吡格列酮和胰岛素对大鼠骨髓内皮祖细胞的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     近年来,包括内皮祖细胞(EPCs)在内的成体干细胞的研究为冠心病和糖尿病等心血管疾病的治疗开启了一个新的方向。EPCs来源于骨髓,表达AC133、CD34、VEGFR-2(flk-1)等表面标志,可以通过分泌生长因子或通过归巢到内皮损伤及缺血部位,直接分化、发育为内皮细胞并形成新生血管,因而在内皮损伤后修复及心肌梗死后血运重建中起着重要的作用[1-2]。
     研究表明,循环EPCs数量可作为预测血管功能和心血管疾病危险因素的指标,其数量减少提示血管内皮修复能力降低,心血管疾病发生率增高。冠心病和糖尿病(1型和2型)患者循环EPCs数量减少,其增殖、迁移、归巢和成血管能力降低[3-5]。故用药物增加EPCs数量并改善其功能,进而促进心血管疾病患者的血管内皮修复和血管新生,成为治疗心血管疾病的新策略。胰岛素可以激活内皮型一氧化氮合酶(eNOS),刺激一氧化氮(NO)产生,导致血管舒张。而eNOS对促进干细胞从骨髓动员是必不可少的因素,并且是调节干(祖)细胞活性和血管形成的重要因子[6]。吡格列酮是一种噻唑烷二酮类胰岛素增敏剂,用于治疗2型糖尿病有较好的降糖效果和耐受性。最新研究表明,吡格列酮可以促进EPCs介导的新生血管形成[7],但其具体作用机制尚不明确。
     本研究拟探讨体外培养条件下,体内不同浓度吡格列酮预处理、体外给予胰岛素对正常大鼠骨髓源性EPCs的数量、增殖、凋亡以及分泌NO功能的影响,以期从新的角度认识吡格列酮和胰岛素对心血管系统的保护作用。
     方法
     第一部分:EPCs的分离培养及表型鉴定:1.取大鼠四肢骨骨髓,以密度梯度离心法分离出单核细胞,于添加了VEGF和bFGF的M199培养液中培养并定期观察;2.DiI-ac-LDL和FITC-UEA-I免疫荧光双染法鉴定细胞。
     第二部分:不同浓度吡格列酮对大鼠骨髓内皮祖细胞增殖、凋亡及功能的影响:1.雄性SD大鼠随机分为四组:对照组和吡格列酮组(10、20、40 mg·kg-1·d-1)并给予相应灌胃处理10天;2.密度梯度离心法分离骨髓单核细胞并消化得EPCs;3.各组EPCs计数并继续培养;4. MTT法检测EPCs增殖能力;5.流式细胞双染法检测EPCs凋亡;6.硝酸还原酶法测NO分泌量。
     第三部分:吡格列酮和胰岛素对骨髓内皮祖细胞增殖、凋亡及NO分泌的影响:1.雄性SD大鼠随机分为吡格列酮组和非吡格列酮组并给予相应灌胃预处理10天;2.密度梯度离心法分离单核细胞并培养5天后消化得EPCs;3.将所得EPCs相应分为对照组、胰岛素组、吡格列酮组、吡格列酮+胰岛素(即联合用药组)并给予胰岛素干预;4. MTT法检测EPCs增殖能力;5.流式细胞双染法检测EPCs凋亡;6.硝酸还原酶法测NO分泌量。
     结果
     1.培养7天的细胞经DiI-ac-LDL和FITC-UEA-I双染后,激光共聚焦显微镜下示双染阳性的细胞为正在分化的内皮祖细胞。
     2.不同浓度吡格列酮均能提高EPCs数量和功能。
     3.中等浓度吡格列酮(20 mg·kg-1·d-1)处理组对EPCs的促增殖、促NO分泌作用较10,40 mg·kg-1·d-1组作用强,但其抑制EPCs凋亡作用与后二者差别无明显统计学意义。
     4.吡格列酮和胰岛素单独作用及联合作用均可促进EPCs增殖、抑制其凋亡,并促进其分泌NO。
     5.胰岛素促进EPCs增殖作用较吡格列酮强,但其抑制EPCs凋亡及促进EPCs分泌NO作用与吡格列酮无明显差别。
     6.吡格列酮和胰岛素二者联合作用促进EPCs增殖、抑制其凋亡,并促进其分泌NO的作用较两种药物单独作用强。
     结论
     1.不同浓度吡格列酮均能提高EPCs数量,促进EPCs增殖、抑制其凋亡,并促进其分泌NO。
     2.中等浓度吡格列酮(20 mg·kg-1·d-1)和胰岛素均可促进EPCs增殖、抑制其凋亡,并促进其分泌NO,且二者具有协同作用。
Background and aims
     Recently, more and more researches of stem cells including endothelial progenitor cells (EPCs) are turning to the treatment of coronary heart disease (CHD) and diabetes (DM). EPCs are bone marrow-derived progenitor cells that express surface markers such as AC133,CD34 and VEGFR-2(flk-1), and can differentiate into mature endothelial cells on the vascular wall by the way of secreting VEGF or homing to injured areas. So, EPCs play an important role in repair of endothelial injuries and revascularization of infarcted areas. Many researches indicate that the number of circulatory EPCs is the index of predicting cardiovascular functions and risk factor of cardiovascular diseases.
