冻胶泡沫调剖技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二次采油技术是目前我国各主力油田进入开发后期提高采收率的重要方法之一,但由于受储层非均质性的影响,二次采油后油层中仍剩余40%-50%左右的原油未被采出,如何进一步提高采收率以保证油田可持续发展是亟待解决的问题。为了提高波及系数,本文提出进行冻胶泡沫调剖,冻胶泡沫调剖技术是非均质油藏开发中后期提高采收率的有效的新途径,近年来也进行了一些研究,但在泡沫渗流机理、影响因素分析以及适应性评价方面还有待深入研究,是一种处于新兴发展阶段的三次采油技术。因此,有必要对冻胶泡沫进行详细的研究。本文将起泡剂的起泡体积和半衰期作为评价指标,通过室内实验,探讨了起泡剂浓度、聚合物浓度、矿化度、温度等各因素对泡沫体系的发泡特性的影响因素,并筛选出了适合油田实际地层条件的起泡剂。分析了冻胶的分类和影响冻胶性能的因素,通过室内试验,对四种交联剂进行评价筛选。筛选出的YG103成冻时间达到四天,成冻强度达到D级。采用物理模型研究了泡沫在多孔介质中的渗流规律,分析了气液比、渗透率等因素对冻胶泡沫渗流规律的影响。随着气液比的增大,冻胶泡沫在多孔介质中的突破压力逐渐减小,但气液比在1以下时,其突破压力梯度仍大于8MPa/m。在一定的气液比和注入速度下,冻胶泡沫在多孔介质中的突破压力随着渗透率的增大而减小。通过模拟不同渗透率级差的非均质地层,进行了冻胶泡沫驱的实验研究,分析对比了不同注入方式下冻胶泡沫对地层的封堵影响,液气分段注入的方式能够起到很好的调剖作用,高渗岩心和低渗岩心的分流量出现了反转,优选注入方式后,分析了各驱替阶段高低渗透层中的产液量变化规律,分析了渗透率级差对冻胶泡沫在非均质储层中流度的影响。
Secondary recovery has been an important enhanced oil recovery method adopted at the later stage of oilfield development in China. However, due to the effect of reservoir heterogeneity,there is still about 40%-50% remaining oil kept in oil-bearing formation after polymer flooding, and how to further enhance recovery factor and keep the oil-field sustained development has become the focus of research at present. For enhance the sweep efficiency ,this paper develops the jel foam profile control technology, and the jel foam profile control technology is an new effective improved oil recovery method for heterogeneous reservior at the later stage of development, and a series of studies has been done in recent years. But it is at development stage and needs deep study in mechanisms of foam flow in porous media, influential factor and applicability. Wherefore, it is very necessary to further study the jel foam flow in heterogeneous reservoir and the effect of jel foam flooding.Based on foamer’s foaming ability and stability, through laboratory experiment, several foamers used in oil field were evaluated through experiment, and affecting factors of foaming ability and stability is analysed. Based on gelation time and gelation intensity, through laboratory experiment, 4 crosslinkers were evaluated and one selected which can cross-link in 4 days and the hardness can reach D degree.Through physical model, the effects of gas-liquid ratio and permeability on jel foam flow law in porous media were studied systematically. With the gas-liquid ratio increasing, the jel foam breakthrough pressure in porous media decrease but still can be more than 8Mp/m when the gas-liquid ratio under 1:1. Under certain gas-liquid ratio and injection speed, the jel foam breakthrough pressure in porous media decrease with the permeability increasing.Through simulating heterogeneous reservoir with different permeability contrast, the jel foam profile control technology is proceed. we compared two injection system and then the effect on mobility regulatory of jel foam in heterogeneous reservoir caused by permeability contrast is analysed.
