中国东北城市地区大气气溶胶光学特性及其直接辐射效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用中国东北城市地区沈阳、鞍山、本溪、抚顺四个站点CE318太阳光度计观测数据反演了大气气溶胶光学特性包括:大气气溶胶光学厚度、Angstrom波长指数、单次散射比、粒子体积谱分布、复折射指数实部及虚部等,分析了它们的季节变化及影响因素。四个地区气溶胶光学厚度最大值多出现在春夏季节,最小值多出现在秋季。Angstrom波长指数在四个地区都是秋冬季节高而在春季较低。
     根据反演得到的沈阳、鞍山、本溪、抚顺四个站点晴空条件下地面和大气层顶大气气溶胶的直接辐射强迫和直接辐射强迫效率,分析其分布情况及季节变化特征。本溪地区直接辐射强迫平均值在地面、大气层顶分别为:-222.90±76.61W/m2,-24.80±15.87W/m2,其平均值要高于其他三个地区,这说明该地区污染较严重,气溶胶对地面和大气层的冷却能力都比较强。
     首次对沈阳、鞍山、抚顺三个地区吸收性气溶胶光学厚度(AAOD)及吸收性Angstrom波长指数(AAE)的季节变化进行了反演分析,结果表明:三个地区吸收性气溶胶光学厚度在冬季和夏季较大,在春季较小。沈阳地区吸收性Angstrom波长指数年平均值小于1.00,鞍山地区吸收性Angstrom波长指数约为1.19,抚顺地区吸收性Angstrom波长指数约为1.33。吸收性Angstrom波长指数的变化范围说明影响这三个地区的气溶胶粒子分属于不同类型。
     结合水平能见度观测研究了其与大气气溶胶光学厚度、Angstrom波长指数、单次散射比、粒子体积谱分布、复折射指数等参数的相互关系,分析了低能见度情况下四个地区大气气溶胶的光学特性及直接辐射强迫效应的特征和变化趋势。结果发现:沈阳、鞍山、本溪、抚顺四个中国东北城市地区的气溶胶光学厚度、Angstrom波长指数随着能见度的增加而降低。当能见度较低时,鞍山地区气溶胶粒子的散射性要明显强于其他三个地区,单次散射比均大于0.90,而本溪地区气溶胶粒子的吸收性较强,单次散射比均小于0.85。四个地区晴空条件下地面大气气溶胶直接辐射强迫随着能见度的降低而增加,这说明污染大气中的气溶胶粒子对地面的冷却作用明显。
     主要结论如下:
     1.沈阳地区年平均500nm大气气溶胶光学厚度为:0.69±0.38;Angstrom波长指数为:0.88±0.26;440nm整体/细/粗粒子单次散射比分别为:0.84±0.06,0.86±0.06,0.77±0.06;440nm复折射指数为:1.47±0.028。沈阳地区晴空条件下年平均地面大气气溶胶的直接辐射强迫为约-136.52±80.50W/m2;年平均大气层顶大气气溶胶的直接辐射强迫为约-3.81±21.73W/m2;地面大气气溶胶的直接辐射强迫效率为约-267.77±86.38W/m2;大气层顶大气气溶胶的直接辐射强迫效率为约-7.83±38.89W/m2。沈阳地区440nm、670nm、870nm、1020nm吸收性大气气溶胶平均光学厚度分别为0.15±0.11,0.11±0.09,0.10±0.08,0.09±0.08,吸收性Angstrom波长指数为0.86±0.24。沈阳地区年平均能见度约为13.88±7.39km;能见度小于10km时440nm单次散射比为:0.82±0.06;气溶胶光学厚度为0.89±0.45;Angstrom波长指数为0.98±0.31;440nm复折射指数为1.46±0.030。
     2.鞍山地区年平均500nm大气气溶胶光学厚度为:0.65±0.33;Angstrom波长指数为:0.79±0.26;440nm整体/细/粗粒子单次散射比分别为:0.87±0.06,0.89±0.06,0.81±0.06;440nm复折射指数为:1.49±0.018。鞍山地区晴空条件下年平均地面大气气溶胶的直接辐射强迫为约-102.14±52.59W/m2;年平均大气层顶大气气溶胶的直接辐射强迫为约-25.37±20.99W/m2;地面大气气溶胶的直接辐射强迫效率为约-208.45±66.11W/m2;大气层顶大气气溶胶的直接辐射强迫效率为约-48.91±32.76W/m2。鞍山地区440nm、670nm、870nm、1020nm吸收性大气气溶胶平均光学厚度分别为:0.10±0.07,0.05±0.04,0.05±0.04,0.04±0.04;吸收性Angstrom波长指数为1.19±0.39。鞍山地区年平均能见度约为13.56±6.20km;能见度小于10km时440nm单次散射比为:0.88±0.05;气溶胶光学厚度为0.88±0.35;Angstrom波长指数为0.93±0.31;440nm复折射指数为1.46±0.016。
     3.本溪地区气溶胶光学厚度最大,而Angstrom波长指数明显小于沈阳、鞍山、抚顺三个地区,这说明影响本溪地区的气溶胶粒子的粒径较大。本溪地区年平均500nm大气气溶胶光学厚度为:0.82±0.34;Angstrom波长指数为:0.52±0.22;440nm整体/细/粗粒子单次散射比分别为:0.81±0.03,0.82±0.03,0.81±0.09;440nm复折射指数为:1.46±0.041。本溪地区晴空条件下年平均地面大气气溶胶的直接辐射强迫为约-222.90±76.61W/m2;年平均大气层顶大气气溶胶的直接辐射强迫为约-24.80±15.87W/m2;地面大气气溶胶的直接辐射强迫效率为约-337.65±102.43W/m2;大气层顶大气气溶胶的直接辐射强迫效率为约-40.59±22.84W/m2。本溪地区年平均能见度约为12.83±5.68km;能见度小于10km时440nm单次散射比为:0.80±0.08;气溶胶光学厚度为1.21±0.48;Angstrom波长指数为0.74±0.26;440nm复折射指数为:1.47±0.046。
     4.抚顺地区气溶胶光学厚度最小,年平均500nm大气气溶胶光学厚度为:0.45±0.27;Angstrom波长指数为:0.84±0.29;440nm整体/细/粗粒子单次散射比分别为:0.85±0.06,0.88±0.05,0.77±0.06;440nm复折射指数为:1.49±0.025。抚顺地区晴空条件下年平均地面大气气溶胶的直接辐射强迫为约-85.94±37.49W/m2;年平均大气层顶大气气溶胶的直接辐射强迫为约-13.28±16.19W/m2;地面大气气溶胶的直接辐射强迫效率为约-232.86±61.19W/m2;大气层顶大气气溶胶的直接辐射强迫效率为约-27.81±28.91W/m2。抚顺地区440nm、670nm、870nm、1020nm吸收性大气气溶胶平均光学厚度分别为:0.08±0.04,0.04±0.02,0.03±0.02,0.03±0.02,吸收性Angstrom波长指数为1.33±0.36。抚顺地区年平均能见度约为11.52±5.84km;能见度小于10km时440nm单次散射比为:0.84±0.05;气溶胶光学厚度为0.54±0.30;Angstrom波长指数为1.04±0.26;440nm复折射指数为1.48±0.026。
     5.鞍山地区气溶胶粗粒子和细粒子的散射性都比较大;本溪地区气溶胶粗粒子和细粒子的吸收性都比较大;沈阳、抚顺地区气溶胶粗粒子的吸收性比较强。气溶胶光学厚度对沈阳地区气溶胶粒子的吸收性影响并不明显,而在鞍山、本溪、抚顺三个地区,大气气溶胶粒子在气溶胶光学厚度较低时以吸收性为主,在气溶胶光学厚度较高时以散射性为主。
     6.四个地区气溶胶粒子谱分布特征均呈现出:夏季细模态粒子起主要作用,春季粗模态粒子起主要作用,而秋冬季节则受到两种模态气溶胶粒子的共同影响,粒子谱分布呈现了典型的城市特征。随着气溶胶光学厚度的增加,气溶胶细粒子体积也明显增加,这说明细粒子是影响该地区光学厚度的主要因素之一。
     7.四个地区晴空条件下地面大气气溶胶直接辐射强迫具有明显的季节变化特征,均呈现出夏季大、秋冬季节小的特点。四个地区晴空条件下大气层顶大气气溶胶的直接辐射强迫则呈现春季较大,冬季较小的变化趋势,其中沈阳和抚顺两个地区晴空条件下大气层顶大气气溶胶的直接辐射强迫在冬季出现了正值,这与东北地区因地表存在积雪导致地表反照率较高有关。
     8.沈阳、鞍山、抚顺三个地区吸收性Angstrom波长指数分别为0.86±0.24,1.19±0.39,1.33±0.36。吸收性Angstrom波长指数(AAE)的变化范围表明:沈阳地区的气溶胶粒子类型可能与具有沙尘和有机碳等粒子外部涂层的黑碳气溶胶有关。鞍山地区气溶胶粒子则可能包含了大量的黒碳气溶胶。影响抚顺地区大气消光性的气溶胶粒子则可能与生物质燃烧有关。
Aerosol optical properties such as Aerosol Optical Depth (AOD), Angstromexponent (AE), Single Scattering Albedo (SSA), volume size distribution,refractive index real part and imaginary part are retrieved by using CE318dataover four urban and industrial areas in Northeast China, Shenyang, Anshan,Benxiand Fushun. Seasonal variations and influence factors of these parametersare analyzed. The relationship between AOD and AE are discussed at each site.The possible influence factors for these parameters are concluded. The maximumAOD appeared in spring and summer more than other seasons while the minimumAOD appeared in autumn. AE is lower in spring while higher in autumn andwinter.
