新型干法水泥厂煤粉粒径分级燃烧方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭作为我国的主要能源资源,其清洁高效利用对减少燃煤环境污染、节约煤炭资源具有重要意义。本论文从煤的燃烧过程、煤中矿物质分布、煤粉燃烧特性等方面,对粒径尺寸和矿物质分布、煤粉燃烧特性之间规律等方面国内外研究现状进行了综述。针对目前煤炭主要利用途径——煤粉燃烧,研究了工业粉煤过程中矿物在煤粉中分布影响规律、煤粉中矿物随粒径的分布规律及其对燃烧特性的影响,以期为煤粉分级燃烧方法在新型干法水泥厂的工业应用提供基础数据,为有效利用劣质煤资源、实现煤粉高效燃烧利用提供理论指导。
     本文首先研究了工业单煤煤粉中矿物质分布。试验采集的河南新乡同力水泥厂(HN)、山西西城水泥厂(SX)和江苏南京中国水泥厂(JS)三个水泥厂煤粉样品是不同变质程度的烟煤,三个出磨煤粉都呈现出灰分随密度级别的增加呈递增,随着粒度增加而降低的规律。煤样的产率分布整体分布状态呈哑铃型,矿物质和有机质分离程度较高。基于煤粉浮沉试验和激光粒度分析试验结果,通过数学计算过程的推导,得到了煤粉中各粒级产率、灰分和挥发分的计算公式。该数学模型的建立为研究煤粉组成的分布提供了理论支持。
     对于工业现场混煤煤粉的研究表明:所采集广西华宏水泥有限公司(HH)、广西华润水泥有限公司(HR)、江西万年青水泥有限公司(WNQ)、山西威顿水泥有限公司(WD)和安徽海螺(狄港)水泥有限公司(DG)的混煤煤粉与单煤工业煤粉类似,都呈现出灰分随着粒度增加而降低的规律。确定合适的分级粒度,经分级可以得到高质量的低灰煤粉。煤粉中整体呈现出高密度级煤样产率随着粒度增大而逐渐降低的趋势,说明随着粒度增大外在矿物含量越来越少,灰分随粒度的变化是由高密度级煤样主导的。
     本文还研究了磨煤过程和混煤对煤粉中矿物质分布规律的影响。试验采集的安徽皖北矿务局烟煤(WB)、江西萍乡无烟煤(PX)和山西大同烟煤(DT)煤样灰分都呈现出随粒度增大而增加的趋势,贵州六盘水无烟煤(LP)煤样各个粒度级别的灰分变化不大,且与原煤样的灰分相近。同一煤样粉磨到不同细度,其灰分—粒度曲线变化趋势一致。同一煤样用不同粉磨方式制备的煤粉,其粒度与灰分的变化因煤样而异,粉磨方式对煤粉中矿物质随粒度的分布具有较大影响。利用振动磨研究了混煤对矿物质分布的影响,以5:5混配的WB与DT、WB与LP、WB与云南小龙潭褐煤(LT)混煤制备15%筛余细度煤粉,对混煤各密度级的工业分析结果表明不同煤种混配导致产率随密度的变化不同。各混煤的灰分都随着密度增加而逐渐增加,而挥发分都随着密度增加而逐渐降低。WB与DT、WB与LP混煤各密度级煤粉的平均粒度都随着密度增加先减小后增大。
     混煤对燃烧特性影响规律的研究表明:在相同实验条件、掺混比例情况下,烟煤和无烟煤掺混,先磨后混煤粉除了着火性能不如先混后磨外,其他燃烧特性指标都好于先混后磨,先磨后混掺混方式的综合燃烧性能好于先混后磨掺混方式;烟煤和烟煤掺混,两种掺混方式混煤各项着火特性、燃烧特性相近;烟煤和褐煤掺混,先磨后混混煤燃烧性能稍好于先混后磨混煤。烟煤和无烟煤混煤的燃烧受掺混方式的影响最明显。无论哪种掺混方式混煤,燃烧反应性能烟煤和褐煤掺混最好,烟煤和无烟煤掺混最差,烟煤和烟煤掺混居中。先磨后混掺混方式混煤燃烧性能受煤种影响较明显。
     用热重分析法研究了烟煤和无烟煤各筛分粒径煤粉的燃烧特性。对不同筛分粒径煤粉样品的热重曲线、着火温度、燃烬温度、最大失重速率及其对应温度Tmax、转化率和转化速率随温度变化曲线进行了分析对比。在相同实验条件下,烟煤煤粉随着筛分粒径的减小,燃烧的热重曲线向低温区移动。煤粉的着火、燃烬性能、燃烧稳定性、燃烧反应活性等整体燃烧性能都得到改善,并且粒径越小这种改善越明显。无烟煤筛分粒径中只有小粒径煤粉的燃烧热重曲线向低温区移动明显。筛分粒径越小,煤粉的着火、燃烧稳定性、燃烧反应活性越好,燃烬温度越低,但燃烬度不是粒径越小越好。粒径对煤粉整体燃烧性能的影响,烟煤大于无烟煤。
     该论文有图127幅,表56个,参考文献195篇。
Coal is the main energy resource in China. Clean and effective utilization of coal issignificant to reduce coal-combusting-pollution and to save coal energy. In terms of theprocess of coal combustion, the distribution of minerals in the coal and the burningcharacteristics of coal, etc. the progress in the mutual relations of the particle size, thedistribution of minerals, the burning characteristics of pulverized coal at home and abroad arereviewed. Because the main utilization method of coal is combustion, the distribution andinfluence of minerals in the pulverized coal from the industrial pulverizing process are studied.The distribution of minerals in the pulverized coal chaning with the size and its influence onthe characteristic of combustion are analyzed, which are in order to provide basic data for theindustrial application of particle size grading combustion of pulverized coal in the new dryprocess cement plant. All of above have provided theoretic guidance for the effectiveutilization to the poor quality coal, strengthening the combustion of pulverized coal. It is alsosignificant for the efficient and clean utilization of coal in the Coal-fired power plant.
