 and MnO_2, we think that the decomposition temperature of KClO_3 is 330℃which is the same as analytical reagent.we found it belongs to liquid-solid phase catalysis for MnO_2 catalyzing the thermal decomposition of KClO_3. That is to say that MnO_2 can’t catalyze the KClO_3 decomposition when KClO_3 is still in solide states. We also found that particle size of KClO_3, heating rate can effect the thermal decomposition of the mixture system, and pointed out that the most suitable amount of MnO_2 in the mixture system is about 10% -25%.
     6 By studying on the thermal decomposition of the mixture system of KClO_3 and KMnO_4, we found that the situ MnO_2 has a high catalytic activity obtained from the decomposition products of KMnO_4.
引文
[1] 侯贵华,沈晓冬,许仲梓,等. 氧化铜对碳酸钙热分解动力学过程的影响[J] . 硅酸盐学报,2005, 33(1):109-124.
    [2] 郑瑛,史学锋,周英彪,等. 石灰石静态煅烧特性的研究[J]. 热能动力工程,1998, 13(77):319-321.
    [3] 陈汉民. 碳酸钙分解动力学 TGA 实验数据的新诠释[J]. 水泥工程,2003, 4:4-8.
    [4] 马世昌. 基础化学反应[M]. 陕西:陕西科学技术出版社,2003:46.
    [5] 陈寿椿. 重要无机化学反应[M].上海:上海科学技术出版社,1994:1631.
    [6] 武汉大学、吉林大学等校编. 无机化学(第三版)[M].北京:高等教育出版社,1994:546.
    [7] A.Glasner, L.Weidenfeid. Thermal decomposition of potassium chlorate and chlorate chlori de mixtures[J]. J. Am. Chem. Soc., 1952, 74:2464-2467.
    [8] J.M.Gaidis, E.G.Rochow. The catalyzed decomposition of potassium chlorate[J]. J. Chem.Edu., 1963, 43(2):78-81.
    [9] M.M.Markowitz, D.A.Boryta. The differential analysis of perchlorates. Ⅶ. Catalytic decomposition of the alkali metal perchlorates by manganese dioxide[J]. J. Phys. Chem., 1965, 69(4):1114-1123.
    [10] 冯增媛,潘云祥,吴衍荪. 氯酸钾催化热分解反应是怎样进行的?[J]. 化学通报,1988,9:43-45.
    [11] 北京师范大学、华中师范大学、南京师范大学无机化学教研室编. 无机化学(第四版)[M]. 北京:高等教育出版社,2003:428.
    [12] S.Shimada. Thermosonimetry and microscopic observation of the thermal decomposition of potassium chlorate [J]. Thermochim. Acta,1995,255:341-345.
    [13] W.K.Rudloff, E.S.Freeman. Catalytic effect of oxides on thermal-decomposition reaction. Ⅰ. The mechanism of molten-phase themal decomposition of potassium chlorate and of potassium chlorate in mixture with potassium chlorate and potassium perchlorate[J]. J. Phys. Chem.,1969, 73:1209-1215.
    [14] 曹忠良,王珍云. 无机化学反应方程式手册[M]. 长沙:湖南科技出版社,1985:447.
    [15] 人民教育出版社化学室主编. 化学教师教学用书[M].北京:人民教育出版社,1995:31.
    [16] O.Bostrup, K.Demandt, K.O.Hansen. The thermal decomposition of KClO3[J]. J. Am. Chem. Edu.,1962, 39(11):573.
    [17] 刘诗芳. 二氧化锰分解氯酸钾制取氧气机理浅探[J].晋东南师范专科学校学报,2003,20(2):31-32.
    [18] 钱晓农,康云川,彭鸣. 氯酸钾热分解机理研究[J]. 云南师范大学学报,1996, 16(1):58-61.
    [19] 朱炜,刘志敏. 对加热氯酸钾制氧气实验中催化剂的研究[J]. 化学教学,2002,6:47-48,16.