     Aerosol direct radiative forcing (ADRF) and direct radiative forcingefficiency under clear sky condition at Top of Atmosphere (TOA) and surface arecalculated over the four sites. The seasonal variations and distribution of ADRFand the efficiency of ADRFare discussed at each site, respectively. Thedistribution of ADRF at TOA and surface against AOD are also discussed for foursites, respectively. Aerosol direct radiative forcing at surface and Top ofAtmosphere in Benxi are-222.90±76.61W/m2,-24.80±15.87W/m2,respectively.The annual averaged value is higher than the other three areas which indicate thatthe pollution of Benxi is most seriously, the cooling effect of aerosols to thesurface and Top of Atmosphere is stronger.
     The seasonal variations of Absorption AOD (AAOD) and AbsorptionAngstrom exponent (AAE) in Shenyang, Anshan and Fushun have been analyzedfor the first time. The results show that the AAOD is higher in winter and summerwhile lower in spring. The value of AAE in Shenyang is less than unity, while have higher values in Anshan (1.19) and Fushun (1.33). The results indicated thatthe AAE information can help to distinguish different type of aerosols in the threesites.
     The effects of Visibility imposed on Aerosol Optical Depth (AOD), Angstromexponent (AE), Single Scattering Albedo (SSA), volume size distribution,refractive index has been discussed over the four sites. Especially, we analyzed thecharacteristics and variations of aerosol optical parameters and direct radiationforcing properties under the lower visibility.The AOD and AE are decreased withthe increasing of visibility over the four sites. When the visibility is lower, theaerosol scattering properties in Anshan is significantly strongger than the otherthree regions, the value of Single Scattering Albedo is greater than0.90. Theaerosol absorption properties in Benxi is intensity with the value of SingleScattering Albedo smaller than0.85. Aerosol direct radiative forcing (ADRF)under clear sky condition at surface is increased with the decreasing visibility overthe four sites. The results indicate that the cooling effect of pollution atmosphereaerosols to the surface is obviously.
     The major conclusion including the follow points:
     1. The annual averaged aerosol optical depth at500nm in Shenyang is about0.69±0.38. Angstrom exponent is about0.88±0.26. The Single Scattering Albedo(SSAT/SSAF/SSAC) are about0.84±0.06,0.86±0.06,0.77±0.06, respectively. Therefractive index is1.47±0.028. The annual averaged aerosols direct radiativeforcing at surface under clear sky conditions is about-136.52±80.50W/m2. Theannual averaged ADRF at TOA is about-3.81±21.73W/m2. The efficiencies ofADRF at surface and TOA are about-267.77±86.38W/m2,-7.83±38.89W/m2,respectively. The annual averaged absorption aerosol optical depth at440nm,670nm,870nm,1020nm in Shenyang are about0.15±0.11,0.11±0.09,0.10±0.08,0.09±0.08,respectively. The absorption Angstrom exponent is about0.86±0.24.The annual averaged visibility is about13.88±7.39km.The SSAT is about0.82±0.06at440nm when visibility is lower than10km. The aerosol optical depthis about0.89±0.45. Angstrom exponent is about0.98±0.31. The refractive index is1.46±0.030.
     2. The annual averaged aerosol optical depth at500nm in Anshan is about0.65±0.33. Angstrom exponent is about0.79±0.26. The Single Scattering Albedo (SSAT/SSAF/SSAC) are about0.87±0.06,0.89±0.06,0.81±0.06, respectively. Therefractive index is1.49±0.018. The annual averaged aerosols directradiativeforcing at surface under clear sky conditions is about-102.14±52.59W/m2. Theannual averaged ADRF at TOA is about-25.37±20.99W/m2. The efficiencies ofADRF at surface and TOA are about-208.45±66.11W/m2,-48.91±32.76W/m2,respectively. The annual averaged absorption aerosol optical depth at440nm,670nm,870nm,1020nm in Anshan are about0.10±0.07,0.05±0.04,0.05±0.04,0.04±0.04, respectively. The absorption Angstrom exponent is about1.19±0.39.The annual averaged visibility is about13.56±6.20km.The SSAT is about0.88±0.05at440nm when visibility is lower than10km. The aerosol optical depthis about0.88±0.35. Angstrom exponent is about0.93±0.31. The refractive index is1.46±0.016.
     3. The aerosol optical depth in Benxi is largest in the four sites.Angstrom exponentis smaller than the other three sites which indicate that the size of aerosol particlesin Benxi is much larger. The annual averaged aerosol optical depth at500nm inBenxi is about0.82±0.34. Angstrom exponent is about0.52±0.22. The SingleScattering Albedo (SSAT/SSAF/SSAC) are about0.81±0.03,0.82±0.03,0.81±0.09, respectively. The refractive index is1.46±0.041. The annual averagedaerosols direct radiative forcing at surface under clear sky conditions is about-222.90±76.61W/m2. The annual averaged ADRF at TOA is about-24.80±15.87W/m2. The efficiencies of ADRF at surface and TOA are about-337.65±102.43W/m2,-40.59±22.84W/m2, respectively. The annual averagedvisibility is about12.83±5.68km.The SSAT is about0.80±0.08at440nm whenvisibility is lower than10km. The aerosol optical depth is about1.21±0.48.Angstrom exponent is about0.74±0.26. The refractive index is1.47±0.046.
     4. The aerosol optical depth in Fushun is the minimum in the four sites. Theannual averaged aerosol optical depth at500nm in Fushun is about0.45±0.27.Angstrom exponent is about0.84±0.29. The Single Scattering Albedo(SSAT/SSAF/SSAC)are about0.85±0.06,0.88±0.05,0.77±0.06,respectively. Therefractive index is1.49±0.025. The annual averaged aerosols directradiativeforcing at surface under clear sky conditions is about-85.94±37.49W/m2. Theannual averaged ADRF at TOA is about-13.28±16.19W/m2. The efficiencies ofADRF at surface and TOA are about-232.86±61.19W/m2,-27.81±28.91W/m2,respectively. The annual averaged absorption aerosol optical depth at440nm, 670nm,870nm,1020nm in Fushun are about0.08±0.04,0.04±0.02,0.03±0.02,0.03±0.02,respectively. The absorption Angstrom exponent is about1.33±0.36.The annual averaged visibility is about11.52±5.84km.The SSAT is about0.84±0.05at440nm when visibility is lower than10km. The aerosol optical depthis about0.54±0.30. Angstrom exponent is about1.04±0.26. The refractive index is1.48±0.026.
     5. Both coarse and fine particles have larger scattering properties in Anshan whilein Benxi, both coarse and fine particles have larger absorption properties. Thecoarse particles have strongger absorption ability in Shenyang and Fushun. Thereare not obvious effects of AOD on the aerosol absorption ability in Shenyang, butin Anshan, Benxi and Fushun, there is higher absorption ability under low AODand higher scattering ability under high AOD.
     6.Fine particles play a main role in summer particle distribution. In spring, thecoarse particles are dominant. There is a mixture effect of both fine and coarseparticles in autumn and winter which presented a typical city characteristic. WhenAOD is higher, the aerosol fine particle volume has been increased significantly.The results show that fine particles may be the important factors influencing theregional aerosol optical depth.
     7. The aerosols directradiative forcing (ADRF) at surface under clear skyconditions is higher in summer and lower in autumn and winter. Aerosol directradiative forcing at the top of atmosphere over the four sites is higher in spring andlower in winter. The positive direct radiative forcing at the top of atmosphereoccurred in winter at Shenyang and Fushun. The result may be due to the highsurface albedo because of the snow cover in the northeast China.
     8.The annual averaged values of Absorption Angstrom Exponent (AAE) inShenyang,Anshan,Fushun are about0.86±0.24,1.19±0.39,1.33±0.36respectively. The values of AAE show that aerosols in Shenyang may be resultfrom black carbon coated with either absorbing or nonabsorbing material. Aerosolparticles in Anshan may contain a large amount of black carbon. In Fushun area,the dominant aerosol prticles may be related to the biomass burning.
