基于RCC的消化道局部药物吸收特性检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在各种给药途径中,口服给药仍然占据着主导地位。人体胃肠道不同区段的解剖特征及生理环境各不相同,科学地研究药物在胃肠道各部位的吸收特性,获得药物吸收机制、明确吸收薄弱环节及影响生物利用度的关键因素,对于口服剂型研究具有重要的指导意义。遥控施药胶囊(Remote Controlled Capsule, RCC)是近年来获取胃肠道药物吸收特征的重要新技术之一,基于RCC的胃肠道局部药物吸收(Regional Drug Absorption,RDA)研究对于新药开发及药物传输技术均具有重要的指导意义,国内在该领域的研究尚处于空白。在国家863计划等项目支持下,本论文在胃肠道药物吸收模型、胃肠道遥控释药方法、定位跟踪技术、临床安全性增强等方面进行了深入研究,通过系列动物实验和志愿者实验,初步建立了基于RCC的胃肠道局部药物吸收特性检测方法,为我国新药及新剂型开发提供了一种创新技术。本论文的主要工作包括以下三部分:
     第一部分,基于RCC的药物胃肠道吸收模型研究。在药物胃肠道转运与吸收机理分析的基础上,提出了一种基于RDA的口服药物胃肠道吸收分析模型(In vivo Regional Drug Absorption, IVRDA),将药物的溶解度和渗透性作为胃肠道药物吸收的主要考虑因素,同时以动物实验数据、志愿者实验数据弥补体外模型数据的不足,并基于该模型提出了口服药物剂型与剂量优化设计的技术路线。
     第二部分,遥控施药胶囊系统关键技术研究。(1)研究了一种基于微推进器技术的新型释药方法,利用微推进器产生的推力进行药物释放,解决了传统利用弹簧驱动药物释放产生负压的缺点,基于微电子机械系统(Micro-Electro-Mechanical Systems,MEMS)工艺获得了尺寸为500μm×100μm×100μm的驱动器芯片,将微推进器的启动功率降低至200 mW以内。(2)开展了基于三维闪烁扫描的定位跟踪方法研究,利用ECT(Emission Computed Tomography,ECT)获取人体(或动物)腹部的正位和侧位图像,通过三维闪烁扫描定位算法获得RCC在体内的三维空间坐标。体外模拟实验表明该方法定位精度小于10 mm,初步志愿者实验表明,该方法能够获得RCC的体内三维轨迹,是一种具有潜力的智能胶囊胃肠道定位跟踪方法。(3)进行了基于胃肠道排空检测缓释胶囊的RCC临床安全性增强方法研究,设计了以固体烷烃混合物(CnH2n+2,n=16~35)为包衣的胃肠道排空检测缓释胶囊,48±6小时内在低速崩解的同时具有良好的形状保持度,可以有效地模拟RCC通过胃肠道的全过程,并成功用于临床实验前的志愿者筛选中。
     第三部分:基于RCC的胃肠道局部药物吸收特性实验研究。(1)开展了基于RCC的动物胃肠道局部药物吸收特性实验研究,以毕格犬为动物模型,盐酸二甲双胍为探测药物,获得了盐酸二甲双胍在毕格犬胃肠道不同部位的药代动力学参数。实验结果表明盐酸二甲双胍小肠段施药生物利用度最高,分别是胃部的1.33倍,结肠部的2.29倍。概括总结了基于RCC的动物胃肠道局部药物吸收研究标准操作流程。(2)基于RCC的志愿者局部药物吸收实验研究及方法验证。选取氨茶碱粉末作为模型药物,用课题组研制的RCC获得了氨茶碱粉末在志愿者小肠、结肠定位释放后的药代动力学特征,并与直接口服给药的药代动力学特征相比较,获得了氨茶碱于志愿者胃、小肠、结肠不同部位给药后的药代动力学特征差异,对本研究提出的IVRDA模型进行了验证,分析结果表明氨茶碱在结肠具有较好的吸收,可以开发为缓释制剂,模型验证结果和国外同类研究结果具有较好的一致性。
     本论文的创新点主要包括:(1)提出了一种基于RDA的口服药物胃肠道吸收分析模型(IVRDA模型),该模型以动物实验数据,志愿者实验数据弥补体外模型数据的不足,提高了模型的准确性,相关方法申请发明专利1项(200610095225.5)。(2)提出了一种基于微推进器技术的新型释药方法,首次将微推进器技术用于RCC,获得发明专利获权一项(ZL200610095354.4)。(3)提出了基于胃肠道排空检测缓释胶囊的RCC临床安全性增强方法,设计了以固体烷烃混合物为包衣的胃肠道排空检测缓释胶囊,志愿者实验表明该方法可以有效地模拟RCC通过胃肠道的全过程,获权两项发明专利(ZL200510057395.x;ZL2005100573964)。(4)在国内首次进行了基于RCC系统的志愿者胃肠道局部药物吸收特性研究,获得了氨茶碱在健康志愿者肠道各部位的吸收特性数据,并获得了胃肠道局部药物吸收特性检测方法标准流程,为我国新药研究提供了创新的方法和手段。
     论文在后续研究中,在基于微推进器技术的RCC方面应进一步减少功耗,并进一步提高系统的安全性,在三维闪烁扫描定位跟踪方法方面应研究ECT图像中标记点的计算机自动识别技术,构建数字化人体胃肠道模型以提高定位的准确性。由于本论文实验研究费用较贵,在经费限制下开展的实验例数有限,在后续研究中应增加实验数量以获得更多的数据,并将数据应用于新型口服制剂的研发之中。
Oral drug delivery system is still in the leading position among all kinds of drug delivery systems. There are great differences in anatomical structures and physical environments in different parts of human gastrointestinal (GI) tract. So it is special meaningful for oral dosage form to study drug absorption characteristic in GI tract and acquire the mechanism of drug absorption, weak area of drug absorption, and main determining factors of bioavailability. Remote controlled capsule (RCC)is an important innovative technology to study drug absorption characteristic of human GI tract. In the development of new drug and new oral dosage form, it is meaningful to take regional drug absorption (RDA)studies based on RCC technology. This research, supported by the National High-tech Projects (863), has pioneered to study RDA technology. The key points of this research are as follows: GI tract drug absorption mechanism models, remote controlled capsule technology, smart capsule locating and mornitering technology, clinical security enhancement technology, animal experiments and clinical experiments. In this study, we initially established GI tract regional drug absorption characteristic detecting methods, which is a new technology for the new drug development in china.