    [20] 谢良铎,邓忠寿,马子鹤,等. 氯酸钾热分解制氧催化剂的实验比较[J]. 化学教学,1982,3:24-26.
    [21] 熊辉. 氯酸钾催化热分解反应动力学研究[J]. 黄冈师专学报,1993,13(2):30-36.
    [22] W.K.Rudloff, E. S. Freeman. Catalytic effect of oxides on thermal-decomposition reaction.Ⅱ.The catalytic effect of metal oxides on the thermal decomposition of potassium chlorate and potassium perchlorate as detected by the analysis methods[J]. J. Phys. Chem., 1970, 74(18):3317-3324.
    [23] M.R.Udupa. Thermal decomposition of potassium chlorate in presence of chromium(Ⅲ) oxide and nickel(Ⅱ)chromite(Ⅲ)[J]. Thermochim. Acta, 1975, 13(3):349-356.
    [24] S.A.Halawy. Thermal decomposition of potassium chlorate in the presence of chromium(Ⅲ) oxide[J]. Journal of Analytical and Applied Prolysis,1994,28(2):219-229.
    [25] 冯云,陈延信. 碳酸钙的分解动力学研究进展[J]. 硅酸盐通报,2006, 25(3):140-154.
    [26] 岳林海,水淼,徐铸德. 纳米级粒径超细碳酸钙热分解动力学[J]. 无机化学学报,1999,15(2):225-229.
    [27] 李安平,张薇,简淼天,等. 水泥生料在模拟分解炉内分解特性的研究[J]. 硅酸盐学报,1995, 23(2):175-183.
    [28] 董建勋,冯兆兴,张悦,等.石灰石炉内高温煅烧固硫产物活性的实验研究[J]. 华北电力大学学报,2004,31(6):98-100.
    [29] 房殿奇,苏君,任有中,等.工业锅炉喷钙脱硫试验研究[J].工业锅炉,2002, 3:38-41.
    [30] H.M.Coutant. Investigation of reactivity of lime and dolomite for capturing SO2 from flue gas[J] . Industrial Environmental Research,1971, 20(3):297-304.
    [31] 齐庆杰,马云东,刘建忠,等. 碳酸钙热分解机理的热重试验研究[J]. 辽宁工程技术大学学报,2002, 21(6):689-692.
    [32] A.Irgan, D.Gulsen. Calcination kinectics of high purity limestone[J]. Chem. Eng.,2001, 83:131-137.
    [33] J.Khinast, G.F.Krammer, C.Brunner. Decomposition of limestone:the influence of CO2 and particle size on the reaction rate[J]. Chem. Eng.Sci.,1996, 51:623-634.
    [34] 倪晓奋,刘前鑫. 石灰石脱硫的热重分析研究[J]. 工程热物理学报,1995, 16(2):253-256.
    [35] 余兆南. 碳酸钙分解的试验研究[J]. 热能动力工程,1997, 12(4):278-280.
    [36] 仲兆平,MarnieTelfer,章名耀,等. Caroline 石灰石热分解实验研究[J]. 燃烧科学与研究,2001, 7(2):110-114.
    [37] 郑瑛,陈小华,周英彪. CaCO3 分解机理和动力学参数的研究[J]. 华中科技大学学报, 2002, 30(12):86-88.
    [38] T.R.Rao. Kinetics of calcium carbonate decomposition[J]. Chem. Eng.Technol., 1996, 19:373-377.
    [39] 王世杰,陆继东,胡芝娟,等. 水泥生料分解动力学的研究[J]. 硅酸盐学报,2003,31(8):811-814.
    [40] J.H.Flynn. Thermal analysis kinetics-past present and future[J]. Thermochim. Acta,1992,203:519-526.
    [41] 沈玉芳, 陈栋华,胡小安. 热分析动力学处理方法现状及进展[J]. 中南民族大学学报,2002,21(3):11-15,29.