引文
Ackerman P, Toon O B,1981. Absorption of visible radiation in atmosphere containingmixtures of absorbing and nonabsorbing particles. Applied Optics20,3661-3668.
    Adarsh Kumar,2014.Long term (2003-2012) spatio-temporal MODIS (Terra/Aqua level3) derived climatic variations of aerosol optical depth and cloud properties over a semi aridurban tropical region of Northern India.Atmospheric Environment83,291-300.
    Adhikary B,Kulkarni S,Dallura A, et al.,2008. A regional scale chemical transportmodeling of Asian aerosols with data assimilation of AOD observations using optimalinterpolation technique.Atmospheric Environment42,8600-8615.
    Anderson T L,2005. An―A-Train‖strategy for quantifying direct climate forcing byanthropogenic aerosols. Bulletin American Meteorological Society85,1795-1809.
    Andreae M O,1995. Climatic effects of changing atmospheric aerosol levels. In:World Survey of Climatology. Future Climates of the World, A.Henderson-Sellers(ed).Elsevier, Amsterdam, pp.341-392.
    Andreae M O, Charlson R J, Bruynseels f, et al.,1986. Internal mixture of sea salt,silicates, and excess sulfate in marine aerosols. Science232,1620-1623.
    Andreae M O, Schmid O, Yang H, et al.,2008. Optical properties and chemicalcomposition of the atmospheric aerosol in urban Guangzhou, China. AtmosphericEnvironment42,6335-6350.
    Angstrom A,1929. On the atmospheric transmission of sun radiation and on dust intheair. Geografiska Annaler11,156-166.
    Badarinath K V S,Goto D,Shailesh Kumar Kharol, et al.,2011. Influence of natural andanthropogenic emissions on aerosol optical properties over a tropical urban site-A studyusing sky radiometer and satellite data.Atmospheric Research100,111-120.
    Bergstrom R W,1973. Extinction and Absorption Coefficients of the AtmosphericAerosol as a Function of Particle Size. Contributions to Atmospheric Physics46,223-234.
    Bergstrom R W, Pilewskie P, Russell P B, et al.,2007. Spectral absorption properties ofatmospheric aerosols. Atmospheric Chemistry and Physics7,5937-5943,doi:10.5194/acp-7-5937-2007.
    Bergstrom R W and Russell P B,1999. Estimation of aerosol radiative effects over the
    mid-latitude North Atlantic region from satellite and in situ measurements.GeophysicalResearch Letter26,1731-1734.
    Bergstrom R W, Russell P B, Hignett P,2002. Wavelength dependence of the absorptionof black carbon particles: predictions and results from the TARFOX experiment andimplications for the aerosol single scattering albedo. Journal of Atmospheric Science59,567-577.
    Bian H, Chin M, Rodriguez J M, et al.,2009. Sensitivity ofaerosol optical thickness andaerosol direct radiative effect to relative humidity.Atmospheric Chemistry and Physics9,2375-2386.
    Bohren C F, Huffman D R,1983. Absorption and Scattering of Light by Small Particles,550pp., John Wiley, New York.
    Bokoye A I, Royer A, O‘Neill N T, et al.,2001. Characterization of atmospheric aerosolsacross Canada from a Ground-based sunphotometer network: Aerocan. Atmosphere Ocean39,429-456.
    Bond T C,2001. Spectral dependence of visible light absorption by carbonaceousparticles emitted from coal combustion. Geophysical Research Letters28,4075-4078.
    Boucher O, Lohmann U,1995. The sulfate-CCN-cloud albedo effect:A sensitivity studywith two general circulation models.Tellus47B,281-300.
    Boucher O, Tanre D,2000. Estimation of the aerosol perturbation to the Earth's radiativebudget over oceans using POLDER satellite aerosol retrievals.Geophysical Research Letters27,1103-1106.
    Box M A, Sendra C,1999. Retrieval of the albedo and phase function from exitingradiances with radiative perturbation theory. Applied Optics38,1636-1643,1999.
    Brenguier J L,2009. Aerosol, clouds and climate: using satellite observations to detectand quantify aerosol indirect effects. Geochimica et Cosmochimica Acta73, A158.
    Breon F, TanréD, Generoso S,2002. Aerosols effect on the cloud droplet size monitoredfrom satellite. Science295,834-838.
    Bush B C and Valero F E J,2003. Surface aerosol radiative forcing at Gosan during TheACE-Asia campaign.Journal of Geophysical Research,108(D23),8660. Doi:10.1029/2002J D003233.
    Bush B C, Valero F P J,and Pope S K,2006. Atmospheric radiative forcing at thesurface derived from aircraft irradiance and spectral optical depth measurements.Journal ofGeophysical Research111, D12207. doi:10.1029/2005JD006321.
    Campanelli M, Estellés V, Smyth T, et a1.,2012. Monitoring of Eyjafjallajoekullvolcanic aerosol by the new European SkyRad users (ESR) sun-sky radiometernetwork.Atmospheric Environment48,33-45.
    Chahine M T,1968. Determination of temperature profile in an atmosphere from itsoutgoing radiance. Journal of the Optical Society of America22,1634-1637.
    Chan Y C, Simpson R W, Mctainsh G H, et al.,1999. Source apportionment of visibilitydegradation problems in Brisbane (Australia) using the multiple linear regression techniques.Atmospheric Environment33,3237-3250.
    Charlson R J,Langner J, Rodhe H,1990. SuIphate aerosoI and cIimate. Nature348,22.doi:10.1038/348022a0.
    Charlson R J, Langner J, Rodhe H, et al.,1991. Perturbation of the northern Hemisphereradiative balance by backscattering from anthropogenic aerosol. Tellus43AB,152-163.
    Charlson R J, and Pilat M J,1969. Climate: The influence of aerosols. Journal of AppliedMeteorology10,1001-1002.
    Charlson R J, Schwartz S E, Hales J M, et a1.,1992. Climate forcing by anthropogenicaerosols.Science255,422-430.
    Che H Z, Shi G Y, Zhang X Y, et al.,2005. Analysis of40years of solar radiation datafrom China,1961-2000. Geophysical Research Letters32, L06803.http://dx.doi.org/10.1029/2004GL022322.
    Che H, Wang Y, Sun J,2011. Aerosol optical properties at Mt. Waliguan Observatory,China.Atmospheric Environment45,6004-6009.
    Che H, Xia X,Zhu J, et al.,2014. Column aerosol optical properties and aerosolradiative forcing during a serious haze-fog month over North China Plain in2013based onground-based sunphotometer measurements. Atmospheric Chemistry and Physics14,2125-2138.
    Che H, Yang Z, Zhang X, et al.,2009a. Study on the aerosol optical properties and theirrelationship with aerosol chemical compositions over three regional background stations inChina.Atmospheric Environment43,1093-1099.
    Che H, Zhang X, Li Y, et al.,2007. Horizontal visibility trends in China1981-2005.Geophysical Research Letters34, L24706. http://dx.doi.org/10.1029/2007GL031450.
    Che H Z, Zhang X Y, Stephane A, et al.,2009b. Aerosol optical properties and its
    radiative forcing over Yulin, China in2001and2002. Advances in Atmospheric Sciences26,564-576.
    Cheng M T, Tsai Y I,2000. Characterization of visibility and atmospheric aerosols inurban, suburban, and remote areas. Science of the Total Environment263,101-114.
    Cheng Y F, Wiedensohler A, Eichler H, et al.,2008. Aerosol optical properties andrelated chemical apportionment at Xinken in Pearl River Delta of China. AtmosphericEnvironment42,6351-6372.
    Christopher S A, Chou J, Zhang J, et al.,2000.Shortwave direct radiative forcing ofbiomass burning aerosols estimated using VIRS and CERES data.Geophysical ResearchLetters27,2197-2200.
    Christopher S A, Zhang J, Kaufman Y J, et al.,2006.Satellite-based assessment of top ofatmosphere anthropogenic aerosol radiative forcing over cloud-flee oceans.GeophysicalResearch Letters,33.
    Claudio Tomasi, Angelo Lupi, Mauro Mazzola et al.,2012. An update on polar aerosoloptical properties using POLAR-AOD and other measurements performed during theInternational Polar Year.Atmospheric Environment52,29-47.
    Deng X L, Shi C E, Wu B W, et al.,2012. Analysisof aerosol characteristics and theirrelationships with meteorological parameters over Anhui province in China. AtmosphericResearch109-110,52-63.
    Ding A J, Wang T,Thouret V, et al.,2008. Tropospheric ozone climatology over Beijing:analysis of aircraft data from the MOZAIC program.Atmospheric Chemistry and Physics8,1-13. doi:10.5194/acp-8-1-2008,2008.
