云南山顶苔藓矮林群落生态学与生物地理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以分布于云南老君山国家级自然保护区、分水岭国家级自然保护区、黄莲山国家级自然保护区、哀牢山国家级自然保护区、无量山国家级自然保护区、大雪山国家级自然保护区和盈江县苏典国有林中的山顶苔藓矮林为研究对象,研究云南山顶苔藓矮林的群落生态学和生物地理学特征以及云南山顶苔藓矮林的主要环境特征,探讨了云南山顶苔藓矮林在世界云雾林中的地位、云南山顶苔藓矮林分布区形成的主要环境因素。为云南山顶苔藓矮林的保护、研究提供理论依据。
     研究结果表明:
     1)云南山顶苔藓矮林多由乔木层、以竹类占绝对优势的灌木层和较稀疏的草本层三层组成。主要由壳斗科(Fagaceae)、杜鹃花科(Ericaceae)、越桔科(Vacciniaceae)、槭树科(Aceraceae)、木兰科(Magnoliaceae)、茶科(Theaceae)、冬青科(Aquifoliaceae)、八角科(Illicieae)、樟科(Lauraceae)和蔷薇科(Rosaceae)等植物组成,在各研究地点乔木层优势物种有较大的差异。
     2)在面积为2500 m2的样地范围内,各样地所记录的维管束植物种类最低的只有57种,最多的达110种。乔木层辛普森多样性指数普遍在0.7545–0.9544之间,香农–威纳多样性指数在1.825–3.2905之间,皮耶罗均匀度指数则在0.6583–0.8982之间。总体上老君山山顶苔藓矮林群落无论辛普森指数、香农–威纳多样性指数、皮耶罗均匀度指数和物种丰富度指数都表现出相对较低的特点。而黄莲山山顶苔藓矮林的这些多样性指数则表现为相对较高的特点。与其它森林类型相比,云南山顶苔藓矮林物种丰富度与多样性普遍不高。
     2)云南山顶苔藓矮林主要由高位芽植物组成,各研究地点高位芽分别占研究地所记录物种种数的64%–87%,高位芽植物平均占总植物种数的75%左右,与分布于海拔较低的热带森林相比,其高位芽植物比例明偏低。云南山顶苔藓矮林植物种类主要以小叶、中叶物种为主,与热带雨林和季风常绿阔叶林相比较,小叶物种所占比例较高。云南山顶苔藓矮林中全缘叶物种比例平均达59.11%,低于热带雨林和季风常绿阔叶林,但高于一些中亚热带森林。尽管山顶苔藓矮林生境较为潮湿,但反映潮湿生境特征的具滴水叶尖物种比例明显很少,林内往往缺乏热带雨林中那样典型的滴水叶尖植物;革质叶所占比例则较高,常绿植物树种较多,群落外貌整体表现为常绿阔叶特征。
     3)各群落内植株的胸径随群落植株密度增加而减小,林木胸径分布在各群落中有较大的差异。从各群落实际情况看,由于各研究地点土壤总体上较为潮湿,土层一般都比较浅薄,所以推测风可能是影响林木径级分布的主要物理因子之一:在风力较强的地方树干分枝低矮、进入起测胸径范围的植株较少,很多植株胸径小于5 cm,并且常呈灌木状分布。各群落大多数植株胸径普遍在35 cm以下。
     4)对七个研究样地群落乔木层树种组成相似性作聚类分析,结果显示各群落之间相似性比较低。
     5)在种子植物区系组成上,云南山顶苔藓矮林科的地理成分以泛热带分布及其变型、热带亚洲和热带南美间断分布、北温带分布为主体,其中热带性质的地理成份明显高于温带性质的地理成分。
     6)云南山顶苔藓矮林植物区系在属一级水平上,则以泛热带分布及其变型、热带亚洲分布及其变型、东亚分布及其变型为主体。热带分布属与温带分布属在组成比例上基本等量,具有明显的从热带向温带过渡特性。
     7)云南山顶苔藓矮林植物区系,在种一级水平上,热带亚洲分布及其变型是其区系的主体成分,这类植物种类在各研究样地内所占比例略超过总种数的一半,显示出与热带亚洲的紧密联系。北温带分布、东亚和北美洲间断分布、旧世界温带分布、东亚分布及其变型在各研究样地中比例很小或没有记录到。云南特有种和中国特有种,是仅次于热带亚洲分布的第二大分布类型,在各研究地点比例约在25%–42%之间,这些种类大部分分布在我国西南地区,分布到温带地区的种类很少。
     8)云南山顶苔藓矮林植被土壤一般属淋溶土、棕壤类、山地酸性棕壤亚类,土壤有机质、全氮、全磷、全钾、速效氮、速效磷含量都较高,土壤肥力较好。土壤有机质、全氮、全磷、全钾、速效氮、速效磷等土壤肥力指标不是山顶苔藓矮林林木生长的限制因子,但在不同地点的森林中,各种肥力指标含量彼此间差异较大。土壤pH值在各研究点中变异较小,大都在4.0左右,酸性较强。
     10)徐家坝地区山顶苔藓矮林的土壤含水量与本地区其它森林类型,如季风常绿阔叶林、中山湿性常绿阔叶林、中山湿性常绿阔叶林与山顶苔藓矮林过渡带森林、滇山杨林相比显得较高。山顶苔藓矮林各年间相同时段内土壤湿度的数值分布较为离散。说明天气变化很容易影响到山顶苔藓矮林的水分状况。同时也暗示了山顶苔藓矮林作为世界云雾林的一部分,对全球气候变化可能特别敏感。土壤含水量沿海拔梯度变化明显,由低海拔到高海拔呈递增趋势。
     11)哀牢山山顶苔藓矮林与本地区其它植被一样,水分变化表现为相同的变化周期,即在多雨季节土壤湿度相对较高,在旱季土壤湿度相对较低,与该地区总的降雨节律相一致。
     12)中山湿性常绿阔叶林与其破环后形成的滇山杨次生林各层土壤湿度变化规律及离散程度差异不明显。这一情况说明中山湿性常绿阔叶林破坏后经较长时间恢复形成的滇山杨次生林对土壤水分变化影响不大。
     13)除山顶苔鲜矮林外,大部分植被类型表现出多雨季节0–10 cm土层土壤含水量高于10–20 cm土层土壤含水量,并有沿海拔梯度增加,差别加大的趋热;旱季两土层差别不大。山顶苔藓矮林则在全年内0–10 cm土层土壤湿度明显高于0–20 cm土层湿度,并在雨季两层间土壤湿度差别增大。山顶苔藓矮林出现这一独特表现的原因在于:山顶苔藓矮林一年中大部分时间内由于雾的影响较多,通过植物拦截后形成的的水滴直接影响了土壤表层的含水量,使0–10 cm土层土壤经常处于一种比较湿润的状态。
