胶东三山岛—仓上金矿带构造—岩浆—流体金成矿系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶东地区是我国重要的金矿床集中区和黄金工业基地,区内金矿床形成时代集中于早白垩世,严格受区内断裂构造控制。胶东地区地质研究程度较高,但对金矿床形成的大地构造背景、成矿动力学体制、成矿流体来源等存在多种认识。本文以成矿系统理论为指导,通过中生代花岗岩大地构造环境系统判别、三山岛-仓上断裂带成矿流体地球化学、热液蚀变地球化学、断层泥成分及粒度分析,试图重建胶东中生代岩浆活动-板块相互作用过程,解析典型成矿带热液蚀变-矿化作用,初步探讨胶东中生代金成矿系统动力学过程及矿化网络结构。
     研究认为,胶东地区晚三叠世(230~200Ma)、晚侏罗世(160~140Ma)、早白垩世中期(130~125Ma)、早白垩世晚期(120~100Ma)花岗质岩石可以与扬子板块、华北板块、太平洋板块相互作用的不同阶段相对应。区域成矿事件在时间上与太平洋板块与华北板块俯冲及华北克拉通岩石圈大规模减薄一致,处于弧后拉张环境。流体包裹体测温及成分研究显示成矿流体为中-低温,低盐度NaCl-H2O-CO2体系,呈低氧逸度,弱酸性-弱碱性pH值;黄铁矿较石英能更好的保存成矿流体信息。流体包裹体稳定同位素研究指示成矿流体源于中生代大气降水,CO2源于地幔;成矿流体具有富集重稀土元素,亏损轻稀土元素的特征;成矿流体减压沸腾作用使流体pH由弱酸性过渡到弱碱性导致以Au-S络合物搬运的成矿物质沉淀成矿。热液蚀变前后除Ba、Sr外微量元素带入,轻稀土元素带入,重稀土元素带出;成矿元素具有分形特征,可能与热液成矿期次及元素赋存形式有关。断层泥组成包括石英、长石,伊利石、伊/蒙混层矿物、高岭石以及少量碳酸盐矿物和次生风化矿物。断层泥粒度曲线分为单峰、宽缓单峰、双峰三种类型,分维值普遍大于2.70,显示断层运动方式已经发展到蠕滑阶段而不是粘滑阶段。
     以成矿系统理论分析区域金成矿系统,成矿物质源于胶东群低温部分熔融后残留铁镁质矿物高温熔融形成的中基性岩浆,经大气降水深循环与幔源CO2构成的成矿流体通过郯庐断裂带次级构造系统搬运至上地壳成矿。成矿能量源于地幔对减薄的地壳稳定热能供给和太平洋板块对华北板块的快速俯冲。矿床、矿点、蚀变带构成了区域上金矿床矿化网络结构。
The Jiaodong peninsula is the most important gold camp and gold industrial base of China. Gold deposits were formed in early Cretaceous and strictly controlled by regional faults. Though intensively studied, there are controversies on gold tectonic settings, dynamic systems, source of ore forming fluid, etc. In the direction of metallogenic system theory, analysis were done to tectonic settings of regional Mesozoic granitoid, geochemistry of ore forming fluid, geochemistry of hydrothermal alteration, and mineral composition and particle size distribution of fault gouge from the Sanshandao-Cangshang fault. Based on these, I try to reconstruct the time sequence of regional magmatic-tectonic evolution, decipher hydrothermal alteration and mineralization process, and re-appear the dynamics of regional gold metallogenic system and the resultant mineralization networks.
     Studies show that regional granitoid of late Triassic, late Jurassic, middle period of early Cretaceous and late period of early Cretaceous were formed successively in different stages of interactions of the Yangtze Plate (YP), the North China Craton (NCC) and the Pacific plate. The gold deposits were formed in regional extension settings, and in consistent with the Pacific plate subduction to the NCC and the great lithospheric thinning of the NCC. Fluid inclusion thermometric and composition determinations indicate a low salinity, low to medium temperature, NaCl-H2O-CO2 fluid with low fO2 and slightly acidic to slightly basic pH. Pyrite contains more reliable ore forming fluid than quartz. Stable isotopic data indicate a Mesozoic meteoric origin of water and mantle source of CO2. The ore forming fluid is rich in HREE and barren in LREE, with anomalous rich in Eu and Sm. The fluid pH transition from slightly acidic to slightly basic due to decompression boiling is responsible for gold precipitation from Au-S complex in fluid. After hydrothermal alteration, trace elements were imported except for Ba and Sr; LREE were imported, while the HREE were exported. Metallic elements show fractal distributions, which may be caused by the multiple hydrothermal events and related element occurrences.
     Fault gouges are composed of quartz, feldspar, illite, illite/semctite formation, kaolinite, minor carbonate, etc. Particle size distributions (PSDs) show single, broad single or double peaks in log-volume plots. Most of PSD fractal dimensions are above 2.70, which indicate the fault movement is in creep rather than in stick.
     Analyzed by metallogenic system theory, ore materials were sourced from neutral-basic magma derived from high temperature melting of mafic minerals of the Jiaodong group after low temperature partial melting and separation of felsic minerals. Ore elements were transported by fluid composed of deep cycled Mesozoic meteoric water and mantle CO2 from lower crust to the upper crust to form gold deposits. The hot mantle provided heat to the thinned crust of NCC, and the rapid subduction of Pacific plate to the NCC provided the tectonic dynamics. The gold deposits, mineral occurrences and hydrothermal alteration zones compose the whole structure of regional gold mineralization network.
