富钙生物油脱硫脱硝机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤电厂是SO2和NOx排放的重要来源,随着目前环保要求越来越严格,燃煤电厂SO2和NOx的脱除己势在必行。
     炉内喷钙是我国众多中小型燃煤机组及工业锅炉常用的脱硫方式,脱硫剂采用石灰石。然而石灰石脱硫存在着钙利用率低、脱硫效率不高和无法同时脱硝等问题。国外研究表明有机酸钙盐(如乙酸钙等)在具有较高的脱硫能力的同时,还具备一定的脱硝能力,非常适合用于燃煤锅炉污染物的脱除。然而制备有机酸钙盐需要大量有机酸,而有机酸生产成本太高,这限制了有机酸在工业上的应用,所以此种方法目前还停留在理论研究阶段。
     生物油中含有丰富的有机酸,将其与钙基吸收剂反应可制备出在一种富含有机酸钙盐的“富钙生物油”,可用于有机酸钙盐的替代品,从而解决有机钙盐生产成本过高的问题。
     本文以富钙生物油为研究对象,首先对富钙生物油制备过程的影响因素作用规律进行了研究,考察了石灰石粒径、生物油pH值、反应温度对富钙生物油的制备过程的影响,指出生物油pH值与反应温度在制备富钙生物油过程中起着关键的作用,较小pH值的生物油与较高的反应温度有利于富钙生物油中钙离子浓度的增加。对制备出的富钙生物油成分分析表明,富钙生物油中主要含有Ca、H、O、C等元素,富钙生物油中除有机羧酸钙盐外,还含有醇、苯、酚类等物质。
     对富钙生物油煅烧过程进行了研究,表明富钙生物油的煅烧可以分为四个阶段。第一阶段是<200℃时富钙生物油的脱水阶段,第二阶段是温度在200℃~400℃时,富钙生物油中部分残留生物油的分解析出,也包括部分分解温度较低的有机羧酸钙盐的分解。第三阶段为400℃左右时,富钙生物油的有机羧酸钙盐分解阶段。最后是碳酸钙的分解阶段。随着升温速率的增大,富钙生物油分解的后两个阶段分解起始温度都有所提高。粒径对富钙生物油煅烧特性的影响较小。CO2气氛对富钙生物油碳酸钙分解阶段表现出明显的抑制作用。对富钙生物油后两个阶段分解动力学进行了分析,表明后两个分解阶段符合相边界反应的收缩圆柱体模型。富钙生物油煅烧产物孔结构受其煅烧过程的影响非常明显,特别是有机羧酸钙盐的快速分解阶段,在此温度区间内(400~600℃),富钙生物油中残留高分子碳氢化物沉积效应与有机气体释放产生气释作用共存,但沉积效应占主导,导致富钙生物油煅烧产物孔隙特性随温度的增加反而下降。然而即使如此,富钙生物油煅烧产物孔隙还是优于同等条件下CaCO3煅烧产物。
     富钙生物油热重反应器与小型固定床反应器上脱硫结果显示,富钙生物油最佳脱硫温度应该在900℃左右,富钙生物油脱硫反应可以被分成三个阶段:分别为表面脱硫阶段、二氧化硫缓慢扩散阶段、反应中止阶段。二氧化硫缓慢扩散阶段在富钙生物油脱硫反应中起决定性的作用。采用晶粒模型模拟了富钙生物油脱硫过程,模拟过程与实验结果比较吻合。然后用主成分分析法建立的综合评价方法评估了富钙生物油脱硫反应活性,结果表明,富钙生物油脱硫性能主要由孔隙率、CaO含量、比表面积与平均孔径比值决定。
     在小型反应器上进行了富钙生物油同时脱硫脱硝研究,实验结果表明,钙生物油脱硫效率在900~950℃内取得最大值,为90%左右。脱硝效率在1200~1250℃内达到最大值,为50%左右。富钙生物油同时脱硫脱硝钙硫比在2~3之间较为适宜。贫氧气氛下有利于富钙生物油同时脱硫脱硝效率的提高。相同实验条件下,三种钙基同时脱硫脱硝性能大小顺序为富钙生物油>醋酸钙>石灰石。石灰石粒径越小越有利于制备出的富钙生物油脱硫脱硝,pH较小、酸性较强生物油也有利于富钙生物油脱硫脱硝效率的提高,制备温度的提高也可增加富钙生物油脱硫的性能,在50℃左右制备富钙生物油即可。
     对富钙生物油再燃脱硝过程进行了数值模拟,结果表明温度和氧量是影响富钙生物油还原NOx的主要因素。在贫氧情况下有利于富钙生物油NOx还原效率的提高,而温度对富钙生物油还原NOx效率的影响程度与过量空气系数有关,过量空气系数在0.6~0.8,温度在1100~1400℃范围内,是富钙生物油理想脱硝区间。富钙生物油再燃脱硝分为两个阶段,在快速反应阶段,富钙生物油煅烧过程中生成的CH2CO继续分解为H、HO2, HCCO等物质,降低了NOx的浓度。而在沿程反应阶段,NO的还原主要以反应式H+NO+M=>HNO+M为主。
Coal-fired power plants are the primary sources of SO2 and NOx emissions. With the increasingly stringent environmental requirements, the simultaneous removal of SO2 and NOx from coal-fired power plant has been imperatived.