     14)低温不可能构成云南山顶苔藓矮林(云雾林)存在的必然要素。各地区山顶苔藓矮林湿度都较大,年平均均在85%以上,较为潮湿的生境可能是云南山顶苔藓矮林(云雾林)存在最为关键的环境因素。
     15)由于云南山顶苔藓矮林在群落结构及外貌特征上完全符合热带山地云雾林的特征,并在物种组成上热带性质的成分比例较高,云南山顶苔藓矮林完全可以作为世界热带山地云雾林的一部分来对待。大致相当于国际上的“upper montane cloud forest”。
Understanding the ecology and biogeography of the mossy dwarf forest (cloud forest)is of critical importance in protecting theses rare and endangered ecosystems. Plant diversity, physiognomy, species composition and environment of the less known mossy dwarf forest in Yunnan were studied, based on data collected from 35 sampling plots in 7 sites. The study sites are located in six national nature reserves, from east to west, which are named as Laojunshang National Nature Reserve, Fengshuilin National Nature Reserve, Huangliangshan National Nature Reserve, Wuliangshan National Nature Reserve, Ailaoshan National Nature Reserve, Daxueshan National Nature Reserve, and one well protected Sudian National Forest area. The results of
     our studies are concluded as following:
     1) In floristic composition, the mossy dwarf forests are mainly dominated by Fgaceae, Ericaceae, Vacciniaceae, Aceraceae, Magnoliaceae, Theaceae, Aquifoliaceae, Illicieae, Lauraceae, Rosaceae etc. The dominant species vary from site to site.
     1) In a 2500 m~2 sampling area of each community, the total vascular species varies from 57 to 110 and the Simpson’s index varies from 0.7545 to 0.9544, Shannon–Winner’s diversity index from 1.8251 to 3.2905 and Pielou’s evenness index from 0.6583 to 0.8982 for trees. The species richness, Simpson’s index, Shannon–Winner’s diversity index and Pielou’s evenness of the community in Laojunshang National Nature Reserve are lower than those of other study sites. In general, the species richness and diversity of the mossy dwarf forests in Yunnan are relatively low in comparison with those forests in lower altitude in Yunnan.
     3) In physiognomy, the forests are dominated by phanerophyte plants, and lianas are rare. The plants with microphyllous plus nanophyllous leaves contribute to 44.32–63.46% of the total species, and the plants with an entire leaf margin account for more than 50% of the tree and shrub species. There are also less abundant tree and shrub species with drip tip leaf apex and papery leaves. In the mossy dwarf forests, evergreen species make up more than 75% of the total tree and shrub species. The forests are evergreen broad–leaved forests.