引文
Allégre C J, Le Mouel J L, Provost A. Scaling rules in rock fracture and possible implications for earthquake prediction. Nature, 1982, 297: 47-49.
    Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 1985, 48: 43-55.
    Beeler N M, Tullis T E, Blanpied M L, et al. Frictional behavior of large displacement experimental faults. Journal of Geophysical Research, 1996, 101: 8697-8715.
    Billi A and Storti F. Fractal distribution of particle size in carbonate cataclastic rocks from the core of a regional strike-slip fault zone. Tectonophysics, 2004, 384: 115-128.
    Billi A. Grain size distribution and thickness of breccia and gouge zones from thin (<1 m) strike-slip fault cores in limestone. Journal of Structural Geology, 2005, 27: 1823-1837.
    Blenkinsop T G. Cataclasis and processes of grain size reduction. Pure and Applied Geophysics 1991, 136: 59-86.
    Bozzo A T, Chen J R and Barduhu A J. The properties of the hydrates of chlorine and carbon dioxide. In: 4th Intern. Symposium on Fresh Water from Sea. In: Delyannis A. and Delyannis E. Editors, Eur. Fed. Chem. Engng. v. 3, Working Party on Fresh Water from the Sea, Heidelberg 1973, 437-451.
    Casciello E, Cesarano M, Cosgrove J W. Shear deformation of politic rocks in large-scale natural fault.In Alsop G I, Holdsworth R E, Mccaffey K J W et al. (eds). Flow processes in faults and shear zones. Geological Society, London, Special Publication, 2004, 224: 113-125.
    Chen Jiangfeng, Xie Zhen, Li Huimin, et al. U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane, China. Geochemical Journal, 2003, 37(1): 35-46.
    Clout J M F. Structural and isotopic studies of the Golden Mile gold-talluride deposits. Kalgoorlie, Ph. D Thesis. Monash University, 1989, Clayton, Vie.
    Crerar D A, Susak N J, Borcsik M. Solubility of the buffer assemblage pyrite + pyrrhotite + magnetite in NaCl solutions from 200 to 350°C. Geochim Cosmochim Acta, 1978, 42: 1427-1437.
    Deng Jun, Yang Liqiang, Sun Zhongshi, et al. A metallogenic model of gold deposits of the Jiaodong granite-greenstone belt. Acta Geologica Sinica, 2003, 77(4):537-546.
    Driesner T. The effect of pressure on deuterium-hydrogen fractionation in high-temperature water. Science, 1997, 277: 791-794.
    Fan H R, Zhai M G, Xie Y H et al. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Mineralium Deposita, 2003, 38: 739-750.
    Feng R, Kerrich R. Geochemical evolution of the granitoids from the Archean Abitibi Southern Volcanic Zone and the Pontiac subprovince, Superior Province, Canada: Implications for tectonic history and source regions. Chemical Geology, 1992, 98: 23-70.
    Gallagher K, Brown R, Johnson C. Fission track analysis and its applications to geological problems. Annu. Rev. Earth Planet. Sci. 1998, 26: 519-572.
    Gleeson S A, Roberts S, Fallick A E, et al. Micro-Fourier transform Infrared (FT-IR) andδD value investigation of hydrothermal vein quartz: Interpretation of fluid inclusionδD values inhydrothermal systems. Geochimica et Cosmochimica Acta, 2008, 72: 4595-4606.
    Goldfarb R J, Baker T, Dube B, et al. Distribution, character and genesis of gold deposits in metamorphic terranes. Economic Geology 100th Anniversary Volume, 2005, 407-450.
    Goldfarb R J, Groves D I, and Gardoll S. Orogenic gold and geologic time: A global synthesis. Ore Geology Reviews, 2001, 18: 1-75.
    Goldfarb R J, Hart C, Davis G, et al. East Asian Gold: Deciphering the Anomaly of Phanerozoic Gold in Precambrian Cratons. Economic Geology, 2007, 102: 341-345.
    Goldfarb R J, Phillips G. N, Nokleberg W. J. Tectonic setting of synorogenic gold deposits of the Pacific Rim. Ore Geology Reviews, 1998, 13: 185-218.
    Groves D I and Goldfarb R J. The Role of Exhumation in the Temporal Distribution of Ore Deposits—A Discussion. Economic Geology, 2007, 102: 155-158.
    Groves D I, Condie K C, Goldfarb R J, et al. Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits: Economic Geology, 2005, 100: 203-224.
    Groves D I, Goldfarb R J, Gebre-Mariam M, et al. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 1998, 13: 7-27.
    Groves D I, Goldfarb R J, Robert F et al. Gold Deposits in Metamorphic Belts: Overview of Current Understanding, Outstanding Problems, Future Research, and Exploration Significance. Economic Geology, 2003, 98: 1-29.
    Groves D I., Goldfarb R J, Knox-Robinson, et al. Late-kinematic timing of orogenic gold deposits and significance for computer-based exploration techniques with emphasis on the Yilgarn block, Western Australia. Ore Geology Reviews, 2000, 17: 1-38.
    Harris N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism. In: Coward M P and Reis A C (eds), Collision tectonics. Spec. Publ. Geol. Soc. Lond., 1986, 19: 67-81.