     The research on the industrial single pulverized coal shows that the samples ofpulverized coal from the Tong Li Cement Plant in Xixiang Henan (HN), Xicheng CementPlant in Shanxi (SX) and China Cement Plant in Nanjing Jiangsu (JS) are different rankbituminous. The ash of three pulverized coal sample are increasing with the increase ofdensity fraction and decreasing with the increase of the particle size. The yield distribution ofcoal sample is like a dumbbell which means the separation degree of minerals and organics ishigh. Minerals in the SX coal sample existed in the form of the external mineralindependently.
     Based on the results of the float and sink test and the laser particle size analysis, thecalculation formula of ash, volatile and the yeild of each size friction in the pulverized coalwere obtained by the deduction of the mathematic calculation process. The establishment ofthe mathematical model provides the theoretical support to the research on the distribution ofthe composition of the pulverized coal.
     Research on the mixed pulverized coal from the industrial field showed that the mixedpulverized coal samples collected from Guangxi Hua Hong Cement Co., Ltd.(HH)、GuangxiCR Cement Co., Ltd.(HR)、Jiangxi Evergreen Cement Co., Ltd.(WNQ)、Shanxi WittonCement Co., Ltd.(WD)and Anhui Conch (Di Kong) Cement Co., Ltd.(DG) indicated a lawthat the ash decreases with the increase of the particle size. By determining the appropriate classification size of particles, high-quality and low ash pulverized coal can be obtained afterthe classification after using the classification method. Samples of the pulverized coal showthe trend that the yield of high density coal sample decreases with the increasing particlesize,which shows that the content of external mineral decrease with the increasing particlesize and the change of the ash with the particle size is lead by the high density fraction.
     The influence of the grinding process and coal blending on mineral distribution wasresearched, it indicates that bituminous coal from Wanbei Ming Bureau(WB), anthracitic coalfrom Jiangxi Pingxiang(PX) and bituminous coal from Shanxi Datong(DT) all show the ashincreasing trends with the increasing particle size, while the ash of anthracitic coal samplesfrom Guizhou Liupanshui(LP) has a very small change and is nearly the same with the rawcoal samples. When one coal sample is grinding to different fineness, the changing trend ofthe size-ash curves is the same. Pulverized coals prepared by different type mill, the size-ashcurve changing with the coal samples. The grinding way has a large influence on the sizedistribution of mineral in pulverized coal.
     To research the influence of coal blending on mineral distribution of pulverized coalprepared by vibration mill, pulverized coal below15%fineness of the screen residue isprepared from the blended coal of the WB and DT, the WB and LP, the WB and YunnanXiaolongtan lignite (LT) with a5:5ratio. The results of industrial analysis on density fractionsof blended coal show that the preparation of different coal types leads to different yields withthe change of the densities. The ash content of each blended coals increases with the increaseof densities, while the volatile decreases. Average size of the pulverized coal in each densityfraction of blend coal of WB and DT, WB and LP decreases firstly and then increases.
     The research of effect of coal blending on the combustion characteristics shows that,with the same conditions of experiment and mixing proportion, the mixture of bituminouscoal and anthracite, the pre-grinding pulverized coal has a better combustion characteristicindex and comprehensive combustion performance than the pre-mixed pulverized coal exceptthe ignition characteristics. When bituminous coal is mixed with bituminous coal, the abovetwo mixing way have the approximate ignition characteristics and combustion characteristic.When bituminous coal is mixed with the lignite, the pre-mixed coal has a little bettercombustion performance than the coal mixed after grinding. The mixing way of bituminouscoal and anthracite has the most obvious influence on combustion. No matter which way tomix the coal, the bituminous coal mixed with the lignite has the best combustion reactionperformance followed by the bituminous coal mixed with bituminous coal, and thebituminous coal mixed with the anthracite coal has the worst performance. Combustion performance of the mixed coal that is grinded after mixed is greatly affected by the coal rank.
     The combustion characteristics of each size fraction of the bituminous coal andanthracite coal are studied by the thermogravimetry. The TG curve, ignition point, burning outtemperature, maximum weight loss rate and the corresponding temperature Tmax, conversionand conversion rate changing with temperature of different sieving granulation are analyzedand compared. With the same experimental conditions, the TG curve of the pulverizedbituminous move to the low temperature region when the sieved particle size decreases. Theignition point, burning embers performance, the combustion stability and the combustionreactivity of the pulverized coal and the overall combustion performance were improved. Inaddition, the smaller the size is, the more obvious the improvement is. Only the combustionTG curve of the pulverized coal of anthracite with small particle size moves to the lowtemperature region. The smaller the sieving granulation is, the better the ignition, thecombustion stability and the combustion reaction activity of pulverized coal are and the lowerthe temperature of burning embers is, but the degree of burn out is not always good when theparticle size is as small as possible. Bituminous coal has a greater influence of particle size onthe overall combustion performance of pulverized coal than the anthracite coal does.