     Spraying limestone inside furnace is the most commonly method to reduce SO2 emissions in china numerous small and medium-sized industrial coal-fired boilers. But desulfurization by limestone has the disadvantage of low desulfurization efficiency and the problem that can not denitration simultaneously. Researches abroad indicated that organic calcium salts (such as calcium acetate) had high desulfurization efficiency and certain denitration efficiency simultaneously, which were very suitable for coal-fired boilers absorbents. But a large number of organic acids will be need for preparing organic acids calcium salts, and the cost of producing organic acids is too high, which causes the fact that this method is still in academic research stage.
     The bio-oil can be obtained easily by rapid pyrolysis of any kind of biomass in the absence of oxygen. The bio-oil mainly contains acetic acid, formic acid, propionic acid and a small amount of benzoic acid, which can react with Ca(OH)2 or CaCO3 and the product contains numerous organic acids calcium salts, which called" calcium-enriched bio-oil(CEB)". It can be act as a succedaneum for organic acids calcium salts.
     This paper focuses on the novel organic calcium "calcium-enriched bio-oil(CEB)", which is capable of desulfurization and denitrification simultaneously. The effect principles of factors on preparating of CEB were investigated firstly. Limestone particle size and pH value of bio-oil and reaction temperature were investigated during the process of CEB preparation. Bio-oil pH value and reaction temperature play a key role in the process, the smaller pH value of bio-oil and high temperature are conducive to increase calcium concentration. The results of CEB components analysis indicated that CEB mainly contain Ca, H, O, C. The test results of CEB molecular structure showed that CEB mainly contain organic acids calcium salts, but also containing alcohol, benzene, phenol and other substances.
     The calcination process of CEB was investigated by thermogravimetric analyzer, the results showed that CEB calcination process could be divided into four stages, which were dehydration of CEB, CO2 and H2O precipitation from part component of bio-oil, decomposition of organic carboxylic acid calcium salt, decomposition of calcium carbonate respectively. Heating rate and particle size had little effect on CEB decomposition processes, but CO2 had significantly inhibitory effect on CEB decomposition processes. The kinetics of the second and third stage was studied, and the kinetic parameters were calculated. The mechanism functions were also determined by both the universal integral method and the differential equation method. The results indicate that the shrinking cylinder model with surface reaction rate controlling mechanism was the model fitting the latter two stages during CEB calcination process. The calcium oxide particles obtained from decomposition and calcination of CEB were analyzed by different methods to determine their physicochemical characteristics. Pore structure parameters indicated that decomposition of organic carboxylic acid calcium salt had important influences on product pore structure. The cavitations effected by gas precipitation and carbonization deposition phenomenon of macromolecular compound coexist in the range of 450~600℃, but the latter dominated. The carbonization deposition phenomenon of macromolecular compound mainly occurred in the range of 500~600℃. After 600℃, with the decomposition of calcium carbonate and carbon dioxide release, new micropores had been formed in calcined product. Under the same calcination temperature the pore characteristics of CEB calcined product obviously superior to calcium carbonate.
     CEB desulfurization process was investigated on thermogravimetric analyzer and a small fixed bed reactor. The results showed that CEB desulfurization temperature should be the best around at 900℃, and CEB desulfurization process could be divided into three stages:surface desulfurization, sulfur dioxide slow diffusion stage and the reaction suspension stage. Slow diffusion phase of sulfur dioxide plays a decisive role in CEB desulfurization process. Grain model had been used to simulate CEB desulfurization process, and simulant results in good agreement with the experimental results. Then evaluation method established by principal component analysis was used to assess the reaction activity of CEB desulfurization, the results showed that CEB desulfurization performance mainly decided by the CaO content, the ratio of specific surface area and average pore size, porosity.