     4) In these forest communities, the DBH class distribution of the tree species decreases with the increase of the tree thickness, and vary obviously from one community to another community. Most trees have DBH less than 35cm.
     5) The cluster analysis shows that these communities have low similarity.
     6) At the family level, the mossy dwarf forests in Yunnan is mainly composed by Pantropic distribution, Tropical Asia & tropical America disjuncted distribution and North temperate distribution. The families of tropical distribution are more than those of temperate distributions.
     7) At the generic level, the flora of the forests is composed mainly by the genera of Pantropic and tropical Asian distributions. The ratio of tropical elements is almost equal to the one of temperate elements. These results indicate that the flora is a transitional one from the tropical to subtropica1.
     8) At the specific level, the elements of tropical Asian distribution contribute more than half of the total flora. The close relationship of the flora with tropical Asian flora is observed. The species of Chinese endemic and Yunnan endemic distributions are the second large part of the flora, which contribute to 25–42 % of the total flora.
     9) The soils of the mossy dwarf forest in Yunnan belong to Argosols order, brown soil group,Acid brown forest soil subgroup. Soil nutrient contents, such as total N,P,K,available N,P, K, manifested remarkable variability under different study sites. Compared with other forests in Yunnan, the soil nutrient contents are higher, and the soil pH is lower. The common pH value is about 4.0. Soil nutrient contents are not a limiting factor to tree species growth.
     10) The soil moisture of the summit mossy dwarf forests in Xijiaba area are higher than that of the monsoonal evergreen broad–leaved forest, the mid–montane humid evergreen broad–leaved forest, the transitional forest between the mid–montane humid evergreen broad–leaved forest and the mossy dwarf forest and Populus bonatii forest. And the soil moisture of the mossy dwarf forests manifested remarkable variability under different study years at the same times. The soil moisture significantly increases with increasing altitude.
     11) Same as other vegetation types in Ailao Mountain, soil moisture of the summit mossy dwarf forests show the same cycle period. In rainy season soil moisture is high and in dry season soil moisture is low.
     12) The soil moisture of the Populus bonatii forest shows the same variability under different layers. This result indicates the second forests of the mid–montane humid evergreen broad–leaved forest have no significant impact on the dynamic of soil moisture after a long time recover.
     13) The soil moisture of the 0–10 cm soil layer is higher than that of the 10–20 cm soil layers. There is commonly big discrepancy between the 0–10 cm soil layer and the 10–20 cm soil layer in rainy season but in dry season, except the summit mossy dwarf forest. The discrepancy in rainy season increases with increasing altitude. Discrepancy happens in the summit mossy dwarf forest all the year round, and the big discrepancy happens during the rainy season. The key reason is that the summit mossy dwarf forest is frequently covered in cloud or mist, so it can intercept more cloud water, and condition the 0–10 cm soil layer under wet conditions.
     14) Low temperature is not the necessary element for the occurrence of the cloud forest (summit mossy dwarf forest). The environments of the summit mossy dwarf forests in Yunnan are very wet and the annual mean humidity is higher than 85%. So the wet environment may be the key fact for the occurrence of the summit mossy dwarf forest.
     15) The summit mossy dwarf forests bear all the characters of tropical montane cloud forest and possess high percentage of tropic elements species. They should be treated as one of the world tropical montane cloud forest. The term‘summit mossy dwarf forest’has the same meaning as‘upper montane cloud forest’.
引文
Aiba S.-i. & Kitayama K. (1999) Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecology, 140, 39-157
    Alcantara O., Luna I. & Velazquez A. (2002) Altitudinal distribution pattern of Mexican cloud forest based upon preferential characteristic genera. Plant Ecology, 161, 167-174
    Aldrich M., Billington C., Edwards M. & Laidlaw R. (1997) Tropical montane cloud forests: an urgent priority for conservation. WCMC Biodiversity Bulletin 2 WCMC, Cambridge, UK.
    Barrick K.A. (2003) Comparison of the nutrient ecology of costal Baksia grandis elfinwood (windswept shrub-like form) and low trees Cape
    Leeuwin-Naturaliste National Park Western Australia. Austral Ecology, 28, 252-262
    Beard J.S. (1944) Climax vegetation in tropical America. Ecology, 25, 127-158
    Berrie C.K.J. & Eze M.O. (1975) The relationship between an epiphyllous liverwort and host leaves. Annals of Botany, 39, 955-963
    Bruijnzeel L.A. (1998) Climatic conditions and tropical montane forest productivity: the fog has not lifted yet the structure and functioning of montane tropical forests: control by climate,soils and disturbance. Ecology, 79, 3-9
    Bruijnzeel L.A. (2001) Hydrology of tropical montane cloud forest: A reassessment. Land Use and Water Resources Research, 1, 1-18
    Bruijnzeel L.A. & Veneklaas E.J. (1998) Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology, 79, 3-19
    Bruijnzeel L.A., Waterloo M.J., Proctor J., Kuiters A.T. & Kotterink B. (1993) Hydrological observations in montane rain forests on Gunung Silam, Sabah, Malaysia, with special reference to the 'Massenerhebung' effect Journal of Ecology 81, 145-167
    Bubb P., May I., Miles L. & Sayer J. (2004) Cloud forest agenda. UNEP-WCMC, Cambridge, UK.