引文
[1] Francols Fried, W. H. Chen and P. A. Gaugiitz. Experimental and Simulation Study of High-Temperature Foam Displacement in Porous Media. SPE 17357
    [2] Jensen J.A, Fried F. Physical and Chemical Effects of an Oil Phase On the Propagation of Foam in Porous Media.SPE 16375
    [3]吕翔慧.氮气泡沫驱油藏数值模拟研究. [硕士学位论文],石油大学(华东),山东东营:2004
    [4] Raza. S. H. Foam in Porous Media: Characteristics and Potential Applications. Soc. Pet. Eng. J., 1970:328-336
    [5] Khatib. Z.I., Hirasaki. G.J. Falls. A.H. Effects of Capillary Pressure on Coalescence and Phase Mobilities in Foams FLowing Through Porous Media. SPE 15442
    [6]樊西惊.原油对泡沫稳定性的影响.油田化学, 1997,14(4):384-388
    [7] A. W. Fisher, R. W. S Fouiser and S. G. Goodyear etc. Mathematical Modeling of Foam Flooding. SPE 20195
    [8] Daan Veeningen, Pacelli L. J. Zitha etc. Understanding Foam Flow Physics: The Role of Permeability. SPE 38197
    [9] H. J. Bertin, O. G. Apaydin, A. R. Kovscek. Foam Flow in Heterogeneous Porous Media: Effect of Crossflow. SPE 39678
    [10] V. Bhide, G. Hirasaki, C. Miller. Foams for Controlling Water Production. SPE 93273
    [11] Alexander V. Alexandrov, Peter K. Currie, Quoc P. Nguyen etc. Modelling of Foam Flow in Porous Media Based on Multivariate Statistics. SPE 59288
    [12] Dicksen Tanzil, George J. Hirasaki, Clarence A. Miller. Mobility of Foam in Heterogeneous Media: Flow Parallel and Perpendicular to Stratification. SPE 63228
    [13] M. Chen, Y. C. Yortsos, W. R. Rossen. A Pore-Network Study of the Mechanisms of Foam Generation. SPE 90939
    [14] Q.P. Nguyen, P. L. J. Zitha, P. k. Currie. CT Study of Liquid Diversion With Foam. SPE 93949
    [15] Q.P. Nguyen, Peter K. Currie, Pacelli L.J. Zitha. Effect of Crossflow on Foam-Induced Diversion in Layered Formations. SPE Journal, 2005, 3: 54-65
    [16] E. M. Ozbayoglu, S. Akin, T. Eren. Foam Characterization Using Image Processing Techniques. SPE 93860
    [17] P.L.J. Zitha, D.X. Du. Numerical Analysis of a New Stochastic Bubble PopulationFoam Model. SPE 99747
    [18] P.L.J. Zitha. A New Stochastic Bubble Population Model for Foam in Porous Media. SPE 98976
    [19]羊争鸣、张建、赵郭平.一个实用的注蒸汽加泡沫过程的油藏数值模拟.石油学报,1994,15(2):99-110
    [20]李和全,郎兆新,胡靖邦,张丽华,王恒林.泡沫复合驱数学模型.大庆石油学院学报,1997,21(3):20-24
    [21]周静、谭永生.稳定泡沫流体的机理.石油钻采工艺,1999,22(6):75-75
    [22]张烈辉,胡勇,涂中等.泡沫驱经验模型及其应用.西南石油学院学报,2000,22(3):50-52
    [23]程浩,郎兆新.泡沫驱中的毛管窜流及其数值模拟.重庆大学学报(自然科学版),2000,23:161-165
    [24]钱昱,张思富,吴军政等.泡沫复合驱泡沫稳定性及影响因素研究.大庆石油地质与开发,2001,20(2):33-35
    [25]陈国,廖广志,牛金刚.多孔介质中泡沫流动等效数学模型.大庆石油地质与开发,2001,20(2):72-75
    [26]吴文祥,姜海峰.多元泡沫分流作用及其驱油效果影响因素研究.油田化学,2002,19(2):173-177
    [27]翁高富.百色油田上法灰岩油藏空气泡沫驱油先导试验研究.油气采收率技术,1998,5(6):6-10