    Horita J, Driesner T, Cole D R. Pressure effect on hydrogen isotope fractionation between brucite and water at elevated temperatures. Science, 1999, 286: 1545-1547.
    Horst Zwingmann, Neil Mancktelow. Timing of Alpine fault gouges. Earth and Planetary Science Letters, 2004, 223: 415-425.
    Hou M L, Jiang Y H, Jiang S Y, et al. Contrasting origins of late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, east China: implications for crustal thickening to delamination. Geol. Mag. 2007, 144 (4): 619-631.
    Hu Fangfang, Fan Hongrui, Yang Jinhui, et al. Mineralizing age of the Rushan lode gold deposit in the Jiaodong Peninsula: SHRIMP U-Pb dating on hydrothermal zircon. Chinese Science Bulletin, 2004, 15: 1629-1636.
    Inoue A. Formation of clay minerals in hydrothermal environments. In Velde B (eds). Origin and mineralogy of clays. Springer, 1995, 268-329.
    Kanaori Y, Miyakoshi K, Kakuta T. Dating fault activity by surface textures of quartz grains from fault gouges. International Journal of Rock Mechanics and Mining Science & Geomechanics, 1981, 18(5): 91.
    Kevin Faure.δD values of fluid inclusion water in quartz and calcite ejecta from active geothermal systems: do values reflect those of original hydrothermal water? Economic Geology, 2003, 98: 657-660.
    Kevin Grant, Sarah A. Gleeson, Steve Roberts. The high-temperature behavior of defect hydrogen species in quartz: Implications for hydrogen isotope studies. American Mineralogist, 2003, 88: 262-270.
    Kingsley Burlinson. Acoustic decrepitation as a means of rapidly determining CO2(and other gas) contents in fluid inclusion and its use in exploration, with examples from gold mines in the Shandong and Heibei provines, China. Acta Petrologica Sinica, 2007, 23(1): 65-71.
    Klaus Simon. DoesδD from fluid inclusion in quartz reflect the original hydrothermal fluid? Chemical Geology, 2001, 177: 483-495.
    Klima K, Riedmüller G, Stattegger K. Statistical analysis of clay mineral assemblages in fault gouges. Clays and Clay Minerals, 1988, 36(3): 277-283.
    Maniar P D, Piccoli P M. Tectonic discriminations of granitoids. Geological Society of America Bulletin, 1989, 101: 635-643.
    Monzawa N, Otsuki K. Comminution and fluidization of granular fault materials: implications for fault slip behavior. Tectonophysics, 2003, 367: 127-143.
    Müller D, Groves D I. Potassic igneous rocks and associated gold-copper mineralization. Springer, London, 1997, 85-157.
    Norman D I, Moore J N. Methane and excess N2 and Ar in geothermal fluid inclusions. Proc. 24th Workshop Geotherm Reservoir. Eng: Stanford University, 1999, 196-202.
    Norman D I, Musgrave J. N2-Ar-He compositions in fluid inclusions: Indicators of fluid source. Geochim Cosmochim Acta, 1994, 58: 1119-1131.
    Otsuki K. On the relationsnip between the width of shear zone and the displaeement along fault. J Geol Soe Japan, 1978, 84: 661-669.
    Pearce J A, Harris N W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 1984, 25: 956-983.
    Phillips David, Miller M John. 40Ar/39Ar dating of mica-bearing pyrite from thermally overprinted Archean gold deposits. Geology, 2006, 34(5): 397-400.
    Phillips G N, Evans K A. Role of CO2 in the formation of gold deposits. Nature, 2004, 429: 860-863.
    Robertson E.C. Relationship of fault displacement in gouge and breceia thickness. AIME Trans, 1983, 35: 2426-1432.
    Rock N M S, Groves D I, Perring C S, et al. Gold, amprophyres and porphyres: what does their association mean? In: Keays R R, Ramsay W R H, Groves D I (Eds), The geology of gold deposits the perspective in 1988. The Ecnomic Geology Publishing Company, EI Paso, 1989, 609-625 (Ecno. Geol Monogr 6).
    Rock N M S, Groves D I. Can lamprophyres resolve the genitic controversy over methothermal gold deposits? Geology, 1988b, 16: 538-541.
    Rock N M S, Groves D I. Do lamprophyres carry gold as well as diamonds? Nature, 1988a, 332: 253-255.
    Rock N M S. 1977. The nature and origin of lamprophyres: some definitions, distinctions, and derivations. Earth Science Reviews, 13: 123-169.
    Rock N M S. Petrological affinities of intrusive rocks associated with the giant mesothermal gold deposit at Porgera, Papua New Guinea, Journal of Southeast Asian Earth Sciences, 1990, 4: 247-257.
    Sammis C G, King G, Biegel R. The kinematics of gouge deformation. Pure and AppliedGeophysics, 1987, 125: 777-812.
    Sammis C G, Osborne R H, Anderson J L, et al. Self-similar cataclasis in the formation of fault gouge. Pure and Applied Geophysics, 1986, 124: 53-78.
    Samuel H, van der Pluijm B A. Clay quantification and Ar-Ar dating of synthetic and natural gouge: Application to the Miocene Sierra Mazatan detachment fault, Sonora, Mexico. Journal of Structural Geology, 2008, 30: 525-538.