    Dubovik O, Holben B N, Eck T F, et a1.,2002.Variability of absorption and opticalproperties of key aerosol types observed in world wide locations.Journal of the AtmosphericSciences59,590-608.
    Dubovik O, Holben B N, Kaufman Y J, et al.,1998. Single-scattering albedo of smokeretrieved from the sky radiance and solar transmittance measured from ground, Journal ofGeophysical Research103,31903-31924.
    Dubovic O and King M D,2000. A flexible inversion algorithm for retrieval of aerosoloptical propertyes from Sun and sky radiance measurements. Journal of Geophysical Research105D16,20673-20696.
    Dubovik O V, Lapyonok T V, Oshchepkov S L,1995. Improved technique for data
    inversion: Optical sizing of multicomponent aerosols. Applied Optics34,8422-8436.
    Dubovik O, Yokota T, Sasano Y,1998a. Improved technique for data inversion and itsapplication to the retrieval algorithm for ADEOS/ILAS. Advances in Space Research21,397-403.
    Eck T F, Holben B N, Dubovik O, et al.,2005. Columnar aerosol optical properties atAERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific.Journal of Geophysical Research110, D06202. http://dx.doi.org/10.1029/2004JD005274.
    Eck T F, Holben B N, Reid J S, et al.,1999. Wavelength dependence of the optical depthof biomass burning, urban, and desert dust aerosols. Journal of Geophysical Research104,31333-31349.
    Eck T F, Holben B N, Sinyuk A, et al.,2010. Climatological aspects of the opticalproperties of fine/coarse mode aerosol mixtures. Journal of Geophysical Research:Atmosphere115.
    Eck T F, Holben B N, Ward D E, et al.,2001. Characterization of the optical propertiesof biomass burning aerosols in Zambia during the1997ZIBBEE field campaign, Journal ofGeophysical Research106,3425-3448.
    Edie W T, Dlryard D, James F E, et al.,1971. Statistical Methods in ExperomentalPhysics,155pp., North-Holland, New York.
    Ensor D S, Porch W M, Pilat M J, et al.,1971. Influence of the atmosphericaerosol onalbedo. Journal of Applied Meteorology10,1303-1306.
    Estellés V, Campanelli M, Smyth T J, et al.,2012b. Evaluation of the new ESR networksoftware for the retrieval of direct sun products from CIMEL CE318and PREDEPOM01sun-sky radiometers.Atmospheric Chemistry and Physics12,11619-11630.
    Estellés V, Campanelli M, Utrillas M P, et al.,2012a. Comparison of AERONET andSKYRAD4.2inversion products retrieved from a Cimel CE318sunphotometer.AtmosphericMeasurement Techniques5,569-579.
    Esteve A R, Estellés V, Utrillas M P, et al.,2014. Analysis of the aerosol radiativeforcing over a Mediterranean urban coastal site.Atmospheric Research137,195-204.
    Forsythe G, Wasow W,1960. Finite Difference Methods for Partial DifferentialEquations. John Wiley, New York.
    Fr hlich C, Shaw G,1980. New determination of Rayleigh scattering in theterrestrialatmosphere. Applied Optics19,1773-1775.
    Gao L, Jia G, Zhang R,et al.,2011: Visual range trends in the Yangtze River Delta
    Region of China,1981–2005. Journal of Air&Waste Management Association61,843-849. doi:10.3155/1047-3289.61.8.843.
    Gantt B, Xu J, Meskhidze N, et al.,2012. Global distribution and climate forcingofmarine organic aerosol-Part2: effects on cloud properties and radiative forcing.Atmospheric Chemistry and Physics12,6555-6563.
    García O E, Díaz J P, Expósito F J, et al.,2012. Aerosol Radiative Forcing: AERONETBased Estimates, Climate Models, edited by: Druyan, L., ISBN:978-953-51-0135-2, InTech,doi:10.5772/32287.
    Giles D M, et al.,2011a. Aerosol properties over the Indo-Gangetic Plain: A mesoscale545perspective from the TIGERZ experiment. Journal of Geophysical Research116,D18203,546doi:10.1029/2011JD015809.
    Giles D M, et al.,2010. Identifying aerosol type/mixture from aerosol absorptionproperties using AERONET. Eos Trans. AGU91(26). Western Pacific Geophysics MeetingSupplement: Abstract A33D-05.
    Giles D M, Holben B N, Eck T F, et al.,2012. An analysis of AERONET aerosolabsorption properties and classifications representative of aerosol source regions. Journal ofGeophysical Research117.
    Gobbi G P, Kaufman Y J, Koren I, et al.,2007. Classification of aerosol propertiesderived from AERONET direct sun data. Atmospheric Chemistry and Physics7,453-458.
    Goloub P, Li Z, Dubovik O, et al.,2007. PHOTONS/AERONET sunphotometer networkoverview: description, activities, results, Proc. SPIE6936,69360V. doi:10.1117/12.783171.
    Gómez-Amo J L, Sarra A, Meloni D, et a1.,2010.Sensitivity of shortwave radiativefluxes to the vertical distribution of aerosol single scattering albedo in the presence of a desertdust layer. Atmospheric Environment44,2787-2791.
    Gong C, Xin J, Wang S, et al.,2014. The aerosol direct radiative forcing over the Beijingmetropolitan area from2004to2011.Journal of Aerosol Science69,62-70.
    Guo J P, Zhang X Y, Che H Z, et al.,2009. Correlation between PM concentrations andaerosol optical depth in eastern China.Atmospheric Environment43,5876-5886.
    Guo J P, Zhang X Y, Wu Y R, et al.,2011. Spatio-temporal variation trends ofsatellite-based aerosol optical depth in China during1980-2008.Atmospheric Environment45,6802-6811.
    Gyawali M, et al.,2012. Photoacoustic optical properties at UV, VIS, and near IRwavelengths555for laboratory generated and winter time ambient urban aerosols.
    Atmospheric Chemistry and Physics12,5562587-2601, doi:10.5194/acp-12-2587-2012.
    Gyawali M, Arnott W P, Lewis, et al.,2009. In situ aerosol optics in Reno, NV, USAduring and after the summer2008California wildfires and the influence of absorbing andnonabsorbing coatings on spectral light absorption. Atmospheric Chemistry and Physics9,8007-8015.
    Han X,Zhang M, Han Z, et al.,2011. Simulation of aerosol direct radiative forcing withRAMS-CMAQ in East Asia.Atmospheric Environment45,6576-6592.
    Han Z, Li J, Xia X, et al.,2012. Investigation of direct radiative effects of aerosols indust storm season over East Asia with an online coupled regional climate-chemistry-aerosolmodel.Atmospheric Environment54,688-699.
    Han Z, Li G, Guo W, et al.,2013. A study of dust radiative feedback on dust cycle andmeteorology over East Asia by a coupled regional climate-chemistry-aerosolmodel.Atmospheric Environment68,54-63.
    Hand J L, Kreidenweis S M, Eli-Sherman D, et al.,2002. Aerosol size distributions andvisibility estimates during the Big Bend regional aerosol and visibility observational (BRAVO)study. Atmospheric Environment36,5043-5055.
    Hansen J, Sato M, Ruedy R,1997. Radiative forcing and climate response. Journal ofGeophysical Research102,6831-6864.
    Hansen J, Sato M, Ruedy R, et al.,2000. Global warming in the twenty-first century: analternative scenario. Proceedings of the National Academy of Sciences of the United States ofAmerica97,9875-9880.
    Hashimoto M, Nakajima T, Dubovik O, et al.,2012. Development of a newdata-processing method for SKYNET sky radiometer observations. AtmosphericMeasurement Techniques5,2723-2737.
    He K B, Yang F M, Ma Y L, et al.,2001. The characteristics of PM2.5in Beijing, China.Atmospheric Environment35,4959-4970.
    Hignett P,Taylor J P,Francis E N, et al.,1999. Comparison of observed and modeleddirect aerosol forcing during TARFOX.Journal of Geophysical Research104(D2),2279-2287.
    Holben B N, Eck T F, Slutsker I, et a1.,1998.AERONET-A federated instrumentnetwork and data archive for aerosol characterization.Remote Sensing of Environment66,1-16.
    Holben B, Tanre D, Smirnov A,et al.,2001. An emerging ground-based aerosol
    climatology: Aerosol Optical Depth from AERONET.Journal of Geophysical Research106,12067-12097.
    Horvath H, Kasahara M, Tohno S, et al.,2006. Angular scattering of the Gobi Desertaerosol and its influence on radiative forcing.Aerosol Science37,1287-1302.
    IPCC,2013. Climate Change2013: The Scientific Basis (pp.1–127). CambridgeUniversity Press, New York. Fifth Assessment Report.