    [42] 胡荣祖, 史启祯. 热分析动力学[M]. 北京:科学出版社,2001:127-131.
    [43] 陆振荣. 热分析动力学的新进展[J]. 无机化学学报,1998,14(2):119-126..
    [44] 潘云祥, 管翔颖, 冯增媛,等. 一种确定固相反应机理函数的新方法―固态草酸镍(Ⅱ)二水合物脱水过程的非等温动力学[J]. 无机化学学报,1999,15(2):247-251.
    [45] 陈镜泓,李传儒. 热分析及其应用[M]. 北京:科学出版社,1987:1-74.
    [46] T.Ozawa. Thermal analysisreview and prospect[J]. Thermochim. Acta,2000, 355:35-42.
    [47] 沈玉芳,陈栋华,袁誉洪. 一种新的热分析动力学处理方法[J]. 华中师范大学学报,2003,37(1):75-79.
    [48] 韦秀华,唐万军,陈栋华. 碳酸钙热分解反应动力学的不同方法研究[J] . 华中师范大学学报,2005, 24(2):35-38.
    [49] A.W.Coats, J.P.Redfern. Thermal studies on some metal complexs of hexamely lenim in- ecarbodith ioate[J]. Nature,1964, 1:67.
    [50] M.Brown,R.M.Flynn,J.H.Flynn. Report on the ICTAC kinetics committee (August 1992 to September 1994)[J]. Thermochim. Acta,1995, 256:477-483.
    [51] I.Gao,M.Gao,I.Amasaki. A considertion of errors and accuracy in the isoconversional [J]. Thermochim. Acta,2001, 369:137-142.
    [52] A.Ortega, S.Akhouayri, F.Rouquerol, etal. On the suitability of controlled transformation rate thermal analysis (CRTA)for kinetic studies part 3. Discrimination of the reaction mechanism of dolomite thermolysis[J]. Thermochim .Acta,1994, 247:321-327.
    [53] Y. Laureiro, A.Jerez. Dehydration kinetics of Wyoming montmorillonite studied by controlled transformation rate thermal analysis[J]. Thermochim.Acta,1996, 278:165-173.
    [1] Michael E. Brown, Andrew K. Galwey, Mohamed, etal. A. Mohamed. A mechanism for the thermal decomposition of potassium permanganate crystals based on nucleation and growth[J]. Thermochimica Acta, 1994, 235(2):255-270.
    [2] Michael E. Brown, Kathryn C. Sole, Michael W. Beck. Isothermal DSC study of the thermal decomposition of potassium permanganate[J]. Thermochimica Acta, 1985, 92(9): 149-152.
    [3] Michael E. Brown, Kathryn C. Sole,Michael W. Beck. Isothermal DSC study of the thermal decomposition of potassium permanganate[J]. Thermochimica Acta,1985, 89(7):27-37.
    [4] Abdolsamad Z. Moghaddam, Gwilym J. Rees. Thermal decomposition of potassium permanganate : Thermogravimetry, differential scanning calorimetry and hot-stage microscopy studies[J]. Fuel,1984,63(5):653-656.
    [5] J.S.Booth, D.Dollimore, G..R.Heal. Thermal analysis of some group I permanganate decompositions[J]. Thermochimica Acta, 1980,39(3):281-291.
    [6] J.S.Booth, D. Dollimore, G. R. Heal. The catalytic effect of additions on the rate of thermal decomposition of permanganates[J]. Thermochimica Acta, 1980,39(3):293-304.
    [7] K.M.Abd,El-Salaam,E.A.Hassan. Effect of metal oxide additives on the thermal decomposition of KMnO4[J]. Thermochimica Acta, 1980,38(3):271-275.
    [8] V.V.Boldyrev.Mechanism of thermal decomposition of potassium permanganate in the solid phase[J]. Journal of Physics and Chemistry of Solids, 1969,30 (5):1215-1223.