     There are127figures,56tables and195literatures in the dissertation.
引文
[1]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006—2020年)[J].中华人民共和国国务院公报.2006(09):7-37.
    [2]中国人民共和国环境保护部.全国环境统计公报(2010年)[R].,2011.
    [3]中国工程院能源与矿业工程学部.中国西部煤炭的合理加工利用[R].北京:中国工程院,2001.
    [4]国家统计局国家环保总局.《中国绿色国民经济核算研究报告2004》[Z].2006.
    [5]杜祥琬.能源科学发展观研究概要——《我国能源中长期发展战略研究报告》要点[Z].2011:2011.
    [6]俞珠峰.洁净煤技术发展及应用[M].北京:化学工业出版社,2004.
    [7]曹建军,刘永娟,郭广礼.煤矸石的综合利用现状[J].环境污染治理技术与设备.2004(1):19-22.
    [8]张峰,喻金荣.适应使用劣质煤生产的几种技术途径[J].水泥工程.2009(2):50.
    [9] Williams A, Backreedy R, Habib R, et al. Modelling coal combustion: the current position[J]. Fuel.2002,81(5):605-618.
    [10]胡芝娟.分解炉氮氧化物转化机理及控制技术研究[D].华中科技大学,2004.
    [11]胡道和,徐德龙,蔡玉良.气固过程工程学及其在水泥工业中的应用[M].武汉:武汉理工大学出版社,2003.
    [12]陈全德,陈晶,崔素萍,等.水泥预分解技术与热工系统工程[M].北京:中国建材工业出版社,1998.
    [13]中国建筑材料联合会.2010年我国新型干法水泥比例超过百分之八十[Z].2011:2012.
    [14]胡志俊.高灰分煤煅烧熟料出现的问题及对策[J].新世纪水泥导报.2006(4):46-47.
    [15]周鸿锦.2008年水泥工业在逆境中发展[J].中国水泥.2009(3):16-20.
    [16]于伟江,刘神杰.低挥发份煤在水泥回转窑上的应用[J].辽宁建材.2005(1):16-17.
    [17]侯凌云,张拥军,傅维标.回转水泥窑燃烧段混煤燃烧数值研究[J].燃烧科学与技术.2001(1):77-80.
    [18]张洪.矿物质对煤粉燃烧特性和反应动力学影响的研究[D].徐州:中国矿业大学,2007.
    [19] Zhang H, Mo Y, Sun M, et al. Determination of the Mineral Distribution in Pulverized Coal UsingDensitometry and Laser Particle Sizing[J]. Energy&Fuels.2005,19(6):2261-2267.
    [20] Williams A, Backreedy R, Habib R, et al. Modelling coal combustion: the current position[J]. Fuel.2002,81(5):605-618.
    [21] Elliot M. A.煤利用化学[M].北京:化学工业出版社,1991.
    [22] I. W. S. The combustion rates of coal chars: A review[J]. Symposium (International) on Combustion.1982,19(1):1045-1065.
    [23]韩才元,徐明厚,周怀春,等.煤粉燃烧[M].北京:科学出版社,2001.
    [24] Hurt R H, Calo J M. Semi-global intrinsic kinetics for char combustion modeling&unknown;[J].Combustion and Flame.2001,125(3):1138-1149.
    [25]郭汉贤.应用化工动力学[M].北京:化学工业出版社,2003.
    [26]韩德馨.中国煤岩学[M].徐州:中国矿业大学出版社,1996.
    [27]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002.
    [28] Vassilev S V, Tascon J M D. Methods for characterization of inorganic and mineral matter in coal: Acritical overview[J]. Energy and Fuels.2003,17(2):271-281.
    [29]王根之.矿物学[M].武昌:中国地质大学出版社,1989.
    [30]刘桂建,王俊新,杨萍玥,等.煤中矿物质及其燃烧后的变化分析[J].燃料化学学报.2003(3):215-219.
    [31] J N H, H Y. Characterization of included and excluded minerals in pulverized coal[J]. InternationalConferecnce on Combustion.1995:234-239.
    [32] Wigley F, Williamson J, Gibb W H. Distribution of mineral matter in pulverized coal particles inrelation to burnout behaviour[J]. Fuel.1997,76(13):1283-1288.
    [33] Yan L, Gupta R P, Wall T F. A mathematical model of ash formation during pulverized coalcombustion[J]. Fuel.2002,81(3):337-344.
    [34] Ayling A B, Smith I W. Measured temperatures of burning pulverized-fuel particles and the nature ofthe primary reaction product[J]. Combustion and Flame.1972,18(2):173-184.
    [35]陈鸿.煤粉孔隙结构及燃烬动力学的研究[D].华中科技大学,1994.
    [36]严建华.煤在流化床中燃烧特性的研究[D].杭州:浙江大学,1990.
    [37]斯东波,池作和,阮涛,等.采用圆筒形撞击分离器分离超细煤粉的试验研究[J].热力发电.2005(10):48-51.
    [38]刘转年,周安宁,金奇庭.超细煤粉的制备及性质研究[J].煤化工.2002(1):19-21.
    [39]刘转年,周安宁,金奇庭.煤超细粉碎过程中的影响因素及形态分析[J].煤炭科学技术.2002(1):46-48.