     CEB desulfurization and denitrification simultaneously was was investigated on a small fixed bed reactor. The reuslts showed that during CEB desulfurization process SO2 precipitation decline with temperature increasing in initial combustion stage, SO2 precipitation increase with temperature increasing in late combustion stage. SO2 precipitation peak gradually moves up with the increase of excess air ratio. The active group CHi generated by the decomposition of organic gases during CEB calcination process had obvious reduction effect to NOx first precipitation peak, while the CaO formed by CEB calcination process had a dual role on NOx second precipitation peak.1150℃was the appropriate temperature for CEB denitrification; poor oxygen atmosphere was conducive to CEB denitrification efficiency.
     CEB reburning process was simulated, the results showed that the temperature and atmosphere were major factors on NOx reduction; poor oxygen condition was conducive to CEB denitrification efficiency. While the effect of the temperature related with excess air ratio, excess air ratio of 0.6 to 0.8 and the temperature in the range of 1100~1400℃were idea condition for CEB denitrification. CEB reburning process could be divided into two stages, in the rapid response stage, CH2CO generated during CEB calcination process continue to decompose as H, HO2, HCCO, which reduce the NOx concentration.
引文
[1].张国宝,中国能源发展报告2010.2010,北京:经济科学出版社.
    [2].王淑娜,孙根年,中国1991年至2007年火力发电-燃煤消耗-S02排放关系的分析.资源科学,2010.32(7):p.1230-1235.
    [3].煤炭工业发展“十二五”规划,国家发展和改革委员会,2012.
    [4].许红星,我国能源利用现状与对策.中外能源,2010.15(001):p.3-14.
    [5].刘宇,王凡,朱金伟,等,燃煤工业锅炉减排NOx研究分析.中国环保产业,2010.12:p.14-16.
    [6].王志轩,赵毅,潘荔,等,中国燃煤电厂NOx排放估算方法及排放量研究.中国电力,2009.42(4):p.59-62.
    [7].邵中兴,李洪建,我国燃煤SO2污染现状及控制对策.山西化工,2011.31(1):p.46-48,57.
    [8].李爱军,我国燃煤发电技术进步的节能减排效果分析.节能与环保,2010.22(11):p.44-48,57.
    [9].张建宇,潘荔,杨帆,等,中国燃煤电厂大气污染物控制现状分析.环境工程技术学报2011.1(3):p.185-196.
    [10].国家环境保护总局,国家质量监督检验检疫总局,中华人民共和国国家标准-火电厂大气污染物,GB13223-20032003.
    [11].肖海平,有机钙同时脱硫脱硝的机理研究,杭州:浙江大学2006.
    [12].饶苏波,胡敏,等,干法脱硫工艺技术分析.广东电力,2004.17(3):p.21-25.
    [13].王雷,章明川,周月桂,等,半干法烟气脱硫工艺探讨及其进展.锅炉技术,2005.36(1):p.70-74.
    [14].李守信,纪立国,石灰石—石膏湿法烟气脱硫工艺原理.华北电力大学学报,2002.29(4):p.91-94.
    [15].郝吉明,王书肖,陆永琪,煤燃二氧化硫污染控制技术手册,2001,北京:化学工业出版社.
    [16].李步伟,燃煤发电厂烟气脱硫技术工艺.科技信息,2009.1:p.451.
    [17].刘仕君,廖立,煤粉锅炉燃烧过程中脱硫技术方案效率的比较研究.华东电力,2011.39(5):p.0841-0843.
    [18].廉丽红,燃煤锅炉脱硫技术浅析.中国科技博览,2010(007):p.229-229.
    [19].王正华,周昊,炉内喷钙脱硫对锅炉运行的影响.锅炉技术,2003.34(1):p.76-80.
    [20].沈晓冬,周全,LIFAC脱硫粉煤灰物相分析研究.粉煤灰,2003.15(1):p.12-14.
    [21].刘建忠,周俊虎,程军,等,燃煤炉预混—喷钙二段脱硫技术研究.中国电机工程学报,2003.23(2):p.153-157.
    [22].周建平,姚洪,炉内喷钙脱硫对SO2和NOx排放的影响.热力发电,1998(3):p.4-8.
    [23].程军,炉内高温燃烧两段脱硫的机理研究[D],2002,浙江大学博士学位论文.
    [24].张永照,燃煤锅炉脱硫技术综述.工业锅炉,2003.3:p.1-11.
    [25].周军,周全,下关电厂炉内喷钙炉后活化烟气脱硫工程评述.电力环境保护,2001.17(2):p.1-7.
    [26].应春华,浙江钱清电厂烟气脱硫工程实例分析.浙江节能,2004(2):p.29-32.
    [27].Hartman, M. and R.W. Coughlin, Reaction of sulfur dioxide with limestone and the grain model. Aiche Journal,1976.22(3):p.490-498.