    IPCC,2007. Climate Change2007: The Physical Science Basis (pp.131–216)Cambridge University Press: New York131–216.
    Jacobson M Z,2000. A physically based treatment of elemental carbon optics:implications for global direct forcing of aerosols. Geophysical Research Letters27,217-220.
    Jacobson M Z,2001. Global direct radiative forcing due to multicomponentanthropogenic and natural aerosols.Nature409,695-697.
    Kaskaoutis D G, Sinha P R, Vinoj V, et al.,2013. Aerosol properties and radiativeforcing over Kanpur during severe aerosol loading conditions.Atmospheric Environment79,7-19.
    Kasten F,1966. A new table and approximate formula for relative optical air mass.Archives for Meteorology Geophysics and Bioclimatology14,206-233.
    Kasten F, Young AT,1989. Revised optical air mass tables and approximation formula.Applied Optics28,4735-4738.
    Kaufman Y J,Tanre D,Boucher O,2002. A satellite view of aerosols in the climatesystem. Nature419,215-223.
    Kaufman Y J, Tanre D, Dubovik O, et al.,2001. Absorption of sunlight by dust asinferred from satellite and ground-basedremote sensing.Geophysical Research Letters28,1479-1482.
    Kaufman Y J, Wald A E, Remer L A, et al.,1997. The MODIS2.1-mchannel-Correlation with visible reflectance for use in remote sensing of aerosol. IEEETransactions on Geoscience and Remote Sensing35,1286-1298.
    Khan Alam,Thomas Trautmann,Thomas Blaschke,2011.Aerosol optical properties andradiative forcing over mega-city Karachi.Atmospheric Research101,773-782.
    Kiehl J T,Rodhe H,1995. Modeling geographical and seasonal forcing of climate,Charlson R J,Heintzenberg J,eds.Chichester: John Wiley,281-296.
    Kim D H,Sohn B J,Nakajima T,et a1.,2004.Aerosol optical properties over East Asia
    determined from ground-based sky radiation measurements. Journal of GeophysicalResearch109, D02209. Doi:1011029P2003JD003387.
    Kim J,Yoon S,Kim S, et al.,2006. Chemical apportionment of shortwave direct aerosolradiative forcing at the Gosan super-site, Korea during ACE-Asia.Atmospheric Environment40,6718-6729.
    Kim N K,Kim Y P., Kang C H.,2011. Long-term trend of aerosol composition anddirect radiative forcing due to aerosols over Gosan: TSP, PM10, and PM2.5data between1992and2008.Atmospheric Environment45,6107-6115.
    Kim S W,Choi I J,Yoon S C, et al.,2010. A multi-year analysis of clear-sky aerosoloptical properties and direct radiative forcing at Gosan, Korea (2001–2008).AtmosphericResearch95,279-287.
    Kim S W, Jefferson A, Yoon S C, et al.,2005. Comparisons of aerosol optical depth andsurface shortwave irradiance and their effect on the aerosol surface radiative forcingestimation.Journal of Geophysical Research110,D07204. doi:10.1029/2004JD004989.
    King M D,1982. Sensitivity of constrained linear inversion to the selection of theLagrange multiplier. Journal of the Atmospheric Sciences39,1356-1369.
    King M D, Byrne D M, Herman B M, et al.,1978. Aerosol size distributions obtained byinversion of spectral optical depth measurements. Journal of the Atmospheric Sciences21,2153-2167.
    Kirchstetter T W, Novakov T, Hobbs P,2004. Evidence that the spectral dependence oflight absorption by aerosols is affected by organic carbon. Journal of Geophysical Research109, D21208, doi:10.1029/2004JD004999,2004.
    Komhyr W D, Mateer C L, Hudson R D,1980. Operations handbook-Ozone observationswith a Dobson Spectrophotometer. WMO Global Ozone Research and Monitoring Project,Report No.6.
    Langner J,Rodhe H,1991. A global three-dimensional model of the tropospheric sulfurcycle.Journal of Atmospheric Chemistry13,225-263.
    Lee J,Kim J, Song C H, et a1.,2010.Characteristics of aerosol types from AERONETsunphotometer measurements.Atmospheric Environment44,3110-3117.
    Levy, Robert C, Lorranie A R, et al. A new algorithm for Retrievaling of AerosolProperties over land from MODIS spectral reflectance. Journal of Geophysical Research,2006.
    Li L, Chen J, Chen H, et al.,2011b. Monitoring optical properties of aerosols with cavity
    ring-down spectroscopy.Journal of Aerosol Science42,277-284.
    Li W J, Shao L Y, Buseck P R,2010. Haze types in Beijing and the influence ofagricultural biomass burning. Atmospheric Chemistry and Physics10,8119-8130.
    Li Y, Xue Y,Gerrit de Leeuw,et a1.,2013b.Retrieval of aerosol optical depth andsurface reflectance over land from NOAA AVHRR data.Remote Sensing of Environment133,1-20.
    Li Z, Chen H, Cribb M, et al.,2007. Overview of the East Asian Studies on troposphericaerosols, an international regional experiment (EAST-AIRE). Journal of GeophysicalResearch112, D22S00. http://dx.doi.org/10.1029/2007JD008853.
    Li Z, Gu X, Wang L, et al.,2013a. Aerosol physical and chemical properties retrievedfrom ground-based remote sensing measurements during heavy haze days in Beijing winter.Atmospheric Chemistryand Physics13,10171-10183. doi:10.5194/acp-13-10171-2013.
    Li Z, Li C, Chen H, et al.,2011a. East Asian Studies of Tropospheric Aerosols and theirImpact on Regional Climate (EAST AIRC): An overview, Journal of GeophysicalResearch116, D00K34. doi:10.1029/2010JD015257.
    Liu J, Zheng Y, Li Z, et al.,2008. Ground-based remote sensing of aerosol opticalproperties in one city in Northwest China.Atmospheric Research89,194-205.
    Liu J, Zheng Y, Li Z, et al.,2011. Transport, vertical structure and radiative properties ofdust events in southeast China determined from ground and space sensors.AtmosphericEnvironment45,6469-6480.
    Liu P F, Zhao C S, Zhang Q, et al.,2009. Aircraft study of aerosol vertical distributionsover Beijingand their opticalproperties.Tellus B61,756-767.
    Luo Y, Lu D, Zhou X, et al.,2001. Characteristics of the spatial distribution and yearlyvariation of aerosol optical depth over China in last30years.Journal of Geophysical Research106,14501-14513.
    Ma Y J, Liu N W, Wang Y F, et al.,2011. The distribution characteristics offine particlesand their impact on air quality in Shenyang and surrounding areas. Acta ScientiaeCircumstantiae31,1168-1174(in Chinese).
    Ma Y J, Zuo H C, Zhang Y H, et al.,2005. Analyses on variation trends of atmosphericvisibility and its effect factor in multi-cities in central Liaoning. Plateau Meteorology24,623-628(in Chinese).
    Magi B I, Fu Q, Redemann J,ey al.,2008. Using aircraft measurements to estimate themagnitude and uncertainty of the shortwave direct radiative forcing of southern Africanbiomass burning aerosol. Journal of Geophysical Research l13, D05213. doi:10.1029/2007JD009258.
    Mallet M, Gomes L, Solmon F, et a1.,2011. Calculation of key optical properties of themain anthropogenic aerosols over the Western French coastal MediterraneanSea.Atmospheric Research101,396-411.
    Masoumi A,Khalesifard H R,Bayat A, et a1.,2013. Retrieval of aerosol optical andphysical properties from ground-based measurements for Zanjan, a city in NorthwestIran.Atmospheric Research120-121,343-355.
    McCartney E J,1977. Optics of the Atmosphere.200pp., John Wiley, New York.
    Meij A de, Pozzer A,Pringle K J, et al.,2012. EMAC model evaluation and analysis ofatmospheric aerosol properties and distribution with a focus on the Mediterraneanregion.Atmospheric Research114-115,38-69.
    Menon S, Hansen J, Nazarenko L,2002.Climate Effects of Black Carbon Aerosols inChina and India. Science297,2250-2253.
    El-Metwally M, Alfaro S C., Abdel Wahab M M, et al.,2011. Aerosol properties andassociated radiative effects over Cairo (Egypt).Atmospheric Research99,263-276.
    Muhammad Zeeshan, Kim Oanh,2014. Assessment of the relationship between satelliteAOD and ground PM10measurement data considering synoptic meteorological patterns andLidar data.Science of the Total Environment473-474,609-618.
    Myhre G,2009. Consistency between satellite-derived and modeled estimates of thedirect aerosol effect. Science325,187-190.
    Nakajima T, Sekiguchi M, Takamura T, et al.,2003. Significance of direct and indirectradiative forcingg of aerosols in the East China Sea region, Journal of Geophysical Research108(D23),8658. Doi:10.1029/2002/JD003261.