    [40]董平,单忠健,李哲.超细煤粉表面润湿性的研究[J].煤炭学报.2004(3):346-349.
    [41]卢建军,谢克昌.煤的超细气流粉碎和分级对组成和结构的影响[J].中国粉体技术.2003(6):8-11.
    [42]陈杰.测试超细煤粉粒度的实验研究[J].岩矿测试.2004(3):183-186.
    [43]张立岩,岳恒,张君,等.基于最小二乘-支持向量机的制粉过程煤粉细度软测量模型[J].清华大学学报(自然科学版).2007:1932-1935.
    [44]姜秀民,杨海平,李彦,等.煤粉颗粒粒度分形分析[J].煤炭学报.2003(4):414-418.
    [45]张洪.矿物质对煤粉燃烧特性和反应动力学影响的研究[J].中国矿业大学学报.2009(3):455-456.
    [46]张洪,胡光洲,范佳鑫,等.矿物在煤粉中的分布规律研究[J].工程热物理学报.2008(7):1231-1235.
    [47]曾凡桂.矿物质在煤粉中的分布规律[J].燃烧科学与技术.2001,7(2):170-173.
    [48]路霁瓴徐旭常.重液分离法研究煤岩组分的燃烧特性[J].燃料化学学报.1993,21(3):304-309.
    [49]刘新兵.我国若干煤中矿物质的研究[J].中国矿业大学学报.1994,23(4):110-114.
    [50]孙俊民,韩德馨.煤粉颗粒中矿物分布特征及其对飞灰特性的影响[J].煤炭学报.2000(5):546-550.
    [51]于敦喜,徐明厚,姚洪,等.利用CCSEM对煤中矿物特性及其燃烧转化行为的研究[J].工程热物理学报.2007(5):875-878.
    [52]孔洪亮,曾荣树,庄新国.煤中的矿物学研究[J].岩石矿物学杂志.2001(4):441-444.
    [53]丁伟,黄智龙,张忠敏,等.遵义地区煤矸石的矿物成分[J].煤炭工程.2011(7):105-107.
    [54]李鑫,凌开成,何敏,等.脱矿物质过程对煤结构影响的研究[J].洁净煤技术.2009(3):39-42.
    [55]邵龙义,陈江峰,石玉珍,等.准格尔电厂炉前煤矿物组成及其对高铝粉煤灰形成的贡献[J].煤炭学报.2007(4):411-415.
    [56]田思达,禚玉群,舒新前,等.氯化锌盐酸联合分离法研究神华煤中矿物质分布[J].清华大学学报(自然科学版).2008(2):240-243.
    [57]张文松.西部煤中矿物质的非均匀分布及成灰模拟[D].华中科技大学,2007.
    [58]张成,陈刚,杨婷,等.煤中汞、矿物、灰分的相关性研究[J].工程热物理学报.2008(1):177-179.
    [59]金燕,李寒旭.淮北煤晶体矿物组成对煤灰熔融温度的影响[J].淮北职业技术学院学报.2011(5):132-134.
    [60] Palmer A D, Cheng M, Goulet J C, et al. Relation between particle size and properties of somebituminous coals[J]. Fuel.1990,69(2):183-188.
    [61] Creelman R A, Ward C R. A scanning electron microscope method for automated, quantitativeanalysis of mineral matter in coal[J]. International Journal of Coal Geology.1996,30(3):249-269.
    [62] Ward C R, Taylor J C. Quantitative mineralogical analysis of coals from the Callide Basin,Queensland, Australia using X-ray diffractometry and normative interpretation[J]. International Journal ofCoal Geology.1996,30(3):211-229.
    [63] Gentzis T, Goodarzi F, Koukouzas C N, et al. Petrology, mineralogy, and geochemistry of lignitesfrom Crete, Greece[J]. International Journal of Coal Geology.1996,30(1-2):131-150.
    [64] Man C K, Jacobs J, Gibbins J R. Selective maceral enrichment during grinding and effect of particlesize on coal devolatilisation yields[J]. Fuel Processing Technology.1998,56(3):215-227.
    [65] Aktas Z, Karacan F, Olcay A. Centrifugal float-sink separation of fine Turkish coals in dense media[J].Fuel Processing Technology.1998,55(3):235-250.
    [66]刘忠,阎维平,高正阳,等.超细煤粉粒度对煤质分析特性的影响[J].华北电力大学学报.2004(4):63-65.
    [67]胡满银,刘忠,王小敏,等.再燃中超细煤粉热解机理及挥发份释放的数值模拟[J].动力工程.2005(3):427-432.
    [68]陈鸿,孙学信,韩才元.高灰煤中灰分对煤焦燃烧动力学的影响:中国工程热物理学会年会[Z].1993.
    [69]晏蓉,周燕陵,米素娟,等.煤中矿物质成分影响燃烧性能的实验研究[J].热力发电.1996(3):33-37.
    [70]王世昌,徐旭常.宏观煤岩分类及燃烧反应动力学参数[J].工程热物理学报.1996(2):229-233.
    [71]李凡,张永发,谢克昌.矿物质对煤显微组分热解的影响[J].燃料化学学报.1992(3):78-84.
    [72]张军,袁建伟,徐益谦.矿物质对煤粉热解的影响[J].燃烧科学与技术.1998(1):66-71.