    [28].Borgwardt, R.H., K.R. Bruce, and J. Blake, An investigation of product-layer diffusivity for calcium oxide sulfation Industrial & Engineering Chemistry Research, 1987.26(10):p.1993-1998.
    [29].Sasaoka, E., N. Sada, and M.A. Uddin, Preparation of macroporous lime from natural lime by swelling method with acetic acid for high-temperature desulfurization. Industrial & Engineering Chemistry Research,1998.37(10):p.3943-3949.
    [30].Sasaoka, E., M.A. Uddin, and S. Nojima, Novel preparation method of macroporous lime from limestone for high-temperature desulfurization. Industrial & Engineering Chemistry Research,1997.36(9):p.3639-3646.
    [31].Snow, M.J.H., J.P. Longwell, and A.F. Sarofim, Direct sulfation of calcium carbonate. Industrial & Engineering Chemistry Research,1988.27(2):p.268-273.
    [32].Levendis, Y.A. and D.L. Wise, Method for simultaneously removing SOX and NOX pollutants from exhaust of a combustion system, U.S. Patent, Editor 1994.
    [33].Levendis, Y.A. and D.L. Wise, Use of aromatic salts for simultaneously removing SOx and NOX pollutants from exhaust of a combustion system, in UnitedS tates Patent, U.S. Patent, Editor 1994.
    [34].Oehr, K., Acid emission reduction, U.S. patent, Editor 1995,5458803.
    [35].蒋绍坚,汪洋洋,高温低氧燃烧技术及其高效低污染特性分析.中南工业大学学报,2000.31(4):p.311-314.
    [36].Spliethoff, H., U. Greul, H. Riidiger, et al., Basic effects on NOx emissions in air staging and reburning at a bench-scale test facility. Fuel,1996.75(5):p.560-564.
    [37].钟秦,燃煤烟气脱硫脱硝技术及工程实例 2002,北京:化学工业出版社.
    [38].宣小平,姚强,选择性催化还原法脱硝研究进展.煤炭转化,2002.25(3):p.26-31.
    [39].Bosch, H. and F. Janssen, Catalytic reduction of nitrogen oxides:A review on the fundamentals and technology1988:Elsevier VII p.
    [40].Moo, B.C. and F.C. Chin, Low temperature SNCR process for NOx control. The Science of the Total Environment,1997.198(1):p.73-78.
    [41].钟秦,选择性非催化还原法脱除NOx的实验研究.南京理工大学学报(自然科学版),2000.24(1):p.68-71.
    [42].Smoot, L.D., S.C. Hill, and H. Xu, NOx control through reburning. Progress in energy and combustion science,1998.24(5):p.385-408.
    [43].林泉,潘卫国,李茂德,再燃还原NOx燃烧技术的现状与发展趋势.发电设备,2004.18(006):p.346-349.
    [44].牛志刚,煤、水煤浆燃料氮析出特性和燃料型NOx生成特性研究,2004,浙江大学.
    [45].Bilbao, R., A. Millera, M.U. Alzueta, et al., Evaluation of the use of different hydrocarbon fuels for gas reburning. Fuel,1997.76(14-15):p.1401-1407.
    [46].Harding, N.S. and B.R. Adams, Biomass as a reburning fuel:a specialized cofiring application. Biomass and Bioenergy,2000.19(6):p.429-445.
    [47].Adams, B.R. and N.S. Harding, Reburning using biomass for NOx control. Fuel Processing Technology,1998.54(1-3):p.249-263.
    [48].Maly, P.M., V.M. Zamansky, L. Ho, et al., Alternative fuel reburning. Fuel,1999.78(3): p.327-334.
    [49].Dagaut, P., J. Luche, and M. Cathonnet, Reduction of NO by propane in a JSR at 1 atm: experimental and kinetic modeling. Fuel,2001.80(7):p.979-986.
    [50].Dagaut, P. and F. Lecomte, Experiments and kinetic modeling study of NO-reburning by gases from biomass pyrolysis in a JSR. Energy & Fuels,2003.17(3):p.608-613.
    [51].Dagaut, P. and F. Lecomte, Experimental and kinetic modeling study of the reduction of NO by hydrocarbons and interactions with SO2 in a JSR at 1 atm* 1. Fuel,2003. 82(9):p.1033-1040.
    [52].Garijo, E.G., A.D. Jensen, and P. Glarborg, Kinetic study of NO reduction over biomass char under dynamic conditions. Energy & Fuels,2003.17(6):p.1429-1436.
    [53].钟北京,傅维标,气体燃料再燃对NOx还原的影响.热能动力工程,1999.14(006):p.419-423.
    [54].钟北京,傅维标,煤的挥发分对NOx再燃特性的研究.燃烧科学与技术,2000.6(002):p.185-189.