     The main contents of work and research achievements of this study are as follow:
     Part I: Research on GI tract drug absorption mechanism models. In this part, the GI tract drug transit and absorption mechanism are carefully anayliszed. A new GI absorptiong mechanism model-in vivo regional drug absorption (IVRDA)model was presented based on RDA studies. In IVRDA model, solubility and penetrability are considered as the main determinating factors of GI drug absorption,at the same time, animal RDA datas and volunteer RDA datas are used together with in vitro experiment datas in the model. A technology routemap of development of innovate oral dosage form has been presented in this study.
     Part II: Research on the key technology of RCC system. (1) An innovative remote controlled drug release method is developed based on microthruster technology. A solid propellant microthruster is developed and incorporated for the first time in the actuation assembly of the proprietary RCC. It features gas production that generates the mechanical energy to empty the drug reservoir. The key component of the miniaturized thruster is a micro-electro-mechanical systems (MEMS)-based microigniter, 500 μm×100μm×100μm, where diazodinitrophenol (DDNP) as the detonating agent and black powder as the propellant are encapsulated. Experimental tests of ignition and combustion demonstrated that the power consumption is less of 200 mW. (3) This study proposed a method for clinical security enhancement of RCC based on GI tract transit simulating capsule, which is a sustained-release tablet to detect the empting and transiting process of the GI tract, and designed for the first time the tablets coated with solid alkane mixture (CnH2n+2, n=16~35), which maintain within 48±6 hours a good shape while slowly disintegrating. The entire process that RCC passes through the GI tract could be effectively simulated, the efficiency was proved by volunteer’s clinical trials.
     Part III: Experiments of GI tract regional drug absorption by the use of RCC. (1)RDA animal experiments. The pharmacokinetic parameters were acquired after the model drug(C4H11N5·HCl )was site-specific released in the different areas of the GI tract of beagles. Animal experiments showed that the bioavailability of C4H11N5·HCl is best when released in small intestine, which is 1.33 times than that in stomach and 2.29 times than that in colon. The standard operating procedure (SOP) of RDA study based on RCC was concluded in the dissertation. (2) RDA volunteers experiments. The pharmacokinetic parameters were acquired after the model drug (aminophylline) was site-specific released in the different areas of the GI tract of volunteers. The IVRDA model was tested by the use of pharmacokinetic parameters. The result showed that aminophylline was well absorpted in human colon and was suitable to be designed as sustained release formulations. The results calculated from the IVRDA model are coincident well with the other research results.
     The innovation points in this research are as follows: (1) A new GI absorptiong mechanism model-in vivo regional drug absorption (IVRDA)model are presented based on RDA studies. The accuracy of IVRDA model was improved by the use of animal RDA datas and volunteer RDA datas, an invention paten was applied (200610095225.5). (2) An innovative remote controlled drug release method is developed based on microthruster technology. A solid propellant microthruster is developed and incorporated for the first time in the actuation assembly of the proprietary RCC. An invention patent was authorized (ZL200610095354.4). (3) A method for clinical security enhancement of RCC based on GI tract transit simulating capsule. Two invention patents were authorized(ZL200510057395.x;ZL2005100573964).(4)RDA volunteers experiments was firstly conducted in China based on RCC. The pharmacokinetic parameters of aminophylline are acquired after the model drug was site-specific released in the different areas of the GI tract of volunteers. The standard operating procedure (SOP) of RDA study based on RCC is new method for the new drug development in China.
     In the sequential studies, the focal point of the research are as follow: the power consumption of the micro-thruster should be further decreased and the security of the RCC should be improved, the markers of the ECT images should be automatically recognized in 3DGS system, the digital GI tract model should be adopted to improve the the accuracy of 3DGS system. The cost of RDA experiments is expensive, so the amount of experiments is limited by the budget of the research. In the sequential studies, more experiment data should be acquired by more experiments.
引文
[1] Halliday,R. G.; Drasco, A. L.; Lumley,C. E.;Walker, S. R., The allocation of resources for R&D in the world’s leading pharmaceutical companies[M]. Res. Dev. Manage, 1997, 27: 63-77.
    [2] Gaviraghi, G., Barnaby, R. J., Pellegatti, M., Pharmacokinetic challenges in lead optimization [R], Pharmacokinetic Optimization in Drug Research, 2001:3-14.
    [3]黄胜炎,世界施药系统市场现状与展望[J].上海医药, 2003,24(12):549-554.
    [4]平其能,口服缓释制剂及控释制剂发展动态[J],药学进展,2000,19(3):140-144.
    [5] Wagner D, Spahn-langguth H, Hanafy A, et al. Intestinal drug efflux: formulation and food effects [J]. Advanced Drug Delivery Reviews, 2001, 50:S13-S31.
    [6] Prosser ES. The road to drug delivery [J]. Chem Ind 2000, 19:632-634.
    [7]李高,方超.药物肠道吸收的生物学研究方法[J].中国药学杂志,2002, 37(10):726-729.
    [8]关溯,综述,陈孝等. Caco-2细胞模型-药物吸收研究的有效“工具”[J].中国药理学通报. 2004, 20(6):609-614.
    [9] Rubas W, Cromwell ME, Shahrokh Z, Villagran J, Nguyen TN, Wellton M, Nguyen TH, Mrsny RJ. Flux measurements across Caco-2 monolayers may predict transport in human large intestinal tissue [J]. J Pharm Sci. 1996, 85(2):165-9.
    [10] Pontier C, Pachot J, Botham R, Lenfant B, Arnaud P. HT29-MTX and Caco-2/TC7 monolayers as predictive models for human intestinal absorption: role of the mucus layer [J]. J Pharm Sci. 2001, 90(10):1608-19.
    [11] Wu Q, Zhao B, Yang XW, Xu W, Zhang P, Zou L, Zhang LX. Intestinal Permeability of Sesquiterpenes in the Caco-2 Cell Monolayer Model [J]. Planta Med. 2009, [Epub ahead of print]
    [12] Rubas,W. et al. Are Caco-2 cells predictive of transport and/or metabolic properties of mammalian intestinal tissues? [J]. Eur. J. Pharm. Sci. 1997, 5(Suppl. 2):S13-S14.
    [13] Yu, L.X. et al. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption [J]. Adv. Drug. Deliv. Rev. 1996, 19:359-376.