    [73]沙兴中,陈彩霞,高晋生.煤中显微组分燃烧特性研究[J].煤气与热力.1995,15(2):28-31.
    [74]马毓义,张军,袁建伟.显微组分对粉煤燃烧的影响[J].燃料化学学报.1995,23(4):441-446.
    [75]路继根,邱建荣,沙兴中,等.用热重法研究我国四种煤显微组分的燃烧特性[J].燃料化学学报.1996(4):329-334.
    [76]张军,汉春利,王夕华,等.煤显微组分富集物燃烧特性滴管炉试验研究[J].燃烧科学与技术.2002(5):403-406.
    [77]傅维标.煤燃烧理论及其宏观通用规律[M].北京:清华大学出版社,2003.
    [78] Haykiri-Acma H, Ersoy-Merioyu A, Kuecuekbayrak S. Effect of mineral matter on the reactivity oflignite chars[J]. Energy Conversion and Management.2001,42(1):11-20.
    [79] Méndez L B, Borrego A G, Martinez-Tarazona M R, et al. Influence of petrographic and mineralmatter composition of coal particles on their combustion reactivity[J]. Fuel.2003,82(15–17):1875-1882.
    [80]范宏丽,徐旭常,王世昌.煤粉的煤岩和燃烧特性研究[J].工程热物理学报.1999(4):515-519.
    [81]路霁鸰,徐旭常.加福无烟煤粉燃烧动力学参数测定[J].工程热物理学报.1993(3):327-331.
    [82] Wu H, Wall T, Liu G, et al. Ash Liberation from Included Minerals during Combustion of PulverizedCoal: The Relationship with Char Structure and Burnout[J]. Energy&Fuels.1999,13(6):1197-1202.
    [83] Cloke M, Lester E, Thompson A W. Combustion characteristics of coals using a drop-tube furnace[J].Fuel.2002,81(6):727-735.
    [84] Rubiera F, Arenillas A, Arias B, et al. Combustion behaviour of ultra clean coal obtained by chemicaldemineralisation[J]. Fuel.2003,82(15-17):2145-2151.
    [85] Yan L, Gupta R P, Wall T F. A mathematical model of ash formation during pulverized coalcombustion[J]. Fuel.2002,81(3):337-344.
    [86] Menendez R, Alvarez D, Fuertes A B, et al. Effects of clay minerals on char texture and combustion[J].Energy and Fuels.1994,8(5):1007-1015.
    [87]姜秀民,杨海平,李彦,等.煤粉颗粒粒度分形分析[J].煤炭学报.2003(4):414-418.
    [88]刘辉,吴少华,孙锐,等.快速热解褐煤焦的比表面积及孔隙结构[J].中国电机工程学报.2005(12):86-90.
    [89]张辛亥,徐精彩,杜娟,等.煤低温氧化动力学参数与粒度关系实验研究[J].安徽理工大学学报(自然科学版).2005(2):9-12.
    [90]郑轶荣,付翠彦,冯捷,等.煤粉燃烧率与粒度组成的研究[J].洁净煤技术.2005(2):36-39.
    [91]姜秀民,杨海平,刘辉,等.粉煤颗粒粒度对燃烧特性影响热分析[J].中国电机工程学报.2002(12):143-146.
    [92] Zhao Y, Kim H Y, Yoon S S. Transient group combustion of the pulverized coal particles in sphericalcloud[J]. Fuel.2007,86(7-8):1102-1111.
    [93] Wang S, Lu H, Zhao Y, et al. Numerical study of coal particle cluster combustion under quiescentconditions[J]. Chemical Engineering Science.2007,62(16):4336-4347.
    [94] Ayling A B, Smith I W. Measured temperatures of burning pulverized-fuel particles and the nature ofthe primary reaction product[J]. Combustion and Flame.1972,18(2):173-184.
    [95]顾明言,章明川,于娟,等.碳粒燃烧能量分配系数的数值计算[J].燃烧科学与技术.2006(1):35-40.
    [96]于敦喜,徐明厚,刘小伟,等.粒径及加热速率对烟煤膨胀特性的影响[J].燃料化学学报.2006(1):1-4.
    [97]陈鸿,曾羽健,陈建原,等.粉煤热解过程的温度相关模型[J].华中理工大学学报(社会科学版).:42-46.
    [98]樊俊杰,金晶,张建民,等.超细煤粉热解时轻质烃的析出规律[J].燃烧科学与技术.2006(4):308-311.
    [99]卢平,徐生荣,祝秀明,等.再燃烧条件下煤粉热解过程中C、H、N释放特性[J].热能动力工程.2005(3):284-287.
    [100]尚庆,张健,周力行.气流温度脉动对煤粉颗粒瞬时热解挥发速率的影响[J].燃烧科学与技术.2006(1):65-70.
    [101]薛永强,来蔚鹏,王志忠.粒度对煤粒燃烧和热解影响的理论分析[J].煤炭转化.2005(3):19-21.
    [102] Fan J R, Zha X D, Cen K F. Study on coal combustion characteristics in a W-shaped boiler furnace[J].Fuel.2001,80(3):373-381.
    [103]鄢晓忠,陈冬林,刘亮,等.煤粉细度对燃烧特性影响的实验研究[J].动力工程.2007(5):682-686.
    [104] Reichelt T, Joutsenoja T, Spliethoff H, et al. Characterization of burning char particles underpressurized conditions by simultaneous in situ measurement of surface temperature and size[J]. Symposium(International) on Combustion.1998,2:2925-2932.