    Nakajima T, Tanaka M,1998. Algorithms for radiative intensity calculations inmoderately thick atmospheres using a truncation approximation. Journal of QuantitativeSpectroscopy and Radiative Transfer40,51-69.
    Nakajima T, Tanaka M, Yamauchi T,1983. Retrieval of the optical properties ofaerosols from aureole and extinction data. Applied Optics22,2951-2959.
    Nakajima T, Tonna G, Rao R, et al.,1996. Use of sky brightness measurements from
    ground for remote sensing of particulate polydispersions. Applied Optics35,2672-2686.
    Neeharika Verma, Bagare S P, Shantikumar Singh Ningombam, et a1.,2010.Aerosoloptical properties retrieved using Skyradiometer at Hanle in western Himalayas.Journal ofAtmospheric and Solar-Terrestrial Physics72,115-124.
    Nikitidou E, Kazantzidis A, De Bock V, et a1.,2013.The aerosol forcing efficiency inthe UV region and the estimationof single scattering albedo at a typical West Europeansite.Atmospheric Environment69,313-320.
    OckoIB, Ramaswamy V, Ginoux P, et al.,2012. Sensitivity of scattering and absorbingaerosol direct radiative forcing to physical climate factors.Journal of GeophysicalResearchAtmospheres117,203-215.
    Ortega J M, Reinboldt W C,1970. Iterative Solution of Nonlinear Equations in SeveralVariables,504pp., Academic, San Diego, California.
    Ortega J M,1988. Introduction to Parallel and Vector Solution of Linear System,200pp.,Plenum, New York.
    Pan L, Che H Z, Geng F H, et al.,2010. Aerosol optical properties based on groundmeasurements over the Chinese Yangtze Delta Region. Atmospheric Environment44,2587-2596.
    Park S U, Chang L S, Lee E H,2005. Direct radiative forcing due to aerosols in EastAsia during a Hwangsa (Asian dust) event observed on19-23March2002inKorea.Atmospheric Environment39,2593-2606.
    Park S U,Jeong J I,2008. Direct radiative forcing due to aerosols in Asia during March2002.Science of the Total Environment407,394-404.
    PéréJ C, Mallet M, Pont V, et a1.,2010.Evaluation of an aerosol optical scheme in thechemistry-transportmodel CHIMERE.Atmospheric Environment44,3688-3699.
    Perrone M R, Santese M, Tafuro A M, et a1.,2005. Aerosol load characterization overSouth–East Italy for one year of AERONET sun-photometer measurements.AtmosphericResearch75,111-133.
    Petzold A. Schonlinner M,2004. Multi-angle absorption photometry-a new method forthe measurement of aerosol light absorption and atmospheric black carbon.J ournal of AerosolScience35,421-441.
    Pham M,Megie G,Muller J F,et al.,1996. A Three-dimemional study of the
    tropospheric sulfur cycle. Journal of Geophysical Research100,2606l-26092.
    Phillips B L,1962. A technique for numerical solution of certain integral equation offirst kind. Journal of Association for Computing Machinery9,84-97.
    Prasad A K,Sachchidanand Singh,Chauhan S S,et a1.,2007.Aerosol radiative forcingover the Indo-Gangetic plains during major dust storms.Atmospheric Environment41,6289-6301.
    Prats N, Cachorro V E, Sorribas M, et a1.,2008.Columnar aerosol optical propertiesduring El Arenosillo2004summer campaign‘. Atmospheric Environment42,2643-2653.
    Press W H, Teukolsky S A, Vetterling W T, et al.,1992. Numerical Recipes inFORTRAN, The Art of Scientific Computing,965pp., Cambridge University Press, NewYork.
    Qiu J H,1998. A method for spaceborne synthetic remote sensing of aerosol opticaldepth and vegetation reflectance, Advance of Atmospheric Science15,17-30.
    Qiu J H and Takeuchi N,2001. Effects of aerosol inhomogeneity on satellite opticalremote sensing. Advance of Atmospheric Science18,539-553.
    Ramanathan V,Crutzen P J,Kiehl J T,et al.,2001. Aerosol,climate,and hydrologicalcycl. Science294,2119-2124.
    Remer L A, Kaufman Y J,2006. Aerosol direct radiative effect at the top of theatmosphere over cloud free ocean derived from four years of MODIS data.AtmosphericChemistry and Physics6,237-253.
    Remo Nessler,ErnestWeingartner,Urs Baltensperger,2005.Effect of humidity onaerosol light absorption and its implications for extinction and the single scattering albedoillustrated for a site in the lower free troposphere.Aerosol Science36,958-972.
    Ricchiazzi P, Gautier C,1998b. Investigation of the effect of surface heterogeneity Andtopography on the radiation environment of Palmer Station, Antarctica,with a hybrid3Dradiative transfer model.Journal of Geophysical Research103,6161-6176.
    Ricchiazzi P, Yang S, Gautier C, et al.,1998a. A research and teaching software forplane-parallel radiative transfer in the Earth‘S atmosphere.Bulletin American MeteorologicalSociety79,2101-2114.
    Rodgers C D,1976. Retrieval of atmospheric temperature and composition from remotemeasurements of thermal radiation. Reviews of Geophysics14,609-624.
    Russell P B, Bergstrom R W, Shinozuka Y, et al.,2010. Absorption Angstrom Exponent
    in AERONET and related data as an indicator of aerosol composition. AtmosphericChemistry and Physics10,1155-1169.
    Salinas S V, Chew B N, Mohamad M, et al.,2013. Variability of absorption and opticalproperties of key aerosol types observed in world wide locations.Atmospheric Environment78,231-241.
    Sandradewi J, Prevot A S H, Szidat S, et al.,2008. Using Aerosol Light AbsorptionMeasurements for the Quantitative Determination of Wood Burning and Traffic EmissionContributions to Particulate Matter. Environmental Science&Technology42,3316-3323.
    Satheesh S K, Ramanathan V,2000. Large differences in tropical aerosol forcing at thetop of the atmosphere and earth‘s surface. Nature405,60-63.
    Schult I,Feichter J,Cooke W F,1997. Effect of black carbon and sulfate aerosoIs on theglobal radiation budget. Journal of Geophysical Research102,30107-30118.
    Sheinfeld J H, Pandis S N,1998. Atmospheric Chemistry and Physics:from Air Pollutionto Climate Change.New York:John Wiley&Sons,Inc.,700-742.
    Shi G Y,1992. Radiative forcing and greenhouse effect due to the atmospheric tracegases.Science in China (B)35(2),217-229.
    Sokolik I,Andronova A,Johnson TC,1993. Complex refractive index of atmosphericdust aerosols.Atmospheric Environment27,495-502.
    Srivastava A K,Tripathi S N,Sagnik D,et al.,2012.Inferring aerosol types over theIndo-Gangetic Basin from ground based sunphotometer measurements. Atmospheric Research64-75,109-110.
    Stamnes K, Tsay S C, Wiscombe W, et al.,1988. Numerically stable algorithm fordiscrete ordinate-method radiative transfer in multiple scattering and emitting layered media.Applied Optics27,2502-2509.
    Stanhill G, Cohen S,2001. Global dimming: a review of the evidence for a widespreadand significant reduction in global radiation with discussion of its probable causes andpossible agricultural consequences. Agricultural and Forest Meteorology107,255-278.
    Sumita Kedia, Ramachandran S, Rajesh T A, et a1.,2012.Aerosol absorption over Bayof Bengal during winter: Variability and sources.Atmospheric Environment54,738-745.
    Sundstr m A M,Kolmonen P,Sogacheva L, et al.,2012. Aerosol retrievals over Chinawith the AATSR dual view algorithm.Remote Sensing of Environment116:189-198.
    Suresh Babu S, Sreekanth V, Vijayakumar S Nair, et a1.,2010.Vertical profile of aerosol
    single scattering albedo over west coast of India during W_ICARB.Journal ofAtmospheric and Solar-Terrestrial Physics72,876-882.
    Takamura T and Nakajima T,2004.Overview of SKYNET and its activities.Optica Puray Aplicada37,3303-3303.
    Tang J, Wang P, Loretta J, et al.,2014. Positive relationship between liquid clouddroplet effective radius and aerosol optical depth over Eastern China from satellitedata.Atmospheric Environment84,244-253.
    Tarantola A,1987. Inverse Problem Theory: Methods for Data Fitting and ModelParameter Estimation,500pp., Elsevier Science, New York.
    Tikhonov A N,1963. On the solution of incorrectly stated problems and a method ofregularization. Doklady Akademii nauk151,501-504.
    Turchin V F, Kozlov V P, Malkevich M S,1970. The use of the methods ofmathematical statistics for the solution of the incorrect problems. Uspekhi Fizicheskikh Nauk,102,345-386.