    [14] Wang Jianling and Urban Laszlo. The impact of early ADME profiling on drug discovery and development strategy [J]. Drug Discovery World Fall 2004, 4: 73-86.
    [15] Yu LX, Lipka E, Crison JR, Amidon GL. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption [J]. Adv Drug DelivRev, 1996. 19(3):359-76.
    [16] Dressman, Jennifer. Review of Drug Bioavailability: Estimation of Solubility, Permeability, Absorption and Bioavailability [J]. Journal of Controlled Release. 2004, 96(3):510-511.
    [17] Schulze JD, Peters EE, Vickers AW, Staton JS, Coffin MD, Parsons GE, Basit AW. Excipient effects on gastrointestinal transit and drug absorption in beagle dogs [J]. Int J Pharm. 2005, 300(1-2):67-75.
    [18]白志华,方晓玲.难溶性药物的口服制剂研究进展[J].中国药学杂志, 2005, 40(15):1124-1127.
    [19] Richard A Fearn and Barry H Hirst. Predicting oral drug absorption and hepatobiliary clearance: Human intestinal and hepatic in vitro cell models [J]. Environmental Toxicology and Pharmacology. 2006, 21(2):168-178.
    [20]李高,方超.药物肠道吸收的生物学研究方法[J].中国药学杂志, 2002,37:726-729.
    [21] Cook TJ, Shenoy SS. Intestinal permeability of chlorpyrifos using the single-pass intestinal perfusion method in the rat [J]. Toxicology. 2003, 184(2-3):125-133.
    [22] Sutton SC, Rinaldi MT, McCarthy JM, Vukovinsky KE. A statistical method for the determination of absorption rate constant estimated using the rat single pass intestinal perfusion model and multiple linear regression [J]. J Pharm Sci. 2002, 91(4):1046-1053.
    [23] Obata K, Sugano K, Saitoh R, Higashida A, Nabuchi Y, Machida M, Aso Y. Prediction of oral drug absorption in humans by theoretical passive absorption model [J]. Int J Pharm. 2005, 293(1-2):183-192.
    [24] Hou T, Wang J, Zhang W, Xu X. ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification [J]. J Chem Inf Model. 2007, 47(1):208-218.
    [25] Grass G M, Simulation models to predict oral drug absorption from in vitro data [J]. Adv Drug Deliv Rev, 1997, 23(1-3):199-219.
    [26] Grass G M, Sinko P J, Effect of diverse datasets on the predictive capability of ADME models in drug discovery [J]. Drug Discovery Today, 2001, 6, (Suppl1): 54-61.
    [27] Cao X H, Gibbs S T, Fang L Y et al. Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model [J]. Pharm Res, 2006, 23(8):1675-1686.
    [28] Sietsema W K, The absolute oral bioavailability of selected drugs [J]. Int. J. Clin. Pharmacol. Ther. Toxicol.1989, 27:179-211.
    [29] Lennern?s H, Ahrenstedt O, H?llgren R, et al. Regional jejunal perfusion, a new in vivo approach to study oral drug absorption in man [J]. Pharm Res, 1992, 9(10):1243-1251.
    [30] Warner PE, Brouwer KL, Hussey EK, Dukes GE, Heizer WD, Donn KH, et al. Sumatriptan absorption from different regions of the human gastrointestinal tract [J]. Pharm Res 1995; 12(1):138-143.
    [31] Lennern?s, H.; Knutson, L.; Knutson, T.; etc. The effect of amiloride on the in vivo effective permeability of amoxicillin in human jejunum: experience from a regional perfusion technique [J]. European Journal of Pharmaceutical Sciences. 2002, 15(3): 271-277.
    [32] Cook, Thomas J.; Shenoy, Smriti S. Intestinal permeability of chlorpyrifos using the single-pass intestinal perfusion method in the rat [J]. Toxicology.2003, 184(2-3):125-133.
    [33] Lee L, Hossain M, Wang Y, Sedek G. Absorption of rivastigmine from different regions of the gastrointestinal tract in humans [J]. J Clin Pharmacol 2004; 44(6):599-604.
    [34] Nyberg L, Mansson W, Abrahamsson B, Seidegard J, Borga O. A convenient method for local drug administration at predefined sites in the entire gastrointestinal tract: experiences from 13 phase I studies [J]. Eur J Pharm Sci 2007: 30(5): 432- 440.
    [35] Read, N.W. The effect of gastrointestinal intubation on the passage of a solid meal through the stomach and small intestine in humans [J]. Gastroenterology 1983, 84:1568-1572.
    [36] Ishibashi, Takashi; Ikegami, Kengo; Kubo, Hiroaki; et al. Evaluation of colonic absorbability of drugs in dogs using a novel colon-targeted delivery capsule (CTDC) [J]. Journal of Controlled Release. 1999, 59 (3):361-376.
    [37] Stevens, Howard N.E.; Wilson, Clive G.; Welling, Peter G.; et al. Evaluation of Pulsincap? to provide regional delivery of dofetilide to the human GI tract [J]. International Journal of Pharmaceutics. 2002236(1-2):27-34.
    [38] Basit AW, Podczeck F, Newton JM, Waddington WA, Ell PJ, Lacey LF. The use of formulation technology to assess regional gastrointestinal drug absorption in humans [J]. Eur J Pharm Sci 2004; 21(2-3):179-189.
    [39] McConnell EL, Short MD, Basit AW. An in vivo comparison of intestinal pH and bacteria as physiological trigger mechanisms for colonic targeting in man [J]. J Control Release2008; 130(2): 154-160.
    [40] Pithavala YK, Heizer WD, Parr AF, O’Connor-Semmes R., Brouwer KLR, Use of the InteliSite capsule to study ranitidine absorption from various sites within the human intestinal tract [J]. Pharm Res 1998; 15 (12):1869-1875.
    [41] Wilding I R, Hirst P, Connor A, Development of a new engineering-based capsule for human drug absorption studies [J]. Pharm Sci Technol Today 2000; 3(11): 385-392.
    [42] Ian R. Wilding, David V. Prior, Remote Controlled Capsules in Human Drug Absorption(HDA) Studies [J]. Critical Reviews? in Therapeutic Drug Carrier Systems, 2003, 20(6): 405-431.
    [43] Pi XT, Peng CL, Zheng XL, Cui JG, Hou WS, Tang W, et al. A site-specific delivery capsule for human drug absorption studies [J]. Chin J Biom Eng (Chin) 2004; 23(5):166-170.