    Bussmann R.W. (2001) Phytosociological study of the montane vegetation of Researva Biológica, San Francisco, Zamora-Chinchipe, Southern Ecuador. In, pp. 1-44. Unmiversity of Bayreuth Universitatsstr, Bayreuth, Germany
    Byer M.D. & Weaver P.L. (1977) Early secondary succession in an elfin woodland in the Luquillo Mountains of Puerto Rico. Biotropica, 9, 35-47
    Cavelier J. & Mejia C.A. (1990) Climatic factors and tree stature in the elfin cloud forest of Serrania de Macurira. Agricultural and Forest Meteorology, 53, 105-123
    Cavelier J., Solos D. & Jaramillo M.A. (1996) Fog interception in montane forests across the certral Cordillera of Panama. Journal of Tropical Ecology, 12, 357-369
    Chang S.-C., Lai I.-L. & Wu J.-T. (2002a) Estimation of fog deposition on epiphytic bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan. Atmospheric Research, 64, 159-167
    Chang S.-C., Lai I.-L. & Wu J.-T. (2002b) Estimation of fog deposition on epiphytic bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan Atmospheric Research, 64, 159-167
    Clark K.L., Lawton R.O. & Butler P.R. (2000) The Physical Environment. Oxford University Pres, Monteverde.
    Clark K.L., Nadkarni N.M., Scharefer D. & Gholz H.L. (1998) Cloud water and precipitation chemistry in a tropical montane forest, Monteverde, Costa Rica. Atmosphere Environmen, 32, 1595-1603
    Couteaux M.M., Sarmiento L., Bottner P., Acevedo D. & Thiery J.M. (2002) Decomposition of standard plant material along an altitudinal transect(65-3968m) in the tropical Andes. Soil Biology & Biochemistry, 34, 69-78
    Cronin J.T. (2002) Movement and spatial population structure of a prairie planthopper. Ecology, 84, 1179–1188
    DeFelice T.P. (2002) Physical attributes of some clouds amid a forest ecosystem’s trees. Atmospheric Research, 65, 17-34
    Eisermann K. & Schulz U. (2005) Birds of a high-altitude cloud forest in Alta Verapaz, Guatemala. . Revista de Biología Tropical, 53, 577-594
    Fehse J., Hofstede R., Aguirre N., Paladines C., Kooijman A. & Sevink J. (2001) Hight altitude tropical secondary forests: a competive carbon sink? Forest Ecology and Management, 163, 9-25
    Fernández D.S. & Fetcher N. (1991) Changes in light availability following hurricane Hugo in a subtropical montane forest in Puerto Rico. Biotropica, 23, 393-399
    Foster P. (2001) The potential negative impacts of global climate change on tropical montane cloud forests. Earth Science Reviews, 55, 73-106.
    Gottfried M., Pauli H., Reiter K. & Grabherr G. (1999) A fine-scaled predictive model for changes in species distribution patterns of high mountainplants induced by climate warming. Diversity and Distributions, 5, 241-251
    Grubb P.J. (1971) Interpretation of the 'massenerhebung ' effect on tropical on tropical montains. Nature, 229, 44-45
    Grubb P.J., Lloyd J.R., Pennington T.D. & Whitmore T.C. (1963 ) A comparison of montane and lowland rain forest in Ecuador. I. The forest structure, physiognomy and floristics. Journal of Ecology, 51, 567-601
    Guadalupe W. (2002) Tree species richness complementarily, disturbance and fragmentation in a Mexican tropical montane cloud forest. Biodiversity and Conservation, 1825-1843
    Halliday T.R. (1998) A declining amphibian conundrum. Nature, 394, 418-419
    Hawkins A.F.A. (1999) Altitudinal and latitudinal distribution of east Malagasy forest bird communities. Journal of Biogeography, 26, 447-458
    Hietz P. & Briones O. (2004) Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest Oecologia, 114
    Hilbert D.W., Ostendorf B. & Hopkins M.S. (2001) Sensitivity of tropical forests to climate change in the humid tropics of north Queensland. Austral Ecology, 26, 590-603
    Holder C.D. (2004) Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala. Forest Ecology and Management, 190, 373-384
    I.E.Buot J. & Okitsu S. (1999) Leaf size zonation pattern of woody species along an altitudinal gradient on Mt. Pulong, Philippines. Plant Ecology, 145, 197-208.