    Twomey S,1963. On the numerical solution of Fredholm integral equations of the firstkind by the inversion of the linear system produced by quadrature. Journal of Association forComputing Machinery10,97-101.
    Twomey S,1975. Comparison of constrained linear inverse and an iterative nonlinearalgorithm applied to the indirect estimation of particle size distributions. Journal ofComputational Physics18,188-200.
    Twomey S,1977. Introduction to the Mathematics of Inversion in Remote Sensing andIndirect Measurements,243pp., Elsevier Science, New York.
    Twomey S, Piepgrass M, Wolfe T L, et al.,1984. An assessment of the impact ofpollution on global cloud albedo. Tellus36,356-366.
    Wang J and Christopher S A,2003. Intercomparison between satellitederived aerosoloptical thickness and PM2.5mass: implications for air quality studies, Geophysical ResearchLetters30,2095. doi:10.1029/2003GL018174.
    Wang L, Xin J, Wang Y, et al.,2007. Evaluation of the MODIS aerosol optical depthretrieval over different ecosystems in China during EAST-AIRE.Atmospheric Environment41,7138-7149.
    Wang L, Wang Y, Xin J, et al.,2010. Assessment and comparison of three years of Terraand Aqua MODIS Aerosol Optical Depth Retrieval (C005) in Chinese terrestrialregions.Atmospheric Research97,229-240.
    Wang M, Gordon H,1993. Retrieval of the columnar aerosol phase function and singlescatting albedo from sky radiance over the ocean: Simulations. Applied Optics32,4598-4609.
    Wang P, Che H, Zhang X, et al.,2010a. Aerosol optical properties of regionalbackground atmosphere in Northeast China.Atmospheric Environment44,4404-4412.
    Wang Y F, Ma Y J, Lu Z Y, et al.,2011. Analysis of meteorological elements and the airpollution during a sand dust weather process in2010in Liaoning province. Journal ofMeteorology and Environment27,27-31.
    Wark K, Warner C F, Davis W T,1998. Air Pollution–Its Origin and Control,3rdedition,Addison-Wesley, MA, United States,573pages.
    Watson J G,2002. Visibility: Science and Regulation. Journal of the Air&WasteManagement Association52,628-713.
    Wendisch M and von Hoyningen-Huene W,1994. Possibility of refractive indexdetermination of atmospheric aerosol particles by ground based solar extinction and scatteringmeasurements, Atmospheric Environment28,785-792.
    Wu J, Guo J, Zhao D,2013. Characteristics of aerosol transport and distribution in EastAsia.Atmospheric Research132-133,185-198.
    Xia X,2010. A closer looking at dimming and brightening in China during1961-2005,Annales Geophysicae28,1121-1132, doi:10.5194/angeo-28-1121-2010.
    Xia X, Chen H, Li Z, et al.,2007a. Significant reduction of surface solar irradianceinduced by aerosols in a suburban region in northeastern China.Journal of GeophysicalResearch112,D22S02,doi:10.1029/2006JD007562.
    Xia X, Chen H, Goloub P, et al.,2007b. A compilation of Aerosol optical properties andcalculation of direct radiative forcing over an urban region in northern China.Journal ofGeophysical Research112:D12203,doi:10.1029/2006JD008119.
    Xia X A, Chen H B, Wang P C, et al.,2006. Variation of column-integrated aerosolproperties in a Chinese urban region.Journal of Geophysical Research111, D05204. Doi:10.1029/2005JD006203.
    Xia X, Chen H, Zhang W,2007d. Analysis of the dependence of columnintegratedaerosol properties on long-range transport of air masses in Beijing. Atmospheric Environment41,7739-7750.
    Xia X, Li Z, Wang P., et al.,2007c. Estimation of aerosol effects on surface irradiance
    based on measurements and radiative transfer model simulations in northernChina.Journal of Geophysical Research112, D22S10.Doi:10.1029/2006JD008337.
    Xin J Y, Du W P, Wang Y S, et al.,2010. Aerosol optical properties affected by a strongdust storm over Central and Northern China.Advances in Atmospheric Sciences27,562–574.
    Xin J Y, Wang L L, Wang Y S, et al.,2011. Trends in aerosol optical properties over theBohai Rim in Northeast China from2004to2010. Atmospheric Environment45,6317-6325.
    Xin J, Zhang Q, Wang L, et al.,2014. The empirical relationship between thePM2.5concentration and aerosol optical depth over the background of North China from2009to2011.Atmospheric Research138,179-188.
    Xu J, Bergin M H, Yu X, et al.,2002. Measurement of aerosol chemical, physical andradiative properties in the Yangtze delta region of China, Atmospheric Environment36,161-173.
    Xu J W, Tao J, Zhang R J, et al.,2012. Measurements of surface aerosol opticalproperties in winter of Shanghai. Atmospheric Research109-110,25-35.
    Xu X, Xie L, Ding G, et al.,2005. Beijing air pollution project to benefit2008OlympicGames, Bulletin American Meteorological Society86,1543-1544.
    Yan P, Tang J, Huang J, et al.,2008. The measurement of aerosol optical properties at arural site in Northern China. Atmospheric Chemistry and Physics8,2229-2242.
    Yang M, Howell S G, Zhuang J, et al.,2009. Attribution of aerosol light absorption toblack carbon, brown carbon, and dust in China–interpretations of atmospheric measurementsduring EAST-AIRE. Atmospheric Chemistry and Physics9,2035-2050.http://www.atmos-chem-phys.net/9/2035/2009/.
    Yang Y J, Wang Y S, Huang W W, et al.,2010. Size distributions and elementalcompositions of particulate matter on clear, hazy and foggy days in Beijing, China.Advancesin Atmospheric Sciences27,663-675.
    Yoon S C, Kim J Y,2006. Influences of relative humidity on aerosol optical propertiesand aerosol radiative forcing during ACE-Asia.Atmospheric Environment40,4328-4338.
    Yoon S Y,Won J G, Omar A H, et al.,2005. Estimation of the radiative forcing by keyaerosol types in worldwide locations using a column model and AERONETdata.Atmospheric Environment39,6620-6630.
    Young M. Noh,Detlef Müller,Hanlim Lee, et al.,2012. Estimation of radiative forcingby the dust and non-dust content in mixed East Asian pollution plumes on the basis of
    depolarization ratios measured with lidar.Atmospheric Environment61,221-231.
    Yu H,2006.A review of measurement-based assessments of the aerosol direct radiativeeffect and forcing. Atmospheric Chemistry and Physics6,613-666.
    Yu H, Chin M, Remer L A,2009. Variability of marine aerosol finemode fraction andestimates of anthropogenic aerosol component over cloud-free oceans from the ModerateResolution Imaging Spectroradiometer (MODIS). Journal of Geophysical Research114,D10206, doi:10.1029/2008JD010648.
    Yu X, Cheng T, Chen J, et al.,2007. Climatology of aerosol radiative properties innorthern China.Atmospheric Research84,132-141.
    Yu X, Zhu B,Yin Y, et a1.,2011.A comparative analysis of aerosol properties in dustand haze-fog days in a Chinese urban region.Atmospheric Research99,241-247.
    Zhang H, Shen Z, Wei X, et al.,2012. Comparison of optical properties of nitrate andsulfate aerosol and the direct radiative forcing due to nitrate in China.Atmospheric Research113,113-125.
    Zhang R J, Cao J J, Lee S C, et al.,2007. Carbonaceous aerosols inPM10and pollutiongases in winter in Beijing. Environmental Science19,564-571.
    Zhang R, Jing J, Tao J, et al.,2013. Chemical characterization and source apportionmentof PM2.5in Beijing: seasonal perspective. Atmospheric Chemistry and Physics13,7053-7074.
    Zhao H J, Che H Z, Zhang X Y,et al.,2013. Characteristics of visibility and particulatematter (PM) in an urban area of Northeast China. Atmospheric Pollution Research4,427-434.
    Zhao H J, Ma Y J,2011. Comparison between instrumental and visual measurements ofvisibility in urban area of central Liaoning province. Meteorological Science and Technology39,468-472(in Chinese).
    Zhao H J, Ma Y J, Wang X X, et al.,2012. Optical characteristics of aerosol in autumnof2010over Anshan. Journal of Meteorology and Environment28,55-62(in Chinese).
    Zhou M Y, Chen Z, Huang R, et al.,1994. Effects of Two Dust Storms on SolarRadiation In the Beijing-Tianjing Area. Geophysical Research Letters21,2697-2700.
    Zhu J, Che H, Xia X, et al.,2014. Column-integrated aerosol optical and physicalproperties at a regional background atmosphere in North China Plain. AtmosphericEnvironment84,54-64.
    Zhuang B L, Li S, Wang T J, et al.,2013. Direct radiative forcing and climate effects ofanthropogenic aerosols with different mixing states over China.Atmospheric Environment79,
    349-361.