    [105] Chen W, Du S, Yang T. Volatile release and particle formation characteristics of injected pulverizedcoal in blast furnaces[J]. Energy Conversion and Management.2007,48(7):2025-2033.
    [106] Ibrahim S M A. Pyrolysis of Egyptian Maghara pulverized coal particles[J]. Fuel processingtechnology.1997,50(1):1-17.
    [107] Zhang C, Jiang X, Wei L, et al. Research on pyrolysis characteristics and kinetics of super fine andconventional pulverized coal[J]. Energy Conversion and Management.2007,48(3):797-802.
    [108] Nimmo W, Singh S, Gibbs B M, et al. The evaluation of waste tyre pulverised fuel for NOx reductionby reburning[J]. Fuel.2008,87(13-14):2893-2900.
    [109] Malik A A, Pehlivan D, Howarth C R. The effect of agitation on the char combustion characteristicsof large coal particles[J]. Fuel.1996,75(3):379-383.
    [110] Vamvuka D, Schwanekamp G, Gudenau H W. Combustion of pulverized coal with additives underconditions simulating blast furnace injection[J]. Fuel.1996,75(9):1145-1150.
    [111]顾中铸,张永廉,蔡崧.影响加福煤粉燃尽度的因素分析[J].锅炉技术.2005(2):50-53.
    [112]周昊,邱坤赞,王智化,等.煤种及煤粉细度对炉内再燃过程脱硝和燃尽特性的影响[J].燃料化学学报.2004(2):146-150.
    [113] Xiumin J, Chuguang Z, Che Y, et al. Physical structure and combustion properties of super finepulverized coal particle[J]. Fuel.2002,81(6):793-797.
    [114]冯俊小,乐恺,刘应书,等.粉煤粒度对其燃烧特性的影响[J].北京科技大学学报.2001(5):460-462.
    [115]樊越胜,邹峥,高巨宝,等.煤粉在富氧条件下燃烧特性的实验研究[J].中国电机工程学报.2005(24):118-121.
    [116]姜秀民,李巨斌,邱健荣.超细化煤粉燃烧特性的研究[J].中国电机工程学报.2000(6):72-75.
    [117]徐璋.超细粉再燃降低NOx排放的热态试验研究与数值模拟[D].浙江大学,2003.
    [118] Shen Y S, Guo B Y, Yu A B, et al. A three-dimensional numerical study of the combustion of coalblends in blast furnace[J]. Fuel.2009,88(2):255-263.
    [119] Banin V, Moors R, Veefkind B. Kinetic study of high-pressure pulverized coal char combustion:Experiments and modelling[J]. Fuel.1997,76(10):945-949.
    [120] Kurose R, Ikeda M, Makino H. Combustion characteristics of high ash coal in a pulverized coalcombustion[J]. Fuel.2001,80(10):1447-1455.
    [121]张洪,李迎,哈斯,等.煤粉中内在矿物对煤焦孔隙结构的影响[J].中国矿业大学学报.2009(6):810-814.
    [122]刘红缨,王伟强,张瑞欣,等.煤中矿物对发热量的影响[J].煤.2009(4):7-9.
    [123] Lester E, Allen M, Cloke M, et al. Image analysis techniques for petrographic analysis[J]. Fuelprocessing technology.1993,36(1-3):17-24.
    [124] Hurt R, Sun J, Lunden M. A kinetic model of carbon burnout in pulverized coal combustion[J].Combustion and Flame.1998,113(1-2):181-197.
    [125]张薇,简淼夫.探讨煤种对分解炉操作参数的影响[J].水泥.2001(6):13-15.
    [126]张薇,简淼夫,胡道和.研究分解炉内煤粉燃烧特性的新方法[J].水泥.1996(1):8-11.
    [127]谢峻林.分解炉中煤粉燃烧特性及相关问题研究[D].武汉:武汉理工大学,2001.
    [128]张守玉,吕俊复,黎永,等.煤中矿物质对煤焦氧化的催化性能在热处理过程中的变化[J].燃烧科学与技术.2005(2):137-141.
    [129]周科,徐明厚,于敦喜,等.混煤燃烧减少细微颗粒物生成的实验研究[J].工程热物理学报.2011(2):349-352.
    [130]赵永椿,张军营,高全,等.燃煤含铁矿物的迁移转化特性研究[J].工程热物理学报.2006(3):511-514.
    [131]谢峻林,肖飞燕,韩春华,等.高硫煤燃烧对水泥熟料矿物形成过程的影响[J].武汉理工大学学报.2007(5):31-33.
    [132]谢峻林,肖飞燕,狄东仁,等.高硫煤对熟料矿物形成及显微结构的影响[J].武汉理工大学学报.2010(15):1-4.
    [133]焦有宙,施正伦,骆仲泱,等.低硫煤联产Q相水泥熟料的矿物生成反应热力学分析[J].动力工程学报.2010(8):633-638.
    [134]魏砾宏,姜秀民,李爱民.矿物成分对超细化煤粉燃烧硫转化影响的实验研究[J].环境科学.2006(9):1722-1726.
    [135]闫晓,车得福,徐通模.煤灰及各种矿物质对SO2排放特性的影响[J].燃料化学学报.2005(3):273-277.