    [44] Richert, Hendryk, Surzhenko, Oleksy, Wangemann, Sebastian, Heinrich, Jochen. Development of a magnetic capsule as a drug release system for future applications in the human GI tract [J]. Journal of Magnetism and Magnetic Materials 2005: 497-500.
    [45] Eriksen SP, Swintonsky JV, Serfass EJ, Lin TH, Abrams J, Sturtevant FM. Equipment and methodology for relating gastrointestinal absorption to site of drug release [J]. J Pharm Sci. 1961, 50:151-156.
    [46] Lin T H, Guarini J R, Eriksen S P, et al. Effect of the site of release on the absorption of Trimeprazine-S-35 and Penicillin G in Dogs [J]. J Pharm Sci, 1964, 53:1357-1359.
    [47] Hugemann B, Schuster O. Vorrichtung zur freisetzung von substanzen an definierten orten des verdauungstraktes [P], Patent Application: Germany DE 2928477C3 (A 61 K 9/00), 1982.
    [48] Lambert, A. et al. Autonomous telemetric capsule to explor the small bowel [J]. Med.Biol. Eng.Comput, 1991.29:191-196.
    [49] Casper, R.A. et al. Medical capsule device activated by radiofrequency (RF) signal [P], 1992.US Patent 5 170 801.
    [50] Schentag, J.J. and D’Andrea, D.T. Telemetry capsule and process [P]. US patent 1994, 5279 607.
    [51] Staib A H, Loew D, Harder S, et al. Measurement of theophylline absorption from different regions of the gastrointestinal tract using a remote controlled drug delivery device [J]. Eur J Clin Pharmacol, 1986, 30(6):691–697.
    [52] Harder S, Fuhr U, Beermann D, et al. Ciprofloxacin absorption in different regions of the human gastrointestinal tract: Investigations with the HF capsule [J]. Br J Clin Pharmacol, 1990, 30(1):35-39.
    [53] Fuhr U, Staib A H, Harder S, et al. Absorption of ipsapirone along the human gastrointestinal tract [J]. Br J Clin Pharmcol, 1994, 38(1):83-86.
    [54] Bode H, Brendel E, Ahr G, et al. Investigation of nifedipine absorption in different regions of the human gastrointestinal (GI) tract after simultaneous administration of 13C- and 12C-nifedipine [J]. Eur J Clin Pharmacol, 1996, 50(3):195-201.
    [55] Gardner D, Casper R, Leith F, et al. The InteliSite capsule: a new easy to use approach for assessing regional drug absorption from the gastrointestinal tract [J]. Pharm Technol, 1997,21: 82-89.
    [56] Pithavala Y, Heizer W, Parr A, et al. Use of the InteliSite? capsule to study ranitidine absorption from various sites within the human intestinal tract [J]. Pharm Res, 1998, 15(12):1869-1875.
    [57] Cook C, Sandefer E P, Page R C, et al. Non-invasive site absorption studies of an aldosterone antagonist (SC-66110) in beagles using a remote control capsule (InteliSite) and gamma scintigraphy [J]. J Pharm Sci, 1998, 1(suppl1): 139-142.
    [58] Mummaneni V, Doll W, Sandefer E, et al. Gamma scintigraphic evaluation of the intestinal absorption of stavudine in healthy male volunteers using InteliSite? capsule [J]. Pharm Sci, 1999, 1: 608-611.
    [59] Parr A F, Sandefer E P, Wissel P, et al. Evaluation of the feasibility and use of a prototype remote drug delivery capsule (RDDC) for non-invasive regional drug absorption studies in the GI tract of man and beagle dog [J]. Pharm Res, 1999, 16(2):266-271.
    [60] Clear N J, Milton A, Humphrey M, et al. Evaluation of the Intelisite capsule to deliver theophylline and frusemide tablets to the small intestine and colon [J]. Eur J Pharm Sci, 2001, 13(4):375-384.
    [61] Voith B, Wilding I, Wray A, et al. Absorption of faropenem daloxate delivered locally to different sites of the gastrointestinal tract (GIT) by an Enterion capsule [C]. 41st Annual Meeting of the International Science Conference on Antimicrobial Agents and Chemotherapy, 2001 Sep 22-25, Chicago, Illinois, USA.
    [62] Charles O, Paul S, Joanne B, et al. Pharmacokinetics and delivery of the anti-influenza prodrug oseltamivir to the small intestine and colon using site-specific delivery capsules [J]. Int J Pharm, 2003, 257(1-2): 297-299.
    [63] Wilding I R, Connor A L, Carpenter P, et al. Assessment of lumiracoxib bioavailability from targeted sites in the human intestine using remotely activated capsules and gamma scintigraphy [J]. Pharm Res, 2004, 21(3):443-446.
    [64] Menon R, Townsend R, The assessment of regional drug absorption of free acid and sodium salt formulations of KS01017 as compared to conventional oral administration in healthy volunteers [J]. Clinical pharmacology & therapeutics, 2005, 79:51-53.
    [65] Connor A, Evans P, Doto J, et al. An oral human drug absorption study to assess the impact of site of delivery on the bioavailability of bevirimat [J]. J of clinical pharmacology, 2009, 49(5):606-612.
    [66] Xitian Pi, Hongying Liu, Kang Wei, Yulin Lin,Xiaolin Zheng, Zhiyu, Wen. A novel remotecontrolled capsule for site-specific drug delivery in human GI tract [J]. 2009,382:160-164.
    [67] Wilding, I.R. Evolution of the biopharmaceutics classification system (BCS) to oral modified release (MR) formulations; what do we need to consider? [J]. Eur. J. Pharm. Sci. (1999) 8, 157-159.
    [68] Rooney, K.F. and Wilding, I.R. Can regional drug absorption (RDA) studies accelerate drug development? [A]. Annual Meeting of the American College of Clinical Pharmacology, Rockville, USA. 1999.
    [69] R.D. Combes, T. Berridge, J. Connelly, M.D. Eve, R.C. Garner, S. Toon, P. Wilcox. Early microdose drug studies in human volunteers can minimise animal testing: Proceedings of a workshop organised by Volunteers in Research and Testing [J]. European Journal of Pharmaceutical Sciences, 2003(19):1-11.
    [70] Ian R Wilding and J. Angus Bell. Improved early clinical development through human microdosing studies [J]. DDT 2005, 10 (13):890-894.
    [71] Wilding, I.R. Site specific drug delivery in the gastrointestinal tract [J]. Crit. Rev. Ther. Drug Carrier Sys. (2000) 17, 557-622.