    Sarah Gleeson, Kevin Grant, Steve Roberts. Fluid inclusionδD in quartz does not always indicate the source of palaeo-hydrothermal fluids. Goldschmidt 2000, Journal of Conference Abstracts, 2000, 5(2):445.
    Sheppard S M P. The Cornubian Batholith, SW England: D/H and 18O/16O studies of kaolinite and other alteration minerals. J Geol Soc Lond, 1977, 133: 573-591.
    Solum J, van der Pluijm B. Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab fault zone, Utah. Journal of Structural Geology, 2005, 27: 1563-1576.
    Solum J, van der Pluijm B. Reconstructing the Snake River/Hoback Canyon segment of the Wyoming thrust Belt through direct dating of fault rocks. In Whence the Mountains? Inquiries into the Evolution of Orogenic Systems: A volume in Honor of Ray Price. Geological Society of America Memoir, 2007, 433.
    Storti F, Billi A, Salvini F. Grain size distributions in natural carbonate fault rocks: insights for non-self-similar cataclasis. Earth and Planetary Science Letters, 2003, 206: 173-186.
    Tanaka K. Dating of fault movement by the ESR method, basis and application. Ph. D. Thesis, University of Kyushu, Japan. 1990.
    Taylor H P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposit. Economic Geology, 1974, 69: 843-883.
    Taylor W R, Rock N M S, Groves D I, et al. Geochemistry of Archean shoshonitic lamprophyres from the Yilgarn Block, Western Australia: Au abundance and association with gold mineralization. Applied Geochemistry, 1994, 9: 197-222.
    Turcotte D L. Fractals and fragmentation. Journal of Geophysical Research, 1986, 91: 1921-1926. Underwood M B. Strike-parallel variations in clay minerals and fault vergence in the Cascadia subduction zone. Geology, 2002, 30(2): 155-158.
    Van der Pluijm B A, Hall M, Vrolijk P, et al. The dating of shallow faults in the earth’s crust. Nature, 2001, 412: 172-174.
    Van der Pluijm B, Vrolijk P, Pevear D, et al. Fault dating in the Canadian Rocky Mountains: Evidence for late Cretaceous and early Eocene orogenic pulses. Geology, 2006, 34: 837-840.
    Verrett J D, Heesakkers V, Reches Z. Structure and composition of the fault-zone of the San Andreas Fault in Tejon Pass, California. In Geological Society of America, South-Central Section, 40th annual meeting, Anonymous. Abstracts with Programs, Geological Society of America, 2006, 38(1): 36.
    Wallace R E, Morris H T. Characteristics of faults and shear zones in deep mines. Pure Appl Geophys, 1986, 14(1-2): 107-127.
    Wang L G, Qiu Y M, McNaughton N J, et al. Constraints on crustal evolution and metallogeny in the Northwestern Jiaodong Penisular, China, from SHRIMP zircon studies of granitoids. Ore Geology Reviews, 1998, 13: 275-291.
    Warr L N and Cox S F. Clay mineral transformations and weakening mechanisms along the Alpine Fault,New Zealand. In Holssworth R E, Strachan R A, Magloughlin J F, et al(ed). The natureand tectonic significance of fault weakening. Geological Society London, Special Publications, 2001, 186: 85-101.
    Yan Y, van der Pliuijm B A, Peacor D R. Defromation microfabrics of clay gouge, Lewis thrust,Canada:a case for fault weakening from clay transformation. In Holssworth R E, Strachan R A, Magloughlin J F et al (eds). The nature and tectonic significance of fault weakening. Geological Society, London Special Publications, 2001, 186: 103-112.
    Yang Jinhui, Zhong Sunlin, Wilder Simon A, et al. Petrogenesis of post-orogenic syenites in the Sulu orogenic belt, East China: geochronology, geochemical and Nd-Sr isotopic evidence. Chemical Geology, 2005, 214: 99-l25.
    Yilmaz H, Oyman T, Arehart G B, et al. Low-sulfidation type Au-Ag mineralization at Bergama, Izmir, Turkey. Ore Geology Reviews, 2006, doi:10.1016/j.oregeorev.2006.10.007.
    Ylagan RF, Kim CS, Pevear DR, et al. Illite polytype quantification for accurate K-Ar age determination: The American Mineralogist, 2002, 87: 1536-1545.
    Zhao Guangtao, Wang Dezi, Cao Qinchen, et al. Thermal evolution and its significance of I-A type granitoid complex-the Laoshan granitoid as an example. Science in China (Series D), 1998, 41 (4): 529-536.
    Zwingmann H, Mancktelow N. Timing of Alpine fault gouges. Earth and Planetary Science Letters, 2004, 223: 415-425.
    陈光远,孙岱生,周珣若,等.胶东郭家岭花岗闪长岩成因矿物学与金矿化.武汉:中国地质大学出版社. 1993.
    陈绪松,徐九华,刘建明,等.山东金青顶金矿床和七宝山金矿床的流体包裹体REE组成. 矿床地质, 2002, 21(4): 387-392.
    陈衍景, Pirajno F,赖勇,等.胶东矿集区大规模成矿时间和构造环境.岩石学报, 2004, 20(4): 907-922.
    陈衍景,郭光军,李欣.华北克拉通花岗绿岩地体中中生代金矿床的成矿地球动力学背景. 中国科学(D辑), 1998, 28(1): 35-40.
    陈毓川,裴荣富,王登红.三论矿床的成矿系列问题.地质学报, 2006, 80(10): 1501-1508.