    [55].苏胜,向军,胡松,et al.,气体再燃降低NOx排放的实验研究.动力工程,2004.24(006):p.884-888.
    [56].沈毅敏,还博文,天然气再燃烧还原炉内NOx的扩散机制分析.上海交通大学学报,2000.34(009):p.1249-1252.
    [57].张强,何伯述,天然气再燃料还原NOx的数值模拟.西安石油学院学报:自然科学版,1999.14(006):p.44-46.
    [58].Tokunaga, O. and N. Suzuki, Radiation chemical reactions in NOx and SO2 removals from flue gas. Radiation Physics and Chemistry (1977),1984.24(1):p.145-165.
    [59].Chang, J.S., K. Urashima, Y.X. Tong, et al., Simultaneous removal of NOx and SO2 from coal boiler flue gases by DC corona discharge ammonia radical shower systems: pilot plant tests. Journal of electrostatics,2003.57(3-4):p.313-323.
    [60].McInnes, R.G., Explore new options for hazardous air pollutant control. Chemical Engineering Progress,1995.91(11):p.36-47.
    [61].Mochida, I., Y. Korai, M. Shirahama, et al., Removal of SOx and NOx over activated carbon fibers. Carbon,2000.38(2):p.227-239.
    [62].余磊波,一维热态实验炉上燃烧法联合脱硫脱硝实验研究,2010,哈尔滨工业大学.
    [63].Okazaki, K. and T. Ando, NOx reduction mechanism in coal combustion with recycled CO2. Energy,1997.22(2-3):p.207-215.
    [64].Liu, H., S. Katagiri, and K. Okazaki, Drastic SOx removal and influences of various factors in O2/CO2 pulverized coal combustion system. Energy Fuels,2001.15(2):p. 403-412.
    [65].Liu, H., S. Katagiri, and K.E.N. Okazaki, Decomposition behavior and mechanism of calcium sulfate under the condition of O2/CO2 pulverized coal combustion. Chemical Engineering Communications,2001.187(1):p.199-214.
    [66].Hu, Y., S. Naito, N. Kobayashi, et al., CO2, NOX and SO2 emissions from the combustion of coal with high oxygen concentration gases. Fuel,2000.79(15):p. 1925-1932.
    [67].Liu, H., S. Katagiri, U. Kaneko, et al., Sulfation behavior of limestone under high CO2 concentration in O2/CO2 coal combustion Fuel,2000.79(8):p.945-953.
    [68].姚洪,周建平,炉内喷钙脱硫实验研究及其影响.发电设备,1997(6):p.12-16.
    [69].王正华,周昊,炉内喷钙对SO2和NOx排放的影响研究.电站系统工程,2002.18(6):p.42-44.
    [70].Nimmo, W., A.A. Patsias, E. Hampartsoumian, et al., Simultaneous reduction of NOX and SO2 emissions from coal combustion by calcium magnesium acetate. Fuel,2004. 83(2):p.149-155.
    [71].Nimmo, W., A.A. Patsias, E. Hampartsoumian, et al., Calcium magnesium acetate and urea advanced reburning for NO control with simultaneous SO2 reduction. Fuel,2004. 83(9):p.1143-1150.
    [72].Bridgwater, A.V., D. Meier, and D. Radlein, An overview of fast pyrolysis of biomass. Organic Geochemistry,1999.30(12):p.1479-1493.
    [73].张谋,陈汉平,赵向富,等,富钙生物油煅烧过程中孔结构变化特性的研究.燃料化学学报,2011.39(6):p.443-448.
    [74].Sotirchos, S.V. and A.R. Smith, Experimental investigation of the decomposition and calcination of calcium-enriched bio-oil. Ind. Eng. Chem. Res,2003.42(10):p. 2245-2255.
    [75].Sotirchos, S.V. and A.R. Smith, Performance of Porous CaO Obtained from the Decomposition of Calcium-Enriched Bio-Oil as Sorbent for SO2 and H2S Removal. Industrial & Engineering Chemistry Research,2004.43(6):p.1340-1348.
    [76].Ninomiya, Y., L. Zhang, T. Nagashima, et al., Combustion and De-SOx behavior of high-sulfur coals added with calcium acetate produced from biomass pyroligneous acid. Fuel,2004.83(16):p.2123-2131.
    [77].Lu, Q., X. Yang, and X. Zhu, Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. Journal of Analytical and Applied Pyrolysis,2008.82(2):p. 191-198.
    [78].常胜,赵增立,张伟,等,不同种类生物油化学组成机构的对比研究.燃料化学学报,2011.39(10):p.746-753.
    [79].王贤华,生物质化床热解液化实验研究及应用,2007,武汉:华中科技大学.