    [136]张守玉,朱廷钰,张建胜,等.煤中矿物质对其半焦反应活性的影响[J].工程热物理学报.2006:143-146.
    [137]赵永椿.煤燃烧矿物组合演化及其与重金属相互作用机制的研究[D].华中科技大学,2008.
    [138]占中华,刘小伟,姚洪.煤燃烧中外在矿物质转化机理及动力学参数计算[J].燃烧科学与技术.2007(4):355-359.
    [139]于敦喜,徐明厚,姚洪,等.煤燃烧中无机矿物向颗粒物的转化规律[J].工程热物理学报.2008(3):507-510.
    [140]白进,李文,白宗庆,等.兖州煤中矿物质在高温下的变化[J].中国矿业大学学报.2008(3):369-372.
    [141]李意,盛昌栋.神华煤中含铁矿物质及其在煤粉燃烧过程中的转化[J].动力工程.2008(2):259-264.
    [142]白进,李文,白宗庆,等.高温下煤中矿物质对气化反应的影响[J].燃料化学学报.2009(2):134-138.
    [143] Vassilev S V, Eskenazy G M, Vassileva C G. Behaviour of elements and minerals during preparationand combustion of the Pernik coal, Bulgaria[J]. Fuel Processing Technology.2001,72(2):103-129.
    [144]王美君,杨会民,何秀风,等.铁基矿物质对西部煤热解特性的影响[J].中国矿业大学学报.2010(3):426-430.
    [145]杨天华,李润东,李延吉,等.高温环境下灰中矿物质对长广煤燃烧固硫行为的影响[J].燃料化学学报.2007(1):23-26.
    [146]杨建国,刘志,赵虹,等.配煤煤灰内矿物质转变过程与熔融特性规律[J].中国电机工程学报.2008,28(14):61-66.
    [147]刘志.配煤煤灰内矿物质转变过程与熔融特性规律研究[D].浙江大学,2006.
    [148] Zhang Z, Wu X, Zhou T, et al. The effect of iron-bearing mineral melting behavior on ash depositionduring coal combustion[C]. Langford Lane, Kidlington, Oxford, OX51GB, United Kingdom: Elsevier Ltd,2011.
    [149]李梅.内在矿物质对煤焦燃烧特性影响的动力学研究(Ⅰ)等温热重研究[J].洁净煤技术.2009(2):61-63.
    [150]吴加奇.高温下渣/灰熔融与矿物质行为对煤焦气化反应特性的影响[D].华东理工大学,2011.
    [151]朱战岭,谢峻林,肖飞燕,等.高灰分煤煤灰对硅酸盐水泥熟料烧成的影响[J].水泥.2007(8):7-10.
    [152] Shirazi A R, B rtin O, Eklund L, et al. The impact of mineral matter in coal on its combustion, and anew approach to the determination of the calorific value of coal[J]. Fuel.1995,74(2):247-251.
    [153] Wall T F, Liu G, Wu H, et al. The effects of pressure on coal reactions during pulverised coalcombustion and gasification[J]. Progress in Energy and Combustion Science.2002,28(5):405-433.
    [154] Wee H L, Wu H, Zhan D, et al. The effect of combustion conditions on mineral mattertransformation and ash deposition in a utility boiler fired with a sub-bituminous coal[C]. Langford Lane,Kidlington, Oxford, OX51GB, United Kingdom: Elsevier Ltd,2005.
    [155] Spears D A. Role of clay minerals in UK coal combustion[C]. Ottawa, Ont, Can: Elsevier Ltd,2000.
    [156] Tomeczek J, Palugniok H. Kinetics of mineral matter transformation during coal combustion[J]. Fuel.2002,81(10):1251-1258.
    [157] Ninomiya Y, Zhang L, Sato A, et al. Influence of coal particle size on particulate matter emission andits chemical species produced during coal combustion[C]. Elsevier,2004.
    [158] Zhang L, Ninomiya Y. Emission of suspended PM10from laboratory-scale coal combustion and itscorrelation with coal mineral properties[J]. Fuel.2006,85(2):194-203.
    [159] Wang Q, Zhang L, Sato A, et al. Effects of coal blending on the reduction of PM10duringhigh-temperature combustion1. Mineral transformations[J]. Fuel.2008,87(13–14):2997-3005.
    [160] Sheng C, Li Y. Experimental study of ash formation during pulverized coal combustion in O2/CO2mixtures[J]. Fuel.2008,87(7):1297-1305.
    [161] Zhang L, Jiao F, Binner E, et al. Experimental investigation of the combustion of bituminous coal inair and O2/CO2mixtures:2. Variation of the transformation behaviour of mineral matter with bulk gascomposition[J]. Fuel.2011,90(4):1361-1369.
    [162] Lunden M M, Yang N Y C, Headley T J, et al. Mineral-char interactions during char combustion of ahigh-volatile coal[J]. Symposium (International) on Combustion.1998,2:1695-1702.
    [163] Beamish B B, Arisoy A. Effect of mineral matter on coal self-heating rate[J]. Fuel.2008,87(1):125-130.
    [164] Wang Q, Qiu J, Liu Y, et al. Effect of atmosphere and temperature on the speciation of mineral incoal combustion[J]. Fuel Processing Technology.2004,85(12):1431-1441.
    [165] Sentorun C, Haykiri-Acma H, Kuecuekbayrak S. Effect of mineral matter on the combustion curve ofchars[J]. Thermochimica Acta.1996,277:65.