    陈毓川.矿床的成矿系列.地学前缘, 1994, 1(3~4): 90-94.
    陈毓川.矿床的成矿系列研究现状与趋势.地质与勘探, 1997, 33(1): 21-25.
    陈振胜,张理刚,刘敬秀,等.胶东金成矿区岩石氧氢同位素地球化学背景初探.岩石矿物学杂志, 1995, 14(3): 211-218.
    成秋明.多维分形理论和地球化学元素分布规律.地球科学, 2000, 25(3): 311-318.
    成秋明.多重分形与地质统计学方法用于勘查地球化学异常空间结构和奇异性分析.地球科学—中国地质大学学报, 2001, 26(2): 161-166.
    邓军,高帮飞,王庆飞,等.成矿流体系统的形成与演化.地质科技情报, 2005a, 24(1): 49-54.
    邓军,孙忠实,杨立强,等.成矿流体运动系统与金质来源和富集机制讨论.地质科技情报, 2000b, 19(1): 41-45.
    邓军,王庆飞,黄定华,等.铜陵矿集区构造-流体-成矿系统演化格架.地学前缘, 2004a, 11(1): 121-129.
    邓军,王庆飞,杨立强,等.胶东西北部金热液成矿系统内部结构解析.地球科学-中国地质大学学报, 2005b, 30(1): 102-108.
    邓军,王庆飞,杨立强,等.胶西北金矿集区成矿作用发生的地质背景.地学前缘, 2004b, 11(4): 527-533.
    邓军,杨立强,方云,等.成矿系统嵌套分形结构和自有序效应.地学前缘, 2000a, 7(1):133-146.
    邓军,杨立强,葛良胜,等.胶东矿集区形成的构造体制研究进展.自然科学进展, 2006, 16(5): 513-518.
    邓军,杨立强,翟裕生,等.构造-流体-成矿系统及其动力学的理论格架与方法体系.地球科学-中国地质大学学报, 2000c, 25(1): 71-78.
    邓军,翟裕生,杨立强,等.构造演化与成矿系统动力学—以胶东金矿集中区为例.地学前缘, 1999b, 6(2): 315-323.
    邓军,翟裕生,杨立强,等.剪切带构造-流体-成矿系统动力学模拟.地学前缘, 1999a, 6(1): 115-127.
    邓军,翟裕生,杨立强,等.论剪切带构造成矿系统.现代地质, 1998, 12(4): 493-500.
    范宏瑞,谢奕汉,王英兰.流体包裹体与金矿床的成矿及勘探评价.地质与资源, 1997,6(3): 204-213.
    高帮飞.山东招平金矿带构造-流体耦合成矿动力学.[博士学位论文].北京:中国地质大学(北京), 2008.
    高天山,陈江峰,谢智,等.苏鲁超高压变质带中三叠纪石岛杂岩体的地球化学研究.岩石学报, 2004, 20(5): 1025-1038.
    关康,罗镇宽,苗来成,等.胶东招掖郭家岭型花岗岩锆石SHRIMP年代学研究.地质科学, 1998, 33(3): 318-328.
    郭敬辉,陈福坤,张小曼,等.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程:锆石U-Pb年代学.岩石学报, 2005, 21(4): 1281-1301.
    郭敬辉,陈福坤,张小曼,等.苏鲁超高压带花岗岩类成因与碰撞后构造过程:锆石U-Pb年代学和地球化学研究.见:从柏林等汇编.大陆的俯冲、拆离和减薄作用学术研讨会论文摘要集.西安:西北大学出版社. 2001.
    侯明兰,蒋少涌,沈昆,等.胶东蓬莱金矿区流体包裹体和氢氧同位素地球化学研究.岩石学报, 2007, 23(9): 2241-2256.
    胡芳芳,范宏瑞,杨进辉,等.胶东文登长山南花岗闪长岩体的岩浆混合成因:闪长质包体及寄主岩石的地球化学、Sr-Nd同位素和锆石Hf同位素证据.岩石学报, 2005, 21(3): 569-586.
    胡玲,胡道功,何登发,等.准噶尔盆地南缘霍尔果斯和吐谷鲁断裂带断层泥分形特征与断裂活动关系.地学前缘, 2004, 11(4): 519-525.
    胡世玲,王松山,桑海清,等.山东玲珑和郭家岭岩体的同位素年龄及其地质意义.岩石学报, 1987, 3(3): 83-89.
    胡受奚,王鹤年,王德滋,等.中国东部金矿地质及地球化学.北京:科学出版社. 1998.
    胡受奚,叶瑛,赵懿英,等.华北地台中生代热液成矿的构造环境.高校地质学报, 1995, 1(1): 58-66.
    黄德业.胶东金矿成矿系列硫同位素研究.矿床地质, 1994, 18(1): 75-87.
    金秉福.论院格庄花岗岩的成因.青岛大学学报, 1998, 11(2): 58-62.
    金秉福.牟平院格庄花岗岩体的地球化学特征分析.烟台师范学院学报(自然科学版),1997, 13(4): 308-312.
    李才春,裘有守,余汉茂.招远-掖县金成矿区花岗质岩石特征及其成因.金矿地质论文集.北京:地质出版社, 1986.
    李存有,施立达.包裹体爆裂法测试中石英α-β峰的产生原因及找矿意义.贵金属地质, 1999, 8(1): 35-37.