    Zhuang B L, Wang T J, Li S, et al.,2014. Optical properties and radiative forcing ofurban aerosols in Nanjing, China.Atmospheric Environment83,43-52.
    陈静静,盛立芳,郑元鑫,2006.年春季青岛气溶胶光学厚度与气溶胶指数、能见度的关系分析.中国海洋大学学报,2010,40(1),10-16.
    蔡子颖,郑有飞,胡鹏,等,2009.郑州地区大气气溶胶光学特性的地基遥感研究.中国环境科学,29(1),31-35.
    车慧正,石广玉,张小曳,2007.北京地区大气气溶胶光学特性及其直接辐射强迫的研究.中国科学院研究生院学报,24(5):699-704.
    车慧正,张小曳,石广玉,等,2005.沙尘和灰霾天气下毛乌素沙漠地区大气气溶胶的光学特征.中国粉体技术,3,4-7.
    郝明途,林天佳,刘焱,2002.大气细粒子研究进展.环境研究与监测,19(2),6-11.
    胡荣明,石广玉,1998a.中国地区气溶胶的辐射强迫及其气候响应试验.大气科学,22(6),919-925.
    胡荣明,石广玉,1998b.平流层气溶胶的辐射强迫及其气候响应的水平二维分析.大气科学,22(1),18-24.
    胡欢陵,许军,黄正,1991.中国东部若干地区大气气溶胶虚折射指数特征.大气科学,15(3),18-13.
    黄健,李菲,邓雪娇,等,2010.珠江三角洲城市地区MODIS气溶胶光学厚度产品的检验分析.热带气象学报,26(5),526-532.
    李霞,胡秀清,崔彩霞,等,2005.南疆盆地沙尘气溶胶光学特性及我国沙尘天气强度划分标准的研究.中国沙漠,25(4),488-495.
    李成才,毛节泰,刘启汉,等,2003.利用MODIS光学厚度遥感产品研究北京及周边地区的大气污染.大气科学,27,869-880.
    刘广员,孙毅义,1998.大气气溶胶光学厚度的卫星双通道遥感方法.南京气象学院学报,21(3),321-327.
    罗云峰,1998.中国地区气溶胶光学厚度特征及其辐射强迫和气候效应的数值模拟:[学位论文].北京:北京大学地球物理系.
    罗云峰,李维亮,周秀骥,2001.20世纪80年代中国地区大气气溶胶光学厚度的平均状况分析.气象学报,59(1),77-87.
    罗云峰,吕达人,周秀骥,等,2002.30年来我国大气气溶胶光学厚度平均分布特征分析.大气科学,26(6),721-730.
    吕达仁,李卫,章文星,1999.地球环境和气候变化探测与过程研究:大气气溶胶光学厚度与地表反射率的同时遥感-原理和初步数值试验,北京:气象出版社.
    马井会,郑有飞,张华,2007.黒碳气溶胶光学厚度的全球分布及分析.气象科学,27,549-555.
    马新成,田伟红,张磊,2011.2004年北京地区秋季大气气溶胶粒子分布特征.气象科技39,685-691.
    马雁军,刘宁微,洪也,等,2012.2011年春季辽宁一次沙尘天气过程及其对不同粒径颗粒物和空气质量的影响.环境科学学报,32,1160-1167.
    毛节泰,李成才,2005.气溶胶辐射特性的观测研究.气象学报,63(5),622-635.
    毛节泰,刘莉,张军华,2001.GMS5卫星遥感气溶胶光学厚度的试验研究.气象学报,59(3),352-359.
    毛节泰,张军华,王美华,2002.中国大气气溶胶研究综述.气象学报,60(5),625-634.
    孟祥谦,胡顺星,曹开法,等,2007.大别山区和合肥城郊地面臭氧、气溶胶测量结果分析.大气与环境光学学报,6(1),75-82.
    牛生杰,孙继明,2001.贺兰山地区大气气溶胶光学特征研究.高原气象,20,1-4.
    潘一新,胡方超,汪柳红,等,2013.太湖地区气溶胶光学厚度的分布及其在大气校正中的应用.大气科学学报,36(3),361-366.
    秦世广,石广玉,陈林,等,2010.利用地面水平能见度估算并分析中国地区气溶胶光学厚度长期变化特征.大气科学,34,449-456.
    权晓晶,张镭,曹贤洁,等,2009.2007年兰州市冬季大气气溶胶光学厚度特性.兰州大学学报(自然科学版),45(3),39-44.
    邱金桓,孙金辉,1994.沙尘暴的光学遥感及分析.大气科学,18,1-10.
    石广玉,王喜红,张立盛等,2002.人类活动对气候影响的研究II:对东亚和中国气候变化的影响.气候与环境研究,7(2),255-266.
    宋磊,吕达仁,2006.上海地区大气气溶胶光学特性的初步研究.气候与环境研究,11,203-208.
    孙娟,束炯,鲁小琴,等,2006. MODIS遥感气溶胶光学厚度产品在地面能见距中的应用.环境科学与管理,31(5),97-101.
    孙娟,束炯,鲁小琴,等,2007.上海地区气溶胶特征及MODIS气溶胶产品在能见度中的应用.环境污染与防治,29,127-131.
    田华,马建中,李维亮,2005.中国中东部地区硫酸盐气溶胶直接辐射强迫及气候效应的数值模拟.应用气象学报,16(3),322-333.
    田军,王体健,庄炳亮,等,2013.南京北郊黒碳气溶胶的浓度观测及辐射强迫研
    究.气候与环境研究,18,662-670.
    王宏,石广玉,Aoki T,王标,2004.2001年春季东亚一北太平洋地区沙尘气溶胶的辐射强迫.科学通报,49(19),1993-2000.
    王静,牛生杰,许丹,等,2013.南京一次典型雾霾天气气溶胶光学特性.中国环境科学,33(2),201—208.
    王玲,李正强,李东辉,等,2012.基于遥感观测的折射指数光谱特性反演大气气溶胶中沙尘组分含量.光谱学与光谱分析,32,1644-1649.
    王明星,2000.气溶胶与气候.气候与环境研究,5(1),1-5.
    王体健,谢旻,高丽洁等,2004.一个区域气候一化学耦合模式的研制及初步应用.南京大学学报,40(6),711-727.
    王喜红,石广玉,2001.东亚地区人为硫酸盐的直接辐射强迫.高原气象,2001,20(003),258-263.
    王喜红,石广玉,马晓燕,2002.东亚地区对流层人为硫酸盐辐射强迫及其温度响应.大气科学,26(6),751-760.
    吴涧,蒋维楣,刘红年,等,2002.硫酸盐气溶胶直接和间接辐射气候效应的模拟研究.环境科学学报,22(2),129-134.
    夏祥鳌,王明星,2004.气溶胶吸收及气候效应研究的新进展.地球科学进展,19(4),630-635.
    辛国君,1999.用零维能量平衡气候模型分析大气气溶胶的气候效应.北京大学学报(自然科学版),35(3),375-382.
    延昊,矫梅燕,毕宝贵,等,2006.塔克拉玛干沙漠中心的沙尘气溶胶观测研究.中国沙漠,26(3),389-393.
    杨东旭,刘毅,夏俊荣,等,2012.华北及其周边地区秋季气溶胶光学性质的星载和地基遥感观测.气候与环境研究,17(4),422-432.
    杨琨,孙照渤,倪东鸿,2008.1999~2003年我国气溶胶光学厚度的变化特征.南京气象学院学报,31(1),92-96.
    杨溯,石广玉,段云霞,等,2012.天空辐射计观测2006年春季北京地区气溶胶光学特性的研究.气候与环境研究,17(1),20-28.
    尹宏,韩志刚,1989.气溶胶对大气辐射的吸收.气象学报,47(1),118-123.
    张军华,刘莉,毛节泰,2000.地基多波段遥感西藏当雄地区气溶胶光学特性.大气科学,24(4),549-558.
    赵凤生,石广玉,1994.气溶胶胶气候效应的一维模式分析.大气科学,18,902-909.
    赵秀娟,陈长和,袁铁,等,2005.兰州冬季大气气溶胶光学厚度及其与能见度的关系.高原气象,24(4),617-622.
    朱岗蓖,1990.大气污染物理学基础.北京:高等教育出版社.
    宗雪梅,邱金桓,王普才,2005.近10年中国16个台站大气气溶胶光学厚度的变化特征分析.气候与环境研究,10(2),202-208.
    张宁娜,陆忠艳,关颖,等,2011.辽宁一次连续大雾的天气要素特征分析.安徽农业科学,39,6620-6621.
    周秀骥,李维亮,罗云峰,1998.中国地区大气气溶胶辐射强迫及区域气候效应的数值模拟.大气科学,22(4),418-427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700