    [72] Davis, S.S. et al. The intestinal transit of pharmaceutical dosage forms [J]. Gut.1986,27, 886-892
    [73] Wilding IR. In search of a simple solution for complex molecules [N]. Scrip Magazine 2001, 9-11.
    [74] Connor AL, Hirst PH, Prior D V, et al. The EnterionTM capsule: offering a rational approach to the oral delivery of new molecular entities (NMEs) [R]. Nottingham UK: Pharmaceutical Profiles, 2002.
    [75] Gwinup G, Elias AN, Domurat ES. Insulin and C-peptide levels following oral administration of insulin in intestinal-enzyme protected capsules [J]. Gen Pharmacol 1990, 22:243-246.
    [76] Watkins P. The barrier function of CYP3A4 and P-glycoprotein in the small bowel [J]. Adv. Drug Deliv. Rev. 1997, 27:161-170.
    [77] Gramatte T, Oertel R. Intestinal secretion of intravenous talinolol is inhibited by luminal Rverapamil [J]. Clin. Pharmacol. Therap. 1999, 66:239-245.
    [78] Thiebaut F, Tsuruo T, Hamada H, Gottesman M, Pastan I, Willingham MC. Cellular localisation of the multi-drug resistant gene product in normal human tissues [J]. Proc. Natl. Acad. Sci. 1987, 84:7735-7738.
    [79] Wacher VJ, Silverman JA, Zhang Y, Benet LZ. Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics [J]. J. Pharmaceut. Sci. 1998,87:1322-1330.
    [80] Hebert M. Contributions of hepatic and intestinal metabolism and P-glycoprotein to cyclosporine and tacrolimus oral drug delivery [J]. Adv. Drug Deliv. Rev. 1997, 27:201-214.
    [81] Kararli, T. T., Comparative models for studying absorption, AAPS Workshop on Permeability Definitions and Regulatory Standards for Bioequivalence [J], Arlington, 1998,17-19.
    [82] Berne, R. M.; Levy, M. N., Physiology, 4th ed., Mosby Year book, St. Louis, 1998, 654-661.
    [83] Wilson, J. P., Surface area of the small intestine in man [J], Gut, 1967, 8:618-621.
    [84] Madara, J. L., Functional morphology of epithelium of the small intestine, in Field, Handbook of Physiolog [M], Sect. 6: The gastrointestinal system, Vol. IV, Intestinal Absorption and Secretion, Am. Physiol. Soc., Bethesda, MD, 1991,pp. 83-120.
    [85] Larhed, A.W.; Artursson, P.; Grasjo, J.; Bjork, E., Diffusion of drugs in native and purified gastrointestinal mucus [J]. J. Pharm. Sci. 1997, 86:660-665.
    [86] Shiau, Y.-F.; Fernandez, P.; Jackson, M. J.; McMonagle, S., Mechanisms maintaining a low-pH microclimate in the intestine [J], Am. J. Physiol. 1985, 248, G608-G617.
    [87] Lennernas, H., Human intestinal permeability [J], J. Pharm. Sci. 1998, 87,403-410.
    [88] Lutz, K. L.; Siahaan, T. J., Molecular structure of the apical junction complex and its contributions to the paracellular barrier [J]. J. Pharm. Sci. 1997,86: 977-984.
    [89] Neena Washington, Clive Washington and Clive G. Wilson. Physiological Pharmaceutics: Barriers to drug absorption [M]. Taylor and Francis Inc, 2001.
    [90] Emma L. McConnell, Hala M. Fadda, Abdul W. Basit, Gut instincts: Explorations in intestinal phusiology and drug delivery [J]. International Journal of Pharmaceutics, 2008, 364:213-226.
    [91]王广基,刘晓东,杨劲,陈西敬,柳晓泉.药物代谢动力学[M].北京:化学工业出版社, 2005,6.
    [92] Tsuji A, Tamai I. Carrier-mediated intestinal transport of drugs [J]. Pharm Res 1996, 13: 963-977.
    [93] Martin-Facklam M, Burhenne J, Ding R, Fricker R, Mikus G, Walter-Sack I, Haefeli WE. Dose-dependent increase of saquanir bioavailability by the pharmaceutic aid cremophor EL [J]. Br J Clin Pharm 2002, 53(6):576-580.
    [94] Arimori K, Nakano M. Drug exsorption from blood into the gastrointestinal tract [J]. Pharm Res 1998; 15:371-376.
    [95] Hunter J, Hirst BH. Intestinal secretion of drugs: the role of p-glycoprotein and related drug efflux systems in limiting oral drug absorption [J]. Adv Drug Deliv Rev 1997, 25:129-157.
    [96] Paine MF, Khalighi M, F?sher JM, Shen DD, Kunze KL, Marsh CL, Perkins JD, Thummel KE. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism [J]. J Pharmacol Exp Ther 1997, 283(3):15562-15562.
    [97] Wacher VJ, Wu CY, Benet LZ. Overlapping substrate specificities and tissue distribution of cytochrome P4503A and p-glycoprotein: implications for drug delivery and activity in cancer chemotherapy [J]. Mol Carcinorg 1995, 13(3):129-134.
    [98] MacFarlane GT, Cummings JH. The colonic flora, fermentation and large bowel digestive function in the large intestine [J]. In: Physiology, Pathophysiology and Disease. Phillips SF, Pemberton JH, Shorter RG, editors. New York: Raven Press, 1991.
    [99]马广立,程翼宇.口服药物胃肠道吸收机理预测模型研究进展[J].中国药科大学学报,2006,37(3):206-208.
    [100] Higaki K, Yamashita S, Amidon GL. Time-dependent oral absorption models [J]. J Pharmacokinet Pharmacodyn. 2001, 28(2):109-128.
    [101] Yu LX, Lipka E. Crison JR, et a1. Transport approaches to the biopharmaceutieal design of oral drug delivery systems: prediction of intestinal absorption [J]. Adv Deliv Rev, 1996, 19(3):359-376.
    [102] Theil FP, Guentert TW, Haddad S, et al. Utility of physiologically based phannacokinetic models to drug development and rational drug discovery candidate selection [J]. Toxicol Lett, 2003, 138(1-2):29-49
    [103] Simulation Plus, Inc. What is GastroPlusTM? [EB/OI]. http://simulations-plus.com/Products.aspx?grpID=3&cID=16&pID=11
    [104] Sawamoto T, Haruta S, Kurosaki Y, et al. Prediction of the plasma concentration profiles of orally administered drugs in rats On the basis of gastrointestinal transit kinetics and absorbability [J]. J Pharmacol, 1997, 49 (4): 450-457.