    李厚民,沈远超,毛景文,等.石英、黄铁矿及其包裹体的稀土元素特征—以胶东焦家式金矿为例.岩石学报, 2003, 19(2): 267-274.
    李晓峰,毛景文,朱和平,等.四川大渡河黑金台子金矿成矿流体稀土元素地球化学.岩石矿物学杂志, 2005, 24(4): 311-318.
    李兆龙,杨敏之,李治平,等.胶东金矿床地质地球化学.天津:天津科学技术出版社. 1993.
    林景仟,谭东娟,迟效国,等.胶辽半岛中生代花岗岩.北京:科学出版社. 1992.
    刘斌,沈昆.流体包裹体热力学.北京:地质出版社. 1999.
    刘春华,孙景贵,郑常青.胶东文登岩体—二长花岗质岩石地球化学特征及成因探讨.吉林地质, 1995, 14(4): 51-58.
    刘春华,孙景贵,郑常青.伟德山岩体岩浆混合作用的岩相学标志.辽宁地质, 1997, 2: 125-131.
    刘洪文,邢树文,孙景贵.胶西北两类金矿床暗色脉岩的碳、氧同位素地球化学研究. 吉林大学学报(地球科学版), 2002, 32(1): 11-15.
    刘建明,叶杰,徐九华,等.初论华北东部中生代金成矿的地球动力学背景—以胶东金矿为例. 地球物理学进展, 2001, 16(1): 39-46.
    刘建明,张宏福,孙景贵,等.山东幔源岩浆岩的碳-氧和锶-钕同位素地球化学研究.中国科学D辑, 2003, 33(10): 921-930.
    刘燊.山东地区中生代岩浆作用与地壳拉张—兼论煌斑岩与金成矿的关系. [博士学位论文]. 贵阳:中国科学院地球化学研究所, 2004.
    刘日富,蔡小宁.三山岛—仓上、新城—焦家成矿带深部找矿理论与实践.黄金科学技术, 2008, 16(4): 29-32.
    刘英俊,曹励明,李兆麟,等.元素地球化学.北京:科学出版社. 1984.
    刘玉琳.国外韧性剪切带型金矿研究现状.黄金地质, 1996, 2(3): 76-80.
    卢焕章,范宏瑞,倪培,等.流体包裹体.北京:科学出版社. 2004.
    陆克政,戴俊生,陈书平,等.胶莱盆地的形成与演化.东营:石油大学出版社. 1994.
    吕古贤,孔庆存.胶东玲珑-焦家式金矿地质.北京:科学出版社. 1993.
    罗镇宽,苗来成.胶东招莱地区花岗岩和金矿床.北京:冶金工业出版社. 2002.
    毛景文, Stein H,杜安道,等.长江中下游地区铜金矿Re-Os年龄精测及其对成矿作用的指示. 地质学报, 2004a, 78(1): 121-131.
    毛景文,李厚民,王义天,等.地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据.地质学报, 2005b, 79(6): 839-857.
    毛景文,李晓峰,张荣华,等.深部流体成矿系统.北京:中国大地出版社. 2005a.
    毛景文,李晓峰,张作衡,等.中国东部中生代浅成热液金矿类型、特征及其地球动力学背景. 高校地质学报, 2003a, 9(4): 620-637.
    毛景文,谢桂青,李晓峰,等.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘, 2004b, 11(1): 45-55.
    毛景文,张作衡,余金杰,等.华北及临区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到的启示.中国科学D辑, 2003b, 33(4): 289-299.
    孟宪伟,窦明晓,余先川.地球化学场分解的理论与方法.地球科学进展, 1994, 9(6): 59-64.
    孟宪伟,张晓华.多标度分形与地球化学场分解.地质与勘探, 1996, 32(4): 47-49.
    苗来成,罗镇宽,关康,等.玲珑花岗岩中锆石的离子质谱U-Pb年龄及其岩石学意义.岩石学报, 1998, 14(2): 198-206.
    邱检生,王德滋,罗清华,等.鲁东胶莱盆地青山组火山岩的40Ar-39Ar定年—以五莲分岭山火山机构为例.高校地质学报, 2001, 7(3): 351-355.
    邱检生,王德滋,周金城,等.山东中生代橄榄安粗岩系火山岩的地质、地球化学特征及岩石成因.地球科学, 1996, 21(5): 546-552.
    邱连贵,任凤楼,曹忠祥,等.胶东地区晚中生代岩浆活动及对大地构造的制约.大地构造与成矿学, 2008, 32(1): 117-123.
    裘有守,王孔海,杨文华,等.山东招远-掖县地区金矿区域成矿条件.辽宁科学技术出版社. 1988.
    桑隆康,游振东.玲珑花岗岩的成因演化及鲁东金矿的关系.地球科学, 1992, 17(5): 521-529.
    桑隆康.山东玲珑花岗岩的成因与演化.地球科学, 1984, 24(1): 101-114.
    山东省地质矿产局.山东省区域地质志.北京:地质出版社. 1991.
    申俊峰,申旭辉,曹忠全,等.断层泥石英微形貌特征在断层活动性研究中的意义.矿物岩石, 2007, 27(1): 90-96.
    宋明春,严庆利.胶南地区伟德山超单元中闪长质包体的特征及岩浆成因.山东地质, 2000, 16(4): 16-21.