    [80].Oasmaa, A. and D. Meier, Norms and standards for fast pyrolysis liquids:1. Round robin test. Journal of Analytical and Applied Pyrolysis,2005.73(2):p.323-334.
    [81].Mohan, D., C.U. Pittman Jr, and P.H. Steele, Pyrolysis of wood/biomass for bio-oil:a critical review. Energy Fuels,2006.20(3):p.848-889.
    [82].贺瑞雪,生物质热解油气化实验与模拟研究,2008,华中科技大学:武汉.
    [83].Wang, H., X. Jiang, J. Liu, et al., Attrition experiment and gray relational analysis of quartzite particles as medium material in fluidized bed. JOURNAL OF CHEMICAL INDUSTRY AND ENGINEERING-CHINA-,2006.57(5):p.1133.
    [84].Moran, J., E. Granada, J.L. Mguez, et al., Use of grey relational analysis to assess and optimize small biomass boilers. Fuel Processing Technology,2006.87(2):p.123-127.
    [85].Han., X.X., X. Jiang., J. Liu., et al., GREY RELATIONAL ANALYSIS OF N2O EMISSION FROM OIL SHALE-FIRED CIRCULATING FLUIDIZED BED [J]. Coal Conversion,2008.3.
    [86].Ma, Y.F., H. Wang, X.M. Jiang, et al., Combustion experiment and gray relational analysis of coal water slurry balls in fluidized bed. Proceedings of the CSEE,2007.27: p.61-66.
    [87].申卯兴,薛西锋,张小水,灰色关联分析中分辨系数的选取.空军工程大学学报 (自然科学版),2003.4(1):p.68-70.
    [88].杨家敏,丁耀南,易容清,等,软X射线能谱定量测量技术研究.物理学报,2001.50(9):p.1723-1728.
    [89].Xulai, Y., Z. Jian, and Z. Xifeng, Decomposition and calcination characteristics of calcium-enriched bio-oil. Energy & Fuels,2008.22(4):p.2598-2603.
    [90].董建勋,李振中,冯兆兴,等,石灰石炉内高温煅烧脱硫及产物活性的实验.动力工程,2004.24(5):p.711-715.
    [91].王世杰,陆继东,周琥,等,石灰石颗粒分解的动力学模型研究.工程热物理学报,2003.24(4):p.699-702.
    [92].阎常峰,陈勇,李小森,Grace, J. R.Lim, J.,石灰石的煅烧分解及其吸收二氧化碳机理.煤炭转化,2006.29(2):p.54-58.
    [93].郑瑛,史学锋,石灰石快速煅烧及表面积形成的实验研究.华中理工大学学报,1999.27(3):p.43-45.
    [94].贾力,刘立平,钙基吸收剂结构特性对脱除S02的影响.热科学与技术,2004.3(1):p.91-94.
    [95].Han, D.H. and H.Y. Sohn, Calcined calcium magnesium acetate as a superior SO2 sorbent:I. Thermal decomposition. Aiche Journal,2002.48(12):p.2971-2977.
    [96].Steciak, J., Y.A. Levendis, and D.L. Wise, Effectiveness of calcium magnesium acetate as dual SO2-NOX emission control agent Environmental and Energy Engineering,1995. 3(41):p.712~722.
    [97].谢建云,傅维标,碳酸钙颗粒煅烧过程的统一数学模型.燃烧科学与技术,2002.8(3):p.270-274.
    [98].郑瑛,宋侃,池保华,等,二氧化碳气氛下碳酸钙热分解动力学研究.华中科技大学学报(自然科学版),2007.35(8):p.87-89.
    [99].雷天柱,夏燕青,靳明等,有机酸盐热模拟产物中芳烃馏分特征及其地质意义.沉积学报,2010(6):p.1250-1253.
    [100].雷天柱,夏燕青,郑建京等,酮——有机酸盐生烃过程中的重要产物.矿物岩石,2009(002):p.84-87.
    [101].J, A., L.F. de Diego, and G.-L. F, Calcination of calcium acetate and calcium magnesium acetate:effect of the reacting atmosphere. Fuel,1999.78(5):p.583-592.
    [102].Silcox, G.D., J.C. Kramlich, and D.W. Pershing, A mathematical model for the flash calcination of dispersed CaCO3 and Ca (OH) 2 particles. Industrial & Engineering Chemistry Research,1989.28(2):p.155-160.
    [103].Hu, N. and A.W. Scaroni, Calcination of pulverized limestone particles under furnace injection conditions. Fuel,1996.75(2):p.177-186.
    [104].Irfan, A. and D. Gulsen, Calcination kinetics of high purity limestones. Chem Eng J, 2001.83:p.131-137.