    [105] Kimura T,Iwasaki N,Yokoe J1.et al.Analysis mad prediction of absorption profile including hepatic first-pass metabolism of Nmethyltyramine,a potent stimulant of gastrin release present in beer.after oral ingestion in rats by gastrointestinal-transit-absorption model [J]. Drug Metab Dispos, 2000, 28(5):577-581.
    [106] Kadono K, Yokoe J, Ogawara K, et a1. Analysis mad prediction of absorption behavior for theophylline orally administered as powders based on gastrointestinal-transit-absorption (gita) model [J]. Drug Metal Pharmacokinet, 2002, 17(4):307-315.
    [107] Yokoe J, Iwasaki N, IIaruta S, et al. Analysis and prediction of absorption behavior of colon-targeted pro-drug in rats by GI-transit-absorption model [J]. J Controlled Release,2003, 86(2-3):305-313.
    [108] Haruta S, Kawai K, Nishii R, et al. Prediction of plasma concentration-time cure of orally administered theophylline based on a scintigraphic monitoring of gastrointestinal transit in human volunteers[J].Int J Pharm, 2002, 233(1-2):179-190.
    [109] Haruta S, Kawai K, Jinnouchi S, et al. Evaluation of absorption kinetics of orally administered theophylline in rats based on gastrointestinal transit monitoring by gamma scintigraphy[J], J Pharm Sci, 2001, 90(4): 464-473.
    [110] Kimura T, Higaki K. Gastrointestinal transit and drug absorption [J]. Biol Pharm Bull, 2002, 25(2):149-164.
    [111] Grass GM, Bozarth CA, Vallner JJ. Evaluation of the performance of controlled release dosage forms of ticlopidine using in vitro intestinal permeability and computer simulations [J]. J Drug Target, 1994, 2(1):23-33.
    [112] Norris DA, Leesman GD, Sinko PJ, et al. Development of predictive pharmacokinetic simulation models for drug discovery [J]. J Controlled Release, 2000, 65(1-2):55-62.
    [113] LIONBioscience AG LION's iDEA pkEXPRESSTM Improves Lead Optimization with Comprehensive ADMED Desktop-Solution 2006.
    [114] Parrott N, Lave T. Prediction of intestinal absorption: comparative assessment of GASTROPLUS and IDEA [J]. Eur J Pharm Sci, 2002, l7 (1-2):51-61.
    [115] Willmann S, Schmitt W, Keldenich J, et al. A physiologic model for simulating gastrointestinal flow and drug absorption in rats [J]. Pharm Res, 2003, 21(11):1766-l771.
    [116] Willmam S, Schmitt W, Keldenich J, et al. A physiological model for the estimation of the fraction dose absorbed in humans [J]. J Med Chem, 2004, 47(16):4022-4031.
    [117] Stanley S. Davis and Ian R. Wilding. Oral drug absorption studies: the best model for man is man! [J]. Drug Discovery Today, 2001, 6(3):127-128.
    [118] G.L. Amidon, H. Lennernas, V.P. Shah, J.R. Crison, A theoretical basis for a biopharmaceutics drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability [J]. Pharm. Res.1995, 12:413-420.
    [119] Wagner D, Spahn-Langguth H, Hanafy A, Koggel A, Langguth P. Intestinal drug efflux: formulation and food effects [J]. Adv Drug Delivery Rev 2001; 50:S13-31.
    [120]刘洪英,皮喜田,郑小林,侯文生,彭承琳.发明专利.一种获取药物消化道吸收特性的方法[P],中国,200610095225.5,2007.5.
    [121]皮喜田,刘洪英,郑小林等.释药微电子胶囊[P].中国, ZL2006100953544,2006,12.26.
    [122] M. Colm, C. Olivier, et al., Swallowable-capsule technology [J], IEEE Pervasive Comput.,2008,7:23-29.
    [123]皮喜田,郑小林.基于MEMS的消化道微型诊疗系统研究进展[J].中国医疗器械信息. 2005, 11(3):18-20.
    [124]彭承琳,皮喜田,郑小林.消化道微创诊疗系统的最新进展[J].中国医疗器械杂志. 2005, 29(2):1-5.
    [125]皮喜田,彭承琳,郑小林等.用于药物吸收研究的消化道定点释放药丸系统研究进展[J].北京生物医学工程. 2005, 24(3):230-232.
    [126] H. Liu, X. Pi, C. Zhou, et al., Design of site specific delivery capsule based on MEMS [C], 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, Sanya, China,Jan.6-9, 2008:125-133.
    [127]刘洪英,皮喜田,周承文,郑小林,侯文生,温志渝.基于MEMS的消化道定点释药微系统研究[J].传感技术学报,2008, 21(3):381-384.
    [128]皮喜田,彭承琳,郑小林等.用于人体药物吸收研究的定点释放药丸系统研制[J].中国生物医学工程学报, 2004, 23(5):166-170.
    [129] PI Xitian(皮喜田), ZHENG Xiaolin, PENG Chenglin, HOU Wenshen, LIU Hongying. A Novel Remote Controlled Capsule for Human Drug Absorption studies[C]. Proceeding of the 27th Annual International Conference of the IEEE -EMBS, EMBC‘05),“Innovation from Biomolecules to Biosystems", 1-4 September 2005 in Shanghai, China. 2005(9):393.
    [130]樊华,郑小林,皮喜田等.一种用于体内诊疗装置的无线能量传输方案[J].北京生物医学工程, 2004. 23(3):168-170.
    [131] Yan, Guozheng; Zan, Peng, Design of Transcutaneous Energy Transmission System for Artificial Sphincter [C]. Mechatronics and Automation, 2007. ICMA .International Conference on 5-8Aug.2007 Page(s):1434-1438.
    [132]郑小林,皮喜田,彭承琳等.一种消化道药物定点释放装置[P].中国,ZL200410040809.3, 2004,9.
    [133] Guoxing Wang, Wentai Liu, M.Sivaprakasam, et al. Analysis of an Adaptive Transcutaneous Power Telemetry for Biomedical Implants [C]. IEEE Trans. Circuits and Cystems, 2005, 52 (10): 2109-2117.