    Isaac C. & Bourque C.P.-A. (2001) Ecological life zones of Saint Lucia Global. Global Ecology & Biogeography, 10, 549-566
    Jacquemyn H., Brys R. & Hermy M. (2004) Patch occupancy, population size and reproductive success of a forest herb (Primula elatior) in a fragmented landscape. Oecologia, 130, 617-625.
    Jellinek S., Driscoll D.A. & Kirpkatrick J.B. (2004) Environmental and vegetation variables have a greater influence than habitat fragmentation in structuring lizard communities in remnant urban bushland. Ecology, 29, 1215–1224
    Jones D.T. (2000) Termite assemblages in two distinct montane forest types at 1000 m elevation in Maliau Basin, Sabah. Journal of Tropical Ecolog, 16, 271-286
    Kapos V. & Edmund V.J. (1985) Tanner Water relations of Jamaican upper mountane rain forest trees. Ecology, 66, 241-250
    Kepler C.B. & Patkes K.C. (1972) A new species of warbler (Parulidae) from Puerto Rico. The Auk, 89, 1-18
    Levinea J.M. (2002) A patch modeling approach to the community-level consequences of directional dispersal. Ecology, 84, 1215-1224
    Liu W.Y., Fox J.E.D. & Xu Z.F. (2000) Leaf litter decomposition of canopy trees, bamboo and moss in a montane moist evergreen broad-leaved forest on Ailao Mountain, Yunnan, south-west China. Ecological Research, 15, 435-447
    Lovett G.M., Reiners W.A. & Olson R.K. (1982) Cloud droplet deposition in dubalpine balsam fir forests: hydrological and chemical inputs. Science, 218, 1303-1304
    Lowman M.D. (2001) Plant in the forest canopy: some reflections on current research and future direction. Plant Ecology, 153, 39-50
    Luna-Vega I., Morrone J.J., Ayala O.A. & Organista E.D. (2001) Biogegraphical affinities among Neotropical cloud forest. Plant Systematics and Evolution, 228, 229-239
    McCain C.M. (2004) The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Ric. Journal of Biogeography, 31, 19-31
    McLaughlin J.F., Hellmann J.J., Boggs C.L. & Ehrlich P.R. (2002) Climate change hastens population extinctions. Ecology, 99, 6070-6074
    Medina E., Garcia V. & Cuevas E. (1990) Sclerophyll and oligotrophic environments: relationships between leaf structure, mineral nutrient content, and drought resistance in tropical rain forests of the upper Rio Negro region. Biotropica, 22, 51-64
    Nadkarni N.M., SOLANO R., Nadkarni N.M. & Solano R. (2002 ) Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia, 131, 580-586
    Nadkarni N.M. & Wheelwright N.T. (2001) Monterverde. Ecology and conservation of a tropical cloud forest book reviews. Biological Conservation, 97, 127-129
    Nomura N. & Kikuzawa K. (2003) Productive phenology of tropical montane forest: fertilization experiment along a moisture gradient. Ecological Research, 187, 573-586
    Pendry C.A. & Proctor J. (1997) Altitudinal zonation of rain forest on Bukit Belalong, Brunei: soils, forest structure and foristic. Journal of Tropical Ecology, 13, 221-241
    Pentecost A. (1998) Some observations on the biomass and distribution of cryptogamic epiphytes in the upper montane forst of the Rwenzori Mountains, Uganda. Global Ecology and Biogeography Letters, 7, 273-284
    Pineda E. & Halffter G. (2004) Species diversity and habitat fragmentation: frogs in a tropical montane landscape in Mexico. Biological Conservation, 117, 499-508
    Pounds J.A., Fogden M.P.L. & Campbell J.H. (1999) Biological response to climate change on a tropical mountain. Nature, 398, 611-615.
    Raunkiaer C. (1934) The life forms of plants and statistical plant geography. Oxford University Press, Oxford.
    Richards C.M., Church S. & McCauley D.E. (1999) The influence of population size and isolation on gene flow by pollen in Silene alba. Evolution, 53, 63-73
    Sánchez-Cordero V. (2001) Elevation gradients of diversity for rodents and bats in Oaxaca, Mexico. Global Ecology & Biogeography, 10, 63-67
    Schlesinger W.H. & Reiners W.A. (1974) Deposition of water and cations on artifical follar collectors in fir krummholz of New England Mountains. Ecology, 55, 378-386
    Somanathan H. & Borges R.M. (2000) Influence of exploitation on population, species in a fragmented cloud forest in India. Biological Conservation, 94 Stadtmüller T. (1987) Cloud forests in the humid tropics: a bibliographic review. The United Nations University, Tokyo, Japan.