    孙景贵,胡受奚,凌洪飞,等.胶西北两类金矿田的高钾-钾质脉岩元素地球化学与成岩作用研究.地球化学, 2000b, 29(2): 143-152.
    孙景贵,胡受奚,凌洪飞.胶东金矿区高钾-钾质脉岩地球化学与俯冲-壳幔作用研究.岩石学报, 2000a, 16(3): 401-412.
    孙景贵,胡受奚,沈昆,等.胶东金矿区矿田体系中基性-中酸性脉岩的碳、氧同位素地球化学研究.岩石矿物学杂志, 2001, 20(1): 47-56.
    谭俊,魏俊浩,郭玲利,等.胶东郭城地区脉岩锆石LA-ICP-MS U-Pb定年及斑晶EPMA
    研究:对岩石圈演化的启示.中国科学D辑, 2008, 38(8): 913-929.
    谭俊,魏俊浩,杨春福,等.胶东郭城地区脉岩类岩石地球化学特征及成岩构造背景.地质学报, 2006, 80(8): 1177-1188.
    佟彦明.胶莱盆地构造演化研究. [博士学位论文].武汉:中国地质大学(武汉), 2007.
    王炳成,李福堂.玲珑花岗岩的岩石学矿物学特征.山东地质, 1985, 1(1): 1-25.
    王炳成.玲珑花岗岩的岩石化学与地球化学.山东地质, 1986, 2(1): 54-73.
    王炳成.山东招掖地区郭家岭斑状花岗岩的地质地球化学及成因探讨.山东地质, 1988, 4(1): 45-66.
    王鹤年,徐克勤,陈延安,等.胶东中元古代玲珑花岗岩及其后期叠加改造作用的地质地球化学证据.南京大学学报-地球科学版, 1988, 1: 105-118.
    王华林,耿杰.沂沭断裂带及其附近断裂的断层泥分形特征及其地震地质意义.中国地震, 1996, 12(3): 307-315.
    王君亭,孙宗锋,朱兆庆,等.山东省莱州市新立金矿床成矿规律研究及成矿预测.北京:地质出版社. 2005.
    王莉娟,王京彬,王玉往,等.蔡家营、大井多金属矿床成矿流体和成矿作用.中国科学D辑, 2003, 33(10): 941-950.
    王莉娟,朱和平,王敏.爆裂法测温在矿床地质上的应用.地质与勘探, 2007, 43(5): 88-91.
    王世称,刘玉强,伊丕厚,等.山东省金矿床及金矿床密集区综合信息成矿预测.北京:地质出版社. 2003.
    王义文,朱奉三,宫润潭.构造同位素地球化学—胶东金矿集中区硫同位素再研究.黄金, 2002, 23(4): 1-16.
    王义文,朱奉三,宫润潭.胶东金矿集中区金矿成矿年代学研究.黄金地质, 2002, 8(4): 48-55.
    王义文.胶东西部地区金矿床稳定同位素地球化学研究.宫润潭,王义文主编,招远黄金地质,长春:山东省招远黄金集团公司与贵金属地质编委会. 1989.
    王中刚,于学元,赵振华,等.稀土元素地球化学.北京:科学出版社. 1989.
    徐光平.胶东金矿床与煌斑岩的成因研究. [硕士学位论文].南京:南京大学, 2000.
    徐洪林,张德全,孙桂英.胶东昆嵛山花岗岩的特征、成因及其与金矿的关系.岩石矿物学杂志, 1997, 16(2): 131-143.
    徐金方,沈步云,牛良柱,等.胶东地块与金矿有关的花岗岩类的研究.山东地质, 1989, 5(2): -22.
    徐九华,谢玉玲,刘建明,等.玲珑-焦家式金矿床流体包裹体的稀土和微量元素特征.岩石学报, 2005, 21(5): 1389-1394.
    徐九华,谢玉玲,刘建明,等.小秦岭文峪-东闯金矿床流体包裹体的微量元素及成因意义.地质与勘探, 2004, 40(4): 1-6.
    徐九华.玲珑金矿床成矿流体的物理化学.矿床地质, 1992, 11(3): 221-232.
    徐述平,朱洪岭,张华全.胶东大磨曲家金矿控矿断裂及成矿规律.黄金科学技术, 2006, 14(2): 11-22.
    闫峻,陈江峰.鲁东青山组中性火山岩的地球化学特征:岩石成因和地质意义.地球化学, 2007, 36(1): 1-10.
    杨进辉,朱美妃,刘伟,等.胶东地区郭家岭花岗闪长岩的地球化学特征及成因.岩石学报, 2003, 19(4): 692-700.
    杨进辉.胶东地区金矿床成矿时代及其成矿地球动力学背景-兼论壳幔相互作用与成岩成矿. [博士学位论文].北京:中国科学院研究生院, 2000.
    杨敏之,吕古贤.胶东绿岩带金矿地质地球化学.北京:地质出版社. 1996.
    杨敏之.金矿床围岩蚀变带地球化学.北京:地质出版社. 1998.
    杨忠芳,徐景奎,赵伦山,等.胶东区域地壳演化与金成矿作用地球化学.北京:地质出版社. 1998.
    杨主恩,胡碧茹,洪汉净.活断层中断层泥的石英碎砾的显微特征及其意义.科学通报, 1984, 29 (8): 484-486.
    杨主恩,张流,石桂梅.粘滑和稳滑实验条件下的石英岩的某些SEM显微构造形貌特征及其地震地质意义.地震地质, 1986, 8 (2): 21-25.