    [134] R. Gr?ning, H. Bensmann, R.S. Müller, Control of drug release from capsules using high frequency energy transmission systems [J], Int. J. Pharm. , 2008 ,364:9-13.
    [135] Berhhard Hugemann, Otto Schuster, Device for the release of substances at defined locations in the alimentary tract [P], USPatent 4,425,117.
    [136]王文兴,颜国正,熊祥等.一种微型低功耗生物遥测双向射频通讯系统[J].北京生物医学工程, 2004. 23(2):91-93.
    [137]曾昭旺,朱文坚.基于磁定位的消化道遥控药物释放胶囊的研究[J].现代制造工程, 2008,9:34-38.
    [138] Casper, RA. et al. Medical capsule device activated by radiofrequency(RF) signal [P]. US patent 5170801.
    [139] Y.K. Pithavala, W.D. Heizer, A.F.Parr, et al, Use of the InteliSite capsule to study ranitidine absorption from various sites within the human intestinal tract [J], Pharm. Res., 1998, 15:1869-1875.
    [140] Matthew E.A. McGirra, S. M. McAllisterb, E.E. Petersc, A.W. Vickersc, A.F. Parr c, A.W. Basita, The use of the InteliSite? Companion device to deliver mucoadhesive polymers to the dog colon [J], Eur. J. Pharm. Sci. , 2009,36:386-391.
    [141] Houzego; Peter J.; Morgan; Peter N.; Hirst; Peter H.; Westland; Duncan J.; Wilding; Ian R.,Ingestible device[P],United States Patent.ZL6,632,216.
    [142] H.K. Bardaweel, M.J. Anderson, L.W. Weiss, R.F. Richards, C. D. Richards, Characterization and modeling of the dynamic behavior of a liquid-vapor phase change actuator [J], Sens. and Actuators A , 2009,149:284-291.
    [143] D.H. Lewis Jr., S.W. Janson, R.B.Cohen, E.K.Antonsson., Digital micropropulsion [J], Sens.Actuators A, 2000,80 :143-154.
    [144] D.W.Younngner, Son Thai Lu, et al. ,MEMS Mega-pixel Micro-thruster arrays for small satellite station keeping [C]. 14th Annual/USU Conference on small satellites, Logan, Utah, USA, Aug. 13- Sep. 3, 2000.
    [145]尤政,张高飞,任大海, MEMS微推进技术的研究[J].纳米技术与精密工程, 2004,2(2):56-58.
    [146] K.L.Zhang, S.K.Chou, S.S Ang, Development of a solid propellant microthruster with chamber and nozzle etched on a wafer surface [J]. J.Micromech. Microeng, 2004,14: 785-792.
    [147] C.Rossi, P.temple-Boyer, D.Esteve, Realization and performance of thin SiO2/SiNx membrane for microheater applications [J]. Sens.Actuators A, 1998,64:241-245.
    [148] C.Rossi, T.Do Conto, Design, fabrication and modelling of MEMS-based micro-thrusters for space application[J], Smart Mater. Struct., 2001,10:1156-1162.
    [149]张高飞,尤政,基于MEMS的固体推进剂阵列[J].清华大学学报(自然科学版) 2004,44: 1489-1492.
    [150] D.Briand, et al., Reliability of freestanding polysilicon microheaters to be used as igniters insolid propellant microthrusters [J]. Sens.Actuators A, 2007,135: 329-336.
    [151] Jijun Xiong, Zhaoying Zhou, Dong Sun, Xiongying Ye. Development of a MEMS based colloid thruster with sandwich structure [J]. Sens.Actuators A, 2005, 117:168-172.
    [152] C.Rossi, S.Orieux, B.Larangot, T.Do Conto, D.Esteve, Design, fabrication and model of solid propellant microrocket application to micropropulsion [J]. Sens.ActuatorsA, 2002,99: 125-133.
    [153] (美)格雷戈里T.A.科瓦奇著:张文栋等译微传感器与微执行器全书[M].北京:科学出版社,2003,3.
    [154]张思杰,彭承琳,郑小林.基于MEMS的无线内窥镜的研究进展[J].医疗卫生装备, 2004,(5):26-30.
    [155] J.Paul. M2A swallowable Imaging capsule[C]. ELE282 Biomedical Engineering, 2001, (2):26.
    [156] Jerome D.Waye. The development of the swallowable video capsule (M2A) [J]. Gastrointestinal Endoscopy, 2000, (6):817-819.
    [157] Meron GD.The development of the swallowable video-capsule (M2A) [J]. Gastrointest Endoscopy. 2000, 12: 812-819.
    [158] http://www.ndigital.com/aurora.php [Z].
    [159]李鸿炜,颜国正,胡芳芳.微型胃肠道介入式诊疗装置的便携定位系统设计[J].光学精密工程,2008,16(3):492-499.
    [160] He Wenhui,Yan Guozheng, Jiang Pingping, et al.A novel localization method for noninvasive monitoring capsule [J]. HIGH TECHNOLOGYLETTERS, 2006, 12(3):255-259.
    [161] He Wenhui,Yan Guozheng, Guo Xudong, et al. Researches on magnetic localization for detecting capsule in gastrointestinal tract [J]. Journal of Shanghai Jiaotong University (Science), 2007, 12(4):520-524.
    [162]何文辉,颜国正,郭旭东.基于磁阻传感器的消化道诊查胶囊的位置检测[J].仪器仪表学报,2006,27(10):1187-1190.
    [163]姜萍萍,颜国正,郭旭东,等.用于体内胶囊式遥测系统的电磁跟踪定位方法[J].光学精密工程,2007, 15 ( 8):1247-1252.
    [164]昝鹏,颜国正,何文辉,等.一种人体消化道无创诊查胶囊磁定位系统的设计[J].测控技术,2006,25(9):58-60.
    [165] Shuichiro Hashi, Yuuki Tokunaga1, Shin Yabukami, et al. Development of real-time and highly accurate wireless motion capture system utilizing soft magnetic core [J]. IEEETRANSACTIONS ON MAGNETICS, 2005, 41(10): 4191-4193.
    [166] Shuichiro Hashi, Masaharu Toyoda1, Shin Yabukami, et al.Wireless magnetic motion capture system for multi-marker detection [J]. IEEE TRANSACTIONS ON MAGNETICS, 2006, 42(10):3279-3281.
    [167] Shuichiro Hashi, Masaharu Toyoda1, Shin Yabukami, et al.Wireless magnetic motion capture system-compensatory tracking of positional error caused by mutual inductance [J]. IEEE TRANSACTIONS ON MAGNETICS, 2006, 43(6): 2364-2366.