    Still C.J., Foster P.N. & Schneider S.H. (1999) Simulating the effects of climate change on tropical montane cloud forests. Nature, 398, 608-610
    Sugden A.M. (1982a) The ecological, geographic, and taxonomic relationships of the flora of an isolated Colombian cloud forest with some implications for island biogeography. Journal of the Arnold Arboretum, 63, 31-61
    Sugden A.M. (1982b) The vegetation of the Serrania De Macuira, Guajira,Colombia: a contrast of arid lowlands and an isolated cloud forest. Journal of the Arnold Arboretum, 63, 1-30
    Sugden A.M. & Robins R.J. (1979) Aspects of the ecology of vascular epiphytes in Colombian cloud forest I. The distribution of the epiphytic flora. Biotropica, 11, 173-188
    Tanner E.V.J. (1977) Four montane rain forests of Jamaica: a quantitative characterization of the floristics, the soils and the foliar mineral levels and a discussion of the interrelation. Journal of Ecology, 65, 883-913
    Tanner E.V.J. (1980a) The decomposition of leaf litter in Jamaican montane rain forest. Journal of Ecology 69
    Tanner E.V.J. (1980b) Litterfall in montane rain forest of Jamaica and its relation to climate. Journal of Ecology, 68, 833-848
    Tanner E.V.J., Vitousek P.M. & Cuevas E. (1998) Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology, 79, 10-22
    Terborgh J. (1977) Bird speciesdiversity on an Andean elevational gradient. Ecology, 58, 1007-1019
    Thomas D. (1993) Scarabaeidae (Coleoptera) of the Chiapanecan forests: a faunal survey and chorographic analysis. Coleopterists Bulletin, 47, 363-408
    Vazquez J. & Givnish T. (1998) Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlan. Journal of Ecology, 86, 999-1020
    Walther G., Post E., Convey P., Menzel A., Parmesan C., Beebee T.J.C., Fromentin J., Hoegh-Gulderg O. & Bairlein F. (2002 ) Ecological responses to recent climate change Nature 416
    Weaver P.L., Byer M.D. & Bruck D.L. (1973) Transpiration rates in the Luquillo Mountains of Puerto Rico. Biotropica, 5, 123-133
    Weaver P.L., Medina E., Pool D., Dugeer K., Gonzales-Liboy J. & Cuevas E. (1986) Ecological observation in dwarf cloud forest of Luquillo Mountains in Puerto. Rico Biotropica, 18, 79-85
    Wilcke W., Yasin S., Abramowski U., Valarezo C. & Zech W. (2002) Nutrient storage and turnover in organic in organic layers under tropical montane rain forest in Ecuador. European Journal of Soil Science, 53, 15-27
    Williams-Linera G. (2002) Tree species richness complementarily, disturbance and fragmentation in a Mexican tropical montane cloud forest Biodiversity and conservation, 11, 1825-1843
    Wolf J.H.D. & Flamenco-S A. (2003) Patterns in species richness and distribution of vascular epiphytes in Chiapas. Mexico. Diversity and Distributions, 9, 1689-1708
    Zhang G.F. & Su W.H. (2005) Classification and geographical distribution of Cyatheaceae species in Yunnan. Journal of Nanjing Forestry University(Natural Sciences), 29, 59-63
    Zhu H., Shi J.P. & Zhao C.J. (2005) Species composition, physiognomy and plant diversity of the tropical montane evergreen broad-leaved forest in Southern Yunnan. Biodiversity and Conservation, 14, 2855-2870
    Zhu H. & Yan L.C. (2002) A discussion on biogeographical lines of the tropical-subtropical Yunnan. Chinese Geographical Science, 12, 90-96 陈世训 & 陈创买 (1982) 气象学. 农业出版社, 北京.
    陈树思 & 唐为萍 (2005) 白木香叶解剖结构的研究. 热带亚热带植物学报, 13, 291-295
    陈永森 & 叶联发 (1988) 哀牢山自然保护区及其附近的地质地貌. 云南民族出版社, 昆明.
    邓德山 (2002) 广西大瑶山种子植物区系地理学. In. 中国科学院昆明植物研究所, 昆明
    邓洪平, 陈亚飞, 谢大军, 李玉泉, 徐洁, 宋琴芝, 刘光华 & 伍莲 (2005a) 九寨沟自然保护区种子植物区系特征研究. 西南师范大学学报(自然科学版), 30, 543-547
    邓洪平, 陈亚飞, 谢大军, 徐洁, 宋琴芝 & 刘光华 (2005b) 千佛山自然保护区种子植物 区系特征研究. 广西植物, 25, 295-299
    丁圣彦 & 卢训令 (2006) 伏牛山和鸡公山自然保护区植物区系比较. 地理研究, 25, 62-70
    董鸣, 王义凤, 孔繁志, 蒋高明 & 张知彬 (1996) 陆地生物群落调查观测与分析. 中国标准出版社, 北京.