    [105].Milne, C.R., G.D. Silcox, D.W. Pershing, et al., Calcination and sintering models for application to high-temperature, short-time sulfation of calcium-based sorbents. Industrial & Engineering Chemistry Research,1990.29(2):p.139-149.
    [106].Keener, S. and S.J. Khang, A structural pore development model for calcination Chemical Engineering Communications,1992.117(1):p.279-291.
    [107].Brown, M.E., M. Maciejewski, S. Vyazovkin, et al., Computational aspects of kinetic analysis-Part A:The ICTAC kinetics project-data, methods and results. Thermochimica Acta,2000.355(1-2):p.125-144.
    [108].王世杰,陆继东,胡芝娟,et al.,水泥生料分解动力学的研究.硅酸盐学报,2003.31(8):p.811-814.
    [109].胡荣祖,史启祯,热分析动力学.北京:科学出版社,2001.
    [110].严继民,张启元,吸附与凝聚:固体的表面与孔1979:科学出版社.
    [111].Dubinin, M.M., Fundamentals of the theory of adsorption in micropores of carbon adsorbents:Characteristics of their adsorption properties and microporous structures. Carbon,1989.27(3):p.457-467.
    [112].Sing, K.S.W., D.H. Everett, R.A.W. Haul, et al., Reporting physisorption data for gas/solid systems, with special reference to the determination of surface area and porosity. Pure and applied chemistry,1985:p.603-619.
    [113].陈汉平,邵敬爱,杨海平,et al.,一种生物污泥热解半焦孔隙结构特性.中国电机工程学报,2008.28(26):p.82-86.
    [114].严继民,张启元,and高敬琮,吸附与与凝聚——固体的表面与孔.2nd ed1986,北 京:科学出版社.292.
    [115].Boer, J.H.d., The Shape of Capillaries. D. H. Everett and F. S. Stone ed. The Structure and Properties of Porous Materials [M]1958, London:Butterworth.68-72.
    [116].陈萍and唐修义,低温氮吸附法与煤中微孔隙特征的研究.煤炭学报,2001.26(5):p.552-556.
    [117].陈萍,唐修义,低温氮吸附法与煤中微孔隙特征的研究.煤炭学报,2001.26(5):p.552-556.
    [118].刘现卓,赵长遂,钱晓东,等,孔隙结构对石灰石脱硫性能的影响.热能动力工程,2004.19(1):p.77-80.
    [119].刘现卓,赵长遂,钱晓东,等,石灰石孔隙结构改性及其脱硫性能研究.燃烧科学与技术,2003.9(3):p.280-284.
    [120].李星,李磊,石灰石脱硫反应活性的研究.中国环境科学,1998.18(1):p.94-96.
    [121].Song, H., L. Min, X. Jun, et al., Fractal characteristic of three Chinese coals. Fuel, 2004.83(10):p.1307-1313.
    [122].Pfeifer, P. and D. Avnir, Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces. The Journal of Chemical Physics,1983.79(7): p.3558-3565.
    [123].Pfeifer, P. and D. Avnir, Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces. The Journal of Chemical Physics,1983.79:p. 3558.
    [124].Avnir, D. and M. Jaroniec, An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials. Langmuir,1989.5(6):p.1431-1433.
    [125].邱宽嵘,燃煤SO2污染及钙合物固硫技术.能源研究与利用,1993(2):p.18-20.
    [126].岑可法,倪明江,骆仲泱,循环流化床锅炉的理论,设计及运行,1998,北京:中国电力出版社.
    [127].刘妮,钙基脱硫剂反应性能评价体系及反应机理的研究,2002,浙江大学.
    [128].Dennis, J.S. and A.N. Hayhurst, A simplified analytical model for the rate of reaction of SO2 with limestone particles. Chemical Engineering Science,1986.41(1):p.25-36.
    [129].程世庆,施正伦,贝壳与石灰石脱硫特性的试验研究.浙江大学学报(工学版) 2003.37(2):p.221-224.
    [130].倪晓奋,刘前鑫,石灰石脱硫的热重分析研究.工程热物理学报,1995.16(2):p.253-256.
    [131].翟忠和,靳铁林,等,石灰石脱硫动力学模型的优选.热能动力工程,2000.15(2):p.148-150.
    [132].Hsia, C., G.R.S. Pierre, K. Raghunathan, et al., Diffusion through CaSO4 formed during the reaction of CaO with SO2 and O2. Aiche Journal,1993.39(4):p.698-700.
    [133].Lyngfelt, A., V. Langer, B.M. Steenari, et al., Calcium sulphide formation in fluidized bed boilers. The Canadian Journal of Chemical Engineering,1995.73(2):p.228-233.