    [9] E. G. Prout. The thermal decomposition of irradiated potassium permanganate[J]. Journal of Inorganic and Nuclear Chemistry,1958,7(4): 368-377.
    [10] 化学工业出版社组织编写.中国化工产品大全(第二版)[M]. 北京:化学工业出版社,2002:Bc247.
    [11] 周公度.化学词典[M].北京:化学工业出版社,2004:176,240,493.
    [12] 张克立.固体无机化学[M]. 武汉:武汉大学出版社,2005:285,303.
    [13] 洪广言.无机固体化学[M].北京:科学出版社,2002:190.
    [14] 谢高阳,俞练民,刘耀本,等.无机化学丛书(第九卷)[M]. 北京:科学出版社,1998:44,47.
    [1] 黄君礼.二氧化氯分析技术[M].北京:中国环境科学出版社,2000:1-57,170-186.
    [2] 田芳,谢家理.用离子色谱法测定水中的二氧化氯、氯、亚氯酸根及氯酸根[J].分析化学,2004,32(4):522-524.
    [3] M. Philippi, H. S. dos Santos, A. O. Martins, et al. Alternative spectrophotometric method for standardization of chlorite aqueous solutions[J]. Anal. Chim. Acta, 2007, (585):361-365.
    [4] 胡伟光,张文英.定量化学分析实验[M].北京:化学工业出版社,2004:121,122.
    [5] 通用化工产品分析方法手册编写组.通用化工产品分析方法手册[M].北京:化学工业出版社,1997:184-186.
    [6] 黄存礼,谢原寿,陈大元.氯酸盐及高氯酸盐工业分析[M].长沙:中南工业大学出版社,1987:54,55,177.
    [7] 方贤达.氯酸盐生产工艺[M].北京:化学工业出版社,1988:208,261,274.
    [1] W.K.Rudloff, E.S.Freeman. Catalytic effect of oxides on thermal-decomposition reaction. Ⅰ. The mechanism of molten-phase thermal decomposition of potassium chlorate and of potassium chlorate in mixture with potassium chlorate and potassium perchlorate[J]. J. Phys. Chem.,1969, 73:1209-1215.
    [2] 马世昌. 基础化学反应[M]. 陕西:陕西科学技术出版社,2003:46.
    [3] 陈寿椿.重要无机化学反应[M].上海:上海科学技术出版社,1994:1631.
    [4] 武汉大学、吉林大学等校编. 无机化学(第三版)[M] . 北京:高等教育出版社,1994:546.
    [5] 冯增媛,潘云祥,吴衍荪.氯酸钾催化热分解反应是怎样进行的?[J].化学通报,1988, 9:43-45.
    [6] 北京师范大学、华中师范大学、南京师范大学无机化学教研室编. 无机化学(第四版) [M].北京:高等教育出版社,2003:428.
    [7] 方贤达.氯酸盐生产工艺[M]. 北京:化学工业出版社,1988:136.
    [8] 朱文祥. 无机化合物制备手册[M]. 北京:化学工业出版社,2006:770.
    [9] Ю·В·卡尔雅金,И·И·安捷洛夫著.于忠,张天禄,丁汝训译. 无机化学试剂手册[M] .北京:中国工业出版社,1964:263.
    [10] 刘预知.无机物质理化性质及重要反应方程式手册[M]. 成都:成都科技大学出版社,1993:251.
    [11] 中国医药公司上海化学试剂采购供应站编著. 试剂手册[M]. 上海:上海科学技术出版社:1963:568.
    [12] S.Shimada. Thermosonimetry and microscopic observation of the thermal decomposition of potassium chlorate [J]. Thermochim. Acta,1995,255:341-345.
    [13] 朱文祥. 无机化合物制备手册[M]. 北京:化学工业出版社,2006:775.
    [1] 马世昌. 基础化学反应[M]. 陕西:陕西科学技术出版社,2003:46.
    [2] 人民教育出版社化学室主编.化学教师教学用书[M]. 北京:人民教育出版社,1995:31.