     Smaller number means lower capacity of repairing endothelia and higher morbidity of cardiovascular diseases. The number of EPCs in patients suffering from CHD and DM decreases, so does the capacity of proliferation, migration, homing and angiogenesis of EPCs. As a result, increasing the number and function of EPCs with drugs in order to promote the process of repairing endothelia and revascularization becomes a new method of treating cardiovascular diseases. One of these drugs mentioned above is insulin. Insulin can activate endothelial nitric oxide synthase (eNOS), which secretes nitric oxide (NO) and dilates blood vessels. Recent researches have showed that eNOS is an indispensable factor in mobilization and modulation of stem cells. Another drug is pioglitazone, which is a kind of thiazolidinediones (TZDs) and shows good effects on decreasing blood glucose and excellent tolerance. A recent study illustrates that pioglitazone could promote angiogenesis of EPCs, but the mechanism is still unknown.
     This study intends to explore the effects of pioglitazone given in vivo with different dosages and insulin given in vitro on the number, proliferation, apoptosis and secretion of NO of EPCs derived from bone marrow, and the results may help to understand the cardiovascular effects of pioglitazone and insulin from a new aspect.
     Methods
     PartⅠ: Culture and identification of surface markers of EPCs. 1. Harvest bone marrow of rats, and collect mononuclear cells through density gradient centrifugation. Then culture them in Medium 199 supplemented with vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). 2. Immunofluorescent co-stain with DiI-ac-LDL and FITC-UEA-I to identify EPCs.
     PartⅡ: Effects of pioglitazone with different dosages given in vivo on EPCs. 1. Sprague-Dawlay (SD) rats are divided into four groups randomly. The control group was given saline by intragastric administration, and the three other groups are given pioglitazone by 10, 20, 40 mg·kg-1·d-1 respectively for 10 days. 2. Mononuclear cells were collected from rats’bone marrow by density gradient centrifugation. 3. Once being harvested, EPCs of each group were calculated and cultured with Medium 199. 4. Test the proliferation ability of EPCs by MTT assay. 5. Detect the apoptosis level of EPCs by immunofluorescent co-staining. 6. Measure the secretion of NO by modified Griess reaction method after 24 h of incubation.
     PartⅢ: Effects of pioglitazone and insulin on EPCs. 1. SD rats are divided into two groups randomly. The non-pioglitazone group is given saline by intragastric administration, and the pioglitazone group is given pioglitazone (20 mg·kg-1·d-1 ) for 10 days. 2. Mononuclear cells were collected from rats’bone marrow by density gradient centrifugation. 3. Once being harvested, EPCs of each group were divided into two subgroups, with one subgroup being given solvent and the other insulin (1nmol/L). All EPCs of these four groups were calculated and cultured with Medium 199. 4. Test the proliferation ability of EPCs by MTT assay. 5. Detect the apoptosis level of EPCs by immunofluorescent co-staining. 6. Measure the secretion of NO by modified Griess reaction method after 24 h of incubation.