    [134].张谋,陈汉平,王贤华,等,富钙生物油煅烧及脱硫特性研究,可再生能源,2012.p.42-46.
    [135].刘前鑫,邱宽嵘,石灰石脱硫反应动力学分析.东南大学学报(自然科学版),1995.25(2):p.140-142.
    [136].Wen, C.Y., Noncatalytic heterogeneous solid-fluid reaction models. Industrial& Engineering Chemistry,1968.60(9):p.34-54.
    [137].刘妮,路春美,石灰石颗粒固硫反应特性的模型研究.环境科学学报,2001.21(2):p.172-177.
    [138].张学学,陈.金.,小颗粒非均匀初始孔隙率脱硫模型研究.兰州大学学报(自然科学版),2003.39(5):p.41-43.
    [139].Levenspiel, O., Chemical reaction engineering. Industrial & Engineering Chemistry Research,1999.38(11):p.4140-4143.
    [140].Szekely, J. and J.W. Evans, A structural model for gas--solid reactions with a moving boundary. Chemical Engineering Science,1970.25(6):p.1091-1107.
    [141].Hartman, M. and R.W. Coughlin, Reaction of sulfur dioxide with limestone and the influence of pore structure. Industrial & Engineering Chemistry Process Design and Development,1974.13(3):p.248-253.
    [142].Snyder, R., W.I. Wilson, and I. Johnson, Limestone reactivity with SO2 as determined by thermogravimetic analysis and as measured in pilotscale fluidized-bed combustors. Thermochimica Acta,1978.26:p.257-267.
    [143].翟忠和,李磊,石灰石化学成分与其脱硫率的数学模型.哈尔滨科学技术大学学 报,1996.20(1):p.64-68.
    [144].邱东,多指标综合评价方法的系统分析1991:中国统计出版社.
    [145].胡永宏,贺思辉,综合评价方法,2000,北京:科学出版社.
    [146].白雪梅,赵松山,对主成分分析综合评价方法若干问题的探讨.统计研究,1995(6):p.47-51.
    [147].叶双峰,关于主成分分析做综合评价的改进.数理统计与管理,2001.20(002):p.52-55.
    [148].程世庆,赵建立,李官鹏,等,贝壳与石灰石的微孔结构及其脱硫性能.燃烧科学与技术,2005.11(1):p.24-28.
    [149].Miller, J.A. and C.T. Bowman, Mechanism and modeling of nitrogen chemistry in combustion. Progress in energy and combustion science,1989.15(4):p.287-338.
    [150].M, F.2000; Available from:http://www.me.berkeley.edu/gri-mech.
    [151].Glarborg, P., M.U. Alzueta, K. Dam-Johansen, et al., Kinetic modeling of hydrocarbon/nitric oxide interactions in a flow reactor. Combustion and Flame,1998. 115(1):p.1-27.
    [152].Dagaut, P., F. Lecomte, S. Chevailler, et al., Experimental and detailed kinetic modeling of nitric oxide reduction by a natural gas blend in simulated reburning conditions. Combustion Science and Technology,1998.139(1):p.329-363.
    [153].Baulch, D.L., C.T. Bowman, C.J. Cobos, et al., Evaluated kinetic data for combustion modeling:supplement Ⅱ. Journal of Physical and Chemical Reference Data,2005.34: p.757.
    [154].Thorne, L.R., M.C. Branch, D.W. Chandler, et al. Hydrocarbon/nitric oxide interactions in low-pressure flames.1988. Elsevier.
    [155].Burch, T.E., F.R. Tillman, W.Y. Chen, et al., Partitioning of nitrogenous species in the fuel-rich state of reburning. Energy & Fuels,1991.5(2):p.231-237.
    [156].Patty, M. and G. Engel, Formation of HCN by the action of nitric oxide on methane at atmospheric pressure,1. General conditions of formation. Compt. rend,1950.231:p. 1302-1304.
    [157].Myerson, A.L. The reduction of nitric oxide in simulated combustion effluents by hydrocarbon-oxygen mixtures.1975. Elsevier.
    [158].Wendt, J.O.L., C.V. Sternling, and M.A. Matovich. Reduction of sulfur trioxide and nitrogen oxides by secondary fuel injection.1973. Elsevier.
    [159].Williams, B.A. and L. Pasternack, The effect of nitric oxide on premixed flames of CH4, C2H6, C2H4, and C2H2. Combustion and Flame,1997.111(1-2):p.87-110.
    [160].苏胜,气触燃料再燃降低氮氧化物排放的实验研究与数值模拟,2007,华中科技大学:武汉.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700