    [3] J.M.Gaidis, E.G.Rochow. The catalyzed decomposition of potassium chlorate[J]. J. Chem. Edu., 1963, 43(2):78-81.
    [4] O.Bostrup, K.Demandt, K.O.Hansen . The thermal decomposition of KClO3[J]. J. Am. Chem. Edu.,1962, 39(11):573.
    [5] 冯增媛,潘云祥,吴衍荪. 氯酸钾催化热分解反应是怎样进行的?[J]. 化学通报,1988,9:43-45.
    [6] 钱晓农,康云川,彭鸣. 氯酸钾热分解机理研究[J]. 云南师范大学学报,1996, 16(1):58-61.
    [7] W.K.Rudloff, E. S. Freeman. Catalytic effect of oxides on thermal-decomposition reaction.Ⅱ.The catalytic effect of metal oxides on the thermal decomposition of potassium chlorate and potassium perchlorate as detected by the analysis methods[J]. J. Phys. Chem., 1970, 74(18):3317-3324.
    [8] O.Bostrup, K.Demandt, K.O.Hansen . The thermal decomposition of KClO3[J]. J. Am. Chem. Edu.,1962, 39(11):573.
    [9] 曹锡章,张蕙,杜光国等.无机化学(下册)[M]. 北京:北京高等教育出版社,1991:34.
    [10] E.Wiederholt. Influence of temperature and catalyst on the decomposition of potassium chlorate in a simple DTA-Apparatus[J]. J.Chem.Educ.,1983,60(5):431-434.
    [11] 廖代伟. 催化科学导论[M].北京:化学工业出版社,2006:27.
    [12] J.M.Gaidis, E.G.Rochow. The catalyzed decomposition of potassium chlorate[J]. J. Chem. Edu., 1963, 43(2):78-81.
    [13] 陈金娥,张海容. 10 种金属氧化物对氯酸钾热分解制氧催化效果的研究[J]. 忻州师范学院学报,2001,17(4):56-57.
    [14] 闵凡新,付立海,于建军,等. 实验室制备氧气催化剂的选用及用量探讨[J]. 通化师范学院学报,2002,23(2):48-51.
    [1] 王艳萍.系列金属氧化物纳米晶的制备、结构及其对高氯酸铵的催化性能研究[D].南京:南京理工大学,2006.
    [2] 陈诵英,陈平,李永旺,等. 催化反应动力学[M]. 北京:化学工业出版社,2007:13,71.
    [3] 廖代伟. 催化科学导论[M]. 北京:化学工业出版社, 2006:27,69.
    [4] 韩维屏. 催化化学导论[M]. 北京:科学出版社,2004,172,201.
    [1] M.M.Markowitz, D.A.Boryta. The differential analysis of perchlorates. Ⅶ. Catalytic decomposition of the alkali metal perchlorates by manganese dioxide[J]. J. Phys. Chem., 1965, 69(4):1114-1123.
    [2] 黄存礼,谢原寿,陈大元.氯酸盐及高氯酸盐工业分析[M].长沙:中南工业大学出 版社,1987:54,55,177.
    [3] 方贤达.氯酸盐生产工艺[M].北京:化学工业出版社,1988:208,261,274.
    [4] 朱文祥. 无机化合物制备手册[M]. 北京:化学工业出版社,2006:775.
    [5] J.A.迪安.尚久方,操时杰,辛无名,等译. 兰氏化学手册[M].科学出版社,1991.
    [6] 姚允斌,解涛,高英敏. 物理化学手册[M].上海:上海科学技术出版社,1985.
    [7] 印永嘉.物理化学简明手册[M]. 北京:高等教育出版社,1988.
    [8] 曾昭抡,陶坤译. 苏联化学手册[M].科学出版社,1959.
    [9] 黄君礼. 二氧化氯分析技术[M]. 北京:中国环境科学出版社,2000:50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700