    谷海燕 & 李策宏 (2006) 峨眉山常绿落叶阔叶混交林的生物多样性及植物区系初探. 植物研究, 26, 618-623
    郝文芳, 梁宗锁, 韩蕊莲 & 侯军岐 ( 2002) 黄土高原不同植被类型土壤特性与植被生产力关系研究进展. 西北植物学报, 22, 1545-1550
    郝雨, 刘彤 & 周志强 (2006) 大兴安岭天然樟子松林种子植物区系研究. 国土与自然资源研究, 82-83
    何永涛 (2000) 哀牢山中山湿性常绿阔叶林更新动态研究. In. 中国科学院西双版纳热带植物园(硕士论文), 昆明
    贺金生 & 陈伟烈 (1992) 对旱生植树、旱生形态、硬叶植物、及硬叶常绿阔叶林概念的认识. 植物杂志, 36-37
    贺金生 & 陈伟烈 (1997) 陆地植物群落物种多样性的梯度变化特征. 生态学热报, 11, 91-99
    贺金生, 陈伟烈 & 王勋陵 (1997) 高山栎叶的形态结构及其与生态环境的关系. 植物生态学报, 18, 219-227
    金振洲 (1983) 哀牢山新平大雪锅山山顶苔藓矮林及其次生灌丛. 云南科技出版社, 昆明.
    李崇巍, 刘丽娟, 孙鹏森 & 葛剑平 (2005) 岷江上游植被格局与环境关系的研究. 北京师范大学学报(自然科学版), 41, 404-409
    李怛 (1994) 掸邦-马来亚板块位移对独龙江植物区系的生物效应. 云南植物研究, 增刊 Ⅵ, 113-120
    李怛, 何大明, Bartholomew B. & 龙春林 (1999) 再论板块位移的生物效应--掸邦-马来亚板块位移对高黎贡山生物区系的影响. 云南植物研究, 21, 407-425
    李文政 & 毛品一 (1990) 木兰科植物分布与大陆漂移. 热带地理, 10, 138-142
    李锡文 & 李捷 (1992) 从滇产东亚属的分布论述‘田中线’的真实性和意义. 云南植物研究, 14, 1-12
    李锡文 (1994) 中国特有种子植物属在云南的两大生物多样性中心及其特征. 云南植物研究, 16, 221-227
    梁玲, 吕世华 & 柳媛普 (2006) 黄土高原植被变化对环境影响的数值模拟. 高原气象, 25, 575-582
    刘秋锋, 康慕谊 & 刘全儒 (2006) 混沟森林植被物种多样性梯度分析与环境解释. 西北植 物学报, 26, 1686-1692
    刘守江, 苏志先, 张景霞 & 胡进耀 (2003) 陆地植物群落生活型研究进展. 四川师范学院学报(自然科学版), 24, 155-159
    刘文杰, 张一平, 刘玉洪, 李红梅 & 段文平 (2003) 西双版纳热带季节雨林林冠穿透雾水的观测研究. 植物生态学报, 27, 747-755
    刘文杰, 张一平, 刘玉洪, 李红梅 & 段文平 (2006) 西双版纳热带季节雨林林冠截留雾水和土壤水的关系. 生态学报, 26, 10-15
    刘文杰, 张一平, 马友鑫 & 李红梅 (2005) 森林内雾水的水文和化学效应研究现状. 林业科学, 41, 141-146
    刘文耀 (2000) 林冠附生物在森林生态系统养分循环中的作用. 2000, 19, 30-35
    刘兴良, 杨冬生, 刘世荣, 杨玉坡 & 马钦彦 (2007) 中国硬叶常绿高山栎类植物的起源与演化. 四川林业科技, 28, 6-12
    刘玉洪, 张克映, 马友鑫, 张一平 & 李佑荣 (1996a) 哀牢山(西南季风山地)空气湿度资源的分布特征. 自然资源学报, 11, 347-354
    刘玉洪, 张克映, 马友鑫, 张一平 & 李佑荣 (1996b) 哀牢山气温时空分布特征. 山地研究, 14, 230-234
    马克平 & 刘义明 (1994) 生物群落多样性的测度方法 I a 多样性的测度方法(下). 生物多样性, 2, 231-239
    米湘成, 屯 张., 张峰, 上官铁粱, 李爱华 & 郑凤英 (1999) 山西高原植被与土壤分布格局关系的研究. 植物生态学报, 23, 336-344
    牛建明 & 呼和 (2000) 我国植被与环境关系研进展. 内蒙古大学学报(自然科学版), 31, 76-80
    彭华 (1997 ) 滇中无量山种子植物. 云南科技出版社, 昆明.