    [28]杨燕.泡沫体系及其驱油效率的研究.[硕士学位论文],西南石油学院,四川南充:2001
    [29]叶仲斌,魏发林,罗平亚等.泡沫增效三元复合驱油体系渗流行为研究.西南石油学院学报,2002,24(4):49-52
    [30]王增林,王其伟.强化泡沫驱油体系性能研究.石油大学学报(自然科学版),2004,28(3):49-51,55
    [31]王其伟,曹绪龙,周国华等.泡沫封堵能力试验研究.西南石油学院学报,2003,25(6):40-42
    [32]张贤松,王其伟,隗合莲.聚合物强化复合驱油体系试验研究.石油天然气学报,2006,28(2):137-138,160
    [33]廖广志,李立众,孔繁华等编著.常规泡沫驱油技术.北京:石油工业出版社,1999
    [34]郭万奎,廖广志,邵振波等.注气提高采收率技术.北京:石油工业出版社,2003
    [35]刘洪梅等.孤岛油田中二北馆5高含水井氮化泡沫调剖治理.油气田地面工程,2004,23(2):43
    [36]张贤松,王其伟,宋新旺,等.孤岛中二区28-8井注强化氮气泡沫研究.油田化学,2005,22(4):366-369
    [37]付继彤,张莉,尹德江,等.强化泡沫的封堵调剖性能及矿场试验.油气地质与采收率,2005,12(5):47-49
    [38]张思富,廖广志,张彦庆等.大庆油田泡沫复合驱油先导性矿场试验.石油学报,2001,22(1):49-53
    [39]张旭,刘建仪等.克拉玛依油田五2西克下组T2K1块注气提高采收率实验研究.特种油气藏,2004,11(6):95-97
    [40]杨光璐等.辽河油田稠油油藏氮气泡沫驱适应性研究.新疆石油地质,2004,25(2):188-190
    [41]陈玉英等.百色油田泡沫驱油效果初步分析.油田化学,1998,15(2):141-145
    [42]袁士义,刘尚奇等.热水添加氮气泡沫驱提高稠油采收率研究.石油学报,2004,25(1):57-61,65
    [43]王波,王鑫,刘向斌,等.高含水后期厚油层注氮气泡沫控水增油技术研究.大庆石油地质与开发,2006,25(2):59-60
    [44]王渊.泡沫流体冲砂洗井参数设计.[硕士学位论文],石油大学(华东),山东东营:2001
    [45]肖稳发,向兴金.复合型乳化剂泡沫性能研究.湖北化工,1999,6:13-15
    [46] Laura Romero, Apostolos Kantzas. The Effect of Wettability and Pore Geometry on Foamed Gel Blockage Performance in Gas and Water Producing Zones. SPE 89388
    [47]贾忠盛.泡沫及泡沫驱油室内实验研究.油田化学.1986年,3 (4):279-283
    [48] Friedmann, F., Chen, W.H., Gauglitz, P.A. (1991) "Experimental and simulation study of high-temperature foam displacement in porous media" Soc. Petrol. Eng. Res. Eng. 6: 37-45
    [49] Kovscek, A. R. and Radke, C. J. (1994) Fundamentals of foam transport in porous media, In: Schramm, L. L. (ed), Foams in the Petroleum Industry, American Chemical Society, Washington DC, pp. 115–163
    [50] Hirasaki, G.J., Lawson, J.B. (1985) "Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries" Soc. Petrol. Eng. J. 25: 176-190
    [51] Kovscek, A.R., Bertin, H.J. (2003) "Foam mobility in heterogeneous porous media I: scaling concepts" Transp. Porous Media 52: 17-35
    [52]叶仲斌等,提高采收率原理,石油工业出版社,2000年
    [53]宋健.泡沫复合驱体系发泡能力初步研究.大庆石油地质与开发,2006,增刊:93-94
    [54]吴文祥.泡沫复合驱微观驱油机理及泡沫复合体系在多孔介质中的流动特性研究. [博士学位论文],大庆石油学院,黑龙江大庆
    [55]赵国玺:表面活性剂物理化学,北京大学出版社,1984,181
    [56]韩显卿,提高采收率原理,石油工业出版社,1993年
    [57] Krug .J.A and Mitchell.B.J. Charts Help Find Volume, Pressure Needed for Foam Drilling. Oil and Gas, Feb 7.1972
    [58] Mitchell B.J . Test Data Fill Theory Gap on Using Foam as a Drilling Fluid. Oil and Gas, Sep 6 1971
    [59]戴彩丽,赵福麟,由庆,等.冻胶泡沫在火烧山裂缝性油藏油井堵水中的应用.石油天然气学报,2007,29(1):129-132
    [60]尚志国,苏国,董玉杰.泡沫凝胶选择性堵水剂的研制与应用[J].钻采工艺,2000,23(1):70-71
    [61]戴彩丽,周洪涛,赵福麟.影响酸性铬冻胶成冻因素的研究[J].油田化学,2002,19(1):29-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700