    [168]姜萍萍,颜国正,王文兴.人体全消化道微型介入式诊查系统研制[J].机器人技术与应用, 2003,(4):33-35.
    [169] W Weitschies, J W edemeyer, et al.Magnetic markers as a noninvasive tool to monitor gastrointestinal transit [J]. IEEE T ransact ion on Biomedical Engineering, 1994, 41(2):192-195.
    [170] Werner Weitschies, Michael Karaus, Dino Cordini. Magnetic marker monitoring of disinte- grating capsules [J]. European Journal of Pharmaceutical Sciences, 2001, (133): 411-416.
    [171] Werner Weitschies. Olaf Koschb, Hubert Mfnnikes. Magnetic Marker Monitoring: An application of biomagnetic measurement instrumentation and principles for the determination of the gastrointestinal behavior of magnetically marked solid dosage forms [J]. Advanced Drug Delivery Reviews, 2005, (57):1210-1222.
    [172] STL systemtechnik Ludwig GmbH. Magnetic Tracking System MTS-1000 Bedienungnsanleitung Version 1[Z]. 2003.
    [173]侯文生,郑小林,彭承琳,等.基于磁定位的消化道微型药物释放装置动态跟踪技术研究[J].北京生物医学工程,2005,24(1):35-38.
    [174]吴旭东,侯文生,彭承琳,等.体内微型装置计算机辅助定位系统中简易3D人体模型的实现[J].医疗卫生装备,2004(4):5-7.
    [175]侯文生,郑小林,彭承琳,等.体内微型诊疗装置磁定位简化模型的实验研究[J].仪器仪表学报,2005,26 (9):895-897.
    [176] Xiaona WANG,Max Q.-H.Meng,Chao HU.A Localization Method Using 3-axis Magnetoresistive Sensors for Tracking of Capsule Endoscope[C].Proceedings of the 28th IEEE EMBS Annual International Conference New York City, USA, Aug 30-Sept 3, 2006:2522-2525.
    [177] Xiaona Wang,Max Q.-H.Meng,Yawen Chan.A Low-cost Tracking Method Based on Magnetic Marker for Capsule Endoscope[C].Proceedings of 2004 International Conference on Information Acquisition,2004:524-526.
    [178]王坤东,颜国正,姜萍萍,等.基于永磁磁场的电子胶囊定位系统[J].生物医学工程学杂志, 2007,24(5):1148-1151.
    [179] I.R. Wilding, A.J. Coupe, S.S. Davis. The role ofγ-scintigraphy in oral drug delivery [J].Advanced Drug Delivery Reviews, 2001, 46:103-124.
    [180]陈艳,邹豪,蒋雪涛.药物制剂体内示踪技术——γ-闪烁扫描的应用[J].药学实践杂志,2003,21(4):198-201.
    [181] C.H. Malbert.C. Mathis, E. Bobillier.Measurement of Gastric Emptying by Intragastric Gamma Scintigraphy [J]. Neurogastroenterology and Motility. 1997 .9(3):157-165.
    [182] Charles Oo, Paul Snell,et al. Pharmacokinetics and delivery of the anti-influenza prodrug oseltamivir to the small intestine and colon using the site-specific delivery capsules [J], International Journal of Pharmaceutics, 2003, 257(1-2):297-299.
    [183] http://www.innovativedevices.com [EB/OL].
    [184]张爱军,诸昌钤,王喆.面向三维重建的视图坐标转换[J].西南交通大学学报,2001,36(1): 57-61.
    [185]孙家广.计算机图形学(第三版)[M].清华大学出版社,1998, 358-369.
    [186]孙家广,胡事民.计算机图形学基础知识[M].清华大学出版社,2005, 152-225.
    [187]皮喜田、郑小林、刘洪英等,消化道排空检测缓释片及其制备工艺[P],中国,ZL200510057395.x,2007.12.
    [188]皮喜田、郑小林、刘洪英等,用于消化道排空检测缓释片的骨架片芯及其制备工艺[P],中国, ZL2005100573964, 2007, 12.
    [189]梁莉,乔华,王婷.盐酸二甲双胍不良反应[J].中国药事杂志, 2007, 21(8):652-655.
    [190] Marlice A.S M, Alcenir de S S, Olivia W P, et al. Simple and rapid method determination for metformin in human plasma using high performance liquid chromatography tandem mass spectrometry:Application to pharmacokinetic studies[J]. Journal of Chromatography B, 2007, 852:308-314.
    [191]魏敏吉,张慧琳,康子胜.一种快速灵敏测定人血清中二甲双胍含量的方法[J].中国临床药理学杂志, 2003, 19(6):443-446.
    [192]秦峰,熊志立,孙苏亚,等.盐酸二甲双胍缓释片人体药代动力学及生物利用度[J].药物分析杂志, 2005, 25(3):258-261.
    [193]叶敏,付强,朱珠.人血浆中盐酸二甲双胍HPLC测定法[J].中国药学杂志, 2006, 41(4):310-313.
    [194] Staib AH, Loew D, Harder S, Graul EH, Pfab R, Measurement of theophylline absorption from different regions of the gastro-intestinal tract using a remote controlled drug deliverydevice [J]. Eur J Clin Pharmacol 1986; 30(6): 691- 697.
    [195] Clear NJ, Milton A, Humphrey M, Henry BT, Wulff M, Nichols DJ, et al. Evaluation of the Intelisite capsule to deliver theophylline and frusemide tablets to the small intestine and colon [J]. Eur J Pharma Sci 2001; 13:375-384.
    [196] Joseph M. Custodio, Chi-Yuan Wu, Leslie Z. Benet. Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption [J]. Advanced Drug Delivery Reviews, 2008, 0:717-733.
    [197] Olsson C, Holmgren S. The control of gut motility [J]. Comp Biochem Physiol A Mol Integr Physiol 2001; 128(3):481-503.
    [198] Weitschies W, Kosch O, Monnikes H, Trahms L. Magnetic marker monitoring: an application of biomagnetic measurement instrumentation and principles for the determination of the gastrointestinal behavior of magnetically marked solid dosage forms [J], Adv Drug Deliv Rev 2005; 57(8):1210-1222.
    [199] Davis SS, Hardy JG, Fara JW, Transit of pharmaceutical dosage forms through the small intestine [J]. Gut1986;27(8):886-892.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700