    彭华, 杨世雄 & 孔冬瑞 (2001) 无量山山顶苔藓矮林植物区系特征研究. 云南大学学报(自然科学版), 23, 5-10
    任继文 (2005) 麦积山风景名胜区种子植物区系研究. 甘肃林业科技, 31, 7-10
    特鲁吉尔 (1985) 土壤和植被系统. 科学出版社, 北京.
    王国申, 朱金兆 & 吴斌 (1995) 区域性防护林体系的环境影响评价研究. 北京林业大学学报, 17, 111-117
    王海梅, 李政海, 宋国宝, 高吉喜 & 闫军 (2006) 黄河三角洲植被分布、土地利用类型与土壤理化性状关系的初步研究. 内蒙古大学学报(自然科学版), 37, 69-75
    王荷生 (1992) 植物区系地理. 科学出版社, 北京.
    吴征镒 & 朱彦丞 (1987) 云南省植被区划图. 科学出版社, 北京.
    吴征镒 (1984) 种子植物区系的热带起源时间问题-从中国植物区系中十五个主要地理成分起源的论证. 植物区系地理学教学大纲(初稿).
    吴征镒 (1991) 中国种子植物属的分布区类型. 云南植物研究, (增刊Ⅳ), 14-138
    吴征镒 (1993) “中国种子植物属的分布区类型”的增订和勘误. 云南植物研究, (增刊Ⅵ), 143-178
    吴征镒 (1995) 中国植被. 科学出版社, 北京.
    吴征镒 (2003a) 世界种子植物科的分布区类型系统. 云南植物研究, 25, 245-257
    吴征镒 (2003b) 《世界种子植物科的分布区类型系统》的修订. 云南植物研究, 27, 535-538
    吴征镒, 曲仲湘 & 姜汉侨 (1983) 云南哀牢山森林生态系统研究. 云南科技出版社, 昆明.
    肖洪浪, 段争虎, 宋耀选 & 程国栋 (2006) 黄土高原西部兰州市郊植被的水环境响应. 中国沙漠, 26, 517-521
    谢寿昌 (1987) 云南景东哀牢山山顶苔藓矮林优势种--倒卵叶石栎. 植物学报, 29, 331-335
    徐海清 & 刘文耀 (2005) 林冠附生物对水分的截留及对环境的监测. 水土保持研究, 12, 116-120
    徐永椿 & 姜汉侨 (1988) 哀牢山自然保护区综合考察报告集. 云南民族出版社, 昆明.
    于文光, 朱立涛, 王善娥, 郭小燕, 侯桂玲 & 李法曾 (2006) 长白山植物区系研究. 山东师范大学学报(自然科学版), 21, 115-117
    云南林业调查规划院 (1989) 云南自然保护区. 中国林业出版社, 北京.
    云南植被编写组 (1987) 云南植被. 第一版 edn. 科学出版社, 北京.
    张光富 & 钱士心 (2005) 安徽祁门地区种子植物区系组成及特征. 植物研究, 25, 351-357
    张宏达, 张绍颐, 王铸豪 & 刘健良(译). Richards P.W.著. (1959) 热带雨林. 科学出版社, 北京.
    张建新 (2006) 浙江大山峰种子植物区系的统计分析. 广西植物, 26, 444-450
    张志强 & 孙成权 (1999) 全球气候变化十年研究进展. 科学通报, 44, 464-477
    赵遵田, 王锡华, 李京东 & 肖素荣 (2005) 山东省蒙山种子植物区系研究. 山东科学, 18, 42-47
    中国科学院昆明生态研究所 & 云南省农业区划委员会 (1994) 亚热带阔叶森林植被. 中国林业出版社, 北京.
    周智彬 & 李培军 (2002) 我国旱生植物的形态解剖学研究. 干旱区研究, 19, 35-40
    朱华 & 阎丽春 (2003) 再论“田中线”和滇西--滇东南“生态地理(生物地理)对角线”的真实性和意义. 地球科学进展, 18, 871-877
    朱华 (2000) 西双版纳龙脑香热带雨林生态学与生物地理学研究. 云南科技出版社, 昆明.
    朱华, 赵崇奖, 王洪, 周时顺, 施济普 & 李保贵 (2006a) 思茅菜阳河 自然保护区植物区系研究——兼论热带亚洲植物区系向东亚植物区系的过渡. 植物研究, 26, 38-52
    朱华, 赵见明, 李黎 & 司洪虎 (2006b) 瑞丽莫里热带雨林种子植物区系的初步研究. 广西植物, 26, 400-405
    朱守谦 & 杨业勤 (1987) 贵洲梵净山山顶苔藓矮林初步研究. 植物生态学与地植物学报, 11, 92-105
    左经会, 林长松 & 田应洲 (2006) 贵州玉舍国家森林公园种子植物区系研究. 广西植物, 26, 434-440

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700