    姚凤良,刘连登,孔庆存,等.胶东西北部脉状金矿床.吉林:吉林科学技术出版社. 1990.
    姚琪,陈汉林,张微,等.弱震区断层泥ESR定年的适应性研究—以杭州地区为例.地震学报, 2008, 30(3): 262-270.
    翟明国,范宏瑞,杨进辉,等.非造山带型金矿—胶东型金矿的陆内成矿作用.地学前缘, 2004, 11(1): 85-98.
    翟明国,杨进辉,刘文军.胶东大型黄金矿集区及大规模成矿作用.中国科学D辑, 2001, 31(7): 545-552.
    翟明国,朱日祥,刘建明,等.华北东部中生代构造体制转折的关键时限.中国科学D辑, 2003, 33(10): 913-920.
    翟裕生,邓军,崔彬,等.成矿系统及综合地质异常.现代地质, 1999c, 13(1): 99-104.
    翟裕生,邓军,李晓波..区域成矿学.北京:地质出版社. 1999a.
    翟裕生,邓军,彭润民,等.成矿系统研究及其资源、环境意义.高校地质学报, 2002c, 8(1): 1-8.
    翟裕生,邓军,彭润民.矿床变化与保存的研究内容和研究方法.地球科学-中国地质大学学报, 2000b, 25(4): 340-345.
    翟裕生,苗来成,向运川,等.华北克拉通绿岩带型金成矿系统初析.地球科学-中国地质大学学报, 2002a, 27(5): 522-531.
    翟裕生,彭润民,邓军,等.成矿系统分析与新类型矿床预测.地学前缘, 2000c, 7(1):123-132.
    翟裕生,彭润民,向运川,等.区域成矿研究法.北京:中国大地出版社. 2004b.
    翟裕生,王建平,邓军,等.成矿系统时空演化及其找矿意义.现代地质, 2008, 22(2): 143-150.
    翟裕生,王建平,邓军,等.成矿系统与矿化网络研究.矿床地质, 2002b, 21(2): 106-112.
    翟裕生,张湖,宋鸿林,等.大型构造与超大型矿床.北京:地质出版社. 1997.
    翟裕生,邓军,汤中立,等.古陆边缘成矿系统.北京:地质出版社. 2002d.
    翟裕生.成矿系统及其演化—初步实践到理论思考.地球科学-中国地质大学学报, 2000a, 25(4): 333-339.
    翟裕生.成矿系统研究与找矿.地质调查与研究, 2003a, 26(2): 65-71.
    翟裕生.成矿系统研究与找矿.地质调查与研究, 2003b, 26(3): 129-135.
    翟裕生.地球系统、成矿系统到勘查系统.地学前缘, 2007, 14(1): 172-181.
    翟裕生.地球系统科学与成矿学研究.地学前缘, 2004a, 11(1): 1-10.
    翟裕生.论成矿系统.地学前缘, 1999b, 6(1): 13-27.
    张秉良,刘行松,何昌荣.阿尔金断裂东段断层滑动方式的研究.工程地质学报, 2000, 8(3): 259-264.
    张宏福,路凤香,赵磊,等.中国原生金刚石的碳同位素组成及其来源.地球科学—中国地质大学学报, 2009, 34(1): 37-42.
    张华锋,翟明国,何中甫,等.胶东昆嵛山杂岩中高锶花岗岩地球化学成因及其意义.岩石学报, 2004, 20(3):369-380.
    张华锋,翟明国,童英,等.胶东半岛三佛山高Ba-Sr花岗岩成因.地质论评, 2006, 52(1): 43-53.
    张理刚,陈振胜,刘敬秀,等.焦家式金矿水-岩交换作用—成矿流体氢氧同位素组成研究.矿床地质, 1994, 13(03): 193-200.
    张连昌,沈远超,刘铁兵,等.山东胶莱盆地北缘金矿Ar-Ar法和Rb-Sr等时线年龄与成矿时代.中国科学(D辑), 2002, 32(9): 727-734.
    张田,张岳桥.胶北隆起晚中生代构造-岩浆演化历史.地质学报, 2008, 82(9): 1210-1228.
    张田,张岳桥.胶东半岛中生代侵入岩浆活动序列及其构造制约.高校地质学报, 2007, 13(2): 323-336.
    张岳桥,李金良,张田,等.胶莱盆地及其邻区白垩纪—古新世沉积构造演化历史及其区域动力学意义.地质学报, 2008, 82(9): 1229-1257.
    赵广涛,曹钦臣,王德滋,等.崂山花岗岩锆石U-Pb年龄测试及其意义.青岛海洋大学学报, 1997, 27(3): 382-399.
    赵振华,涂光炽.中国超大型矿床(II).北京:科学出版社. 2003.
    周建波,郑永飞,赵子福.山东五莲中生代岩浆岩的锆石U-Pb年龄.高校地质学报, 2003, 9(2): 185-194.
    周新华,杨进辉,张连昌.胶东超大型金矿的形成与中生代华北大陆岩石圈深部过程.中国科学D辑, 2002, 32(增刊): 11-20.
    周新华.中国东部中、新生代岩石圈转型与减薄研究若干问题.地学前缘, 2006, 13(2): 50-64.
    邹谨敞,邵顺妹.断层泥分形结构与断层运行特征.高原地震, 1997, 9(4): 9-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700