    [166] Takuwa T, Naruse I. Detailed kinetic and control of alkali metal compounds during coalcombustion[J]. Fuel Processing Technology.2007,88(11-12):1029-1034.
    [167] Takuwa T, Mkilaha I S N, Naruse I. Formation characteristics of fine particulates with Nacompounds during coal combustion[J]. Journal of Chemical Engineering of Japan.2003,36(11):1347-1351.
    [168] Takuwa T, Mkilaha I S N, Naruse I. Mechanisms of fine particulates formation with alkali metalcompounds during coal combustion[J]. Fuel.2006,85(5-6):671-678.
    [169] Goni C, Helle S, Garcia X, et al. Coal blend combustion: Fusibility ranking from mineral mattercomposition[C]. Elsevier Ltd,2003.
    [170] Armesto L, Merino J L. Characterization of some coal combustion solid residues[J]. Fuel.1999,78(5):613-618.
    [171] Vuthaluru H B, Zhang D, Linjewile T M. Behaviour of inorganic constituents and ash characteristicsduring fluidised-bed combustion of several Australian low-rank coals[J]. Fuel Processing Technology.2000,67(3):165-176.
    [172] Akiyama K, Pak H, Takubo Y, et al. Ash deposition behavior of upgraded brown coal in pulverizedcoal combustion boiler[J]. Fuel Processing Technology.2011,92(7):1355-1361.
    [173] Vuthaluru H B, French D. Ash chemistry and mineralogy of an Indonesian coal during combustion.Part1Drop-tube observations[J]. Fuel Processing Technology.2008,89(6):595-607.
    [174]张小可,孙学信,郑楚光.岩相因子对煤的燃烧特性的预测[J].燃料化学学报.1997(3):51-55.
    [175]袁建伟,张军,马毓义.电站锅炉煤粉的基本微观结构特征[J].中国工程热物理会议燃烧学术会议(I).:69-74.
    [176]张军,徐益谦,汉春利,等.显微组分及其它因素对煤焦孔隙结构的影响[J].燃料化学学报.2000(6):513-517.
    [177]刘豪,邱建荣,吴昊,等.钙基复合添加剂与煤粉混烧的燃烧特性研究[J].煤炭转化.2002,25(2):67-71.
    [178]高翔鹏,徐明厚,姚洪,等.煤燃烧过程中矿物质气化与亚微米颗粒物形成的研究[J].动力工程.2007(2):292-296.
    [179]陈全德,崔素萍.新型干法水泥技术原理与应用讲座(连载十五)第十二讲煤粉的制备[J].建材发展导向.2006(1):26-32.
    [180] Querol X, Klika Z, Weiss Z, et al. Determination of element affinities by density fractionation of bulkcoal samples[J]. Fuel.2001,80(1):83-96.
    [181] Senior C L, Zeng T, Che J, et al. Distribution of trace elements in selected pulverized coals as afunction of particle size and density[J]. Fuel processing technology.2000,63(2):215-241.
    [182] Pusz S, Krzton A, Komraus J L, et al. Interactions between organic matter and minerals in twobituminous coals of different rank[J]. International Journal of Coal Geology.1997,33(4):369-386.
    [183] Russell N V, Mendez L B, Wigley F, et al. Ash deposition of a Spanish anthracite: Effects ofincluded and excluded mineral matter[J]. Fuel.2002,81(5):657-663.
    [184]蔡攸敏,姚洪,刘小伟,等.不同密度煤粉的矿物质分布与燃烧特性研究[J].热能动力工程.2007,22(6):651-655.
    [185]王泉海,邱建荣,李帆,等.混煤燃烧过程中矿物质的形态变化及相变[J].化工学报.2000(6):840-843.
    [186]姚多喜,支霞臣,郑宝山.煤中矿物质在燃烧过程中的演化特征[J].中国煤田地质.2003(2):14-15.
    [187]宋旗跃,白向飞,于景峰.岩相分析在混煤鉴别与控制中的应用[J].燃料与化工.2000(3):130-133.
    [188]莫言学,范佳鑫,张洪.一种计算矿物在煤粉中分布的新算法[J].山东科技大学学报(自然科学版).2007(1):12-15.
    [189]陈彩霞,张小可,陈鸿,等.煤的结构与煤焦反应性关系的研究及其发展[J].煤气与热力.1994(2):9-12.
    [190] Steel K M, Besida J, O'Donnell T A, et al. Production of Ultra Clean Coal-Part I-Dissolutionbehaviour of mineral matter in black coal toward hydrochloric and hydrofluoric acids[J]. Fuel ProcessingTechnology.2001,70(3):171-192.
    [191] Artos V, Scaroni A W. T.g.a. and drop-tube reactor studies of the combustion of coal blends[J]. Fuel.1993,7(72):927-933.
    [192]李文,李保庆.用热重技术研究煤焦的燃烧特性[J].煤炭转化.1996(3):76-81.
    [193] Tang L G, Gupta R P, Sheng C D, et al. The estimation of char reactivity from coal reflectogram[J].Fuel.2005,84(2-3):127-134.
    [194]孙学信.燃煤锅炉燃烧试验技术与方法[G].北京:中国电力出版社,2002:410-412.
    [195]聂其红,孙绍增,李争起,等.褐煤混煤燃烧特性的热重分析法研究[J].燃烧科学与技术.2001,7(1):72-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700