     Statistical analysis is performed with SPSS version 13.0. One-way analysis of variation and post hoc t (LSD-t) test are employed.
     Results
     1. After being cultured for 7 days, cells obtained showed double positive for DiI-ac-LDL and FITC-UEA-I, which indicated that they were EPCs.
     2. Pioglitazone of different dosages increased the number and function of EPCs.
     3. Pioglitazone of 20 mg·kg-1·d-1 showed better effects of promoting proliferation and secreting NO of EPCs than the groups of 10 mg·kg-1·d-1 and 40 mg·kg-1·d-1 but same effects of inhibiting apoptosis as these two groups.
     4. Both pioglitazone and insulin had effects of promoting proliferation and secreting NO and inhibiting apoptosis of EPCs.
     5. Insulin showed better effect than pioglitazone in promoting proliferation but same effects of inhibiting apoptosis and promoting secretion of NO of EPCs as pioglitazone.
     6. Co-application of pioglitazone and insulin showed better effects of promoting proliferation and secreting NO and inhibiting apoptosis of EPCs than single use of each drug.
     Conclusion
     1. Pioglitazone of different dosages can increase the number, promote proliferation and secreting NO and inhibit apoptosis of EPCs.
     2. Both pioglitazone of 20 mg·kg-1·d-1 and insulin have effects of promoting proliferation and secretion of NO and inhibiting apoptosis of EPCs, and they have synergistic effects in these aspects.
引文
[1] Hristov M, Erl W, Weber PC. Endothelial progenitor cells:mobilization, differentiation, and homing[J]. Arterioscler Thromb Vasc Biol, 2003, 23(7):1185-1189.
    [2] Werner N, Nickenig G. Clinical and therapeutical implications of EPC biology in atherosclerosis[J]. J Cell Mol Med, 2006, 10(2): 318-332.
    [3] Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res, 2001,89(1):E1-E7.
    [4] Loomans CJM, de Koening EJP, Staal FJT, et al. Endothelial progenitor cell dysfunction: A novel concept in the pathogenesis of vascular complications of type I diabetes[J]. Diabetes, 2004, 53(1):195-199.
    [5] Tepper OM, Galiano RD, Capla JM, et al. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures[J]. Circulation, 2002, 106(22) :2781-2786.
    [6] Aicher A, Heeschen C, Mildner-Rihm C, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells[J]. Nat Med, 2003, 9(11): 1370-1376.
    [7] Gensch C, Clever Y, Werner C, et al. The PPAR-γagonist pioglitazone increases neoangiogenesis and prevents apoptosis of endothelial progenitor cells[J]. Atherosclerosis, 2007, 192 ( 1): 67-74.
    [8] Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine[J] . Nature, 1980, 288(5789): 373-376.
    [9] Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s[J]. Nature, 1993, 362(6423): 801-809.
    [10]金世鑫.糖尿病综合治疗的疗效评估[J].国外医学内分泌分册, 2005, 25(1):10-12.
    [11] Vaughan DE. PAI-1 and atherothrombosis[J]. J Thromb Haemost, 2005, 3(8): 1879-1883.
    [12] Poole JC, Florey HW. Changes in the endothelium of the aorta and the behavior of macrophages in experimental atheroma of rabbits[J]. J Pathol Bacteriol, 1958, 75: 245-253.
    [13] Moulton KS, Heller E, Konerding MA, et al. Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice[J]. Circulation, 1999, 99(13): 1726-1732.
    [14] Kolodgie FD, Gold HK, Burke AP, et al. Intraplaque hemorrhage and progression of coronary atheroma[J]. N Engl J Med, 2003, 349: 2316-2325.
    [15] Libby P, Theroux P. Pathophysiology of coronary artery disease[J]. Circulation, 2005, 111(25): 3481-3488.
    [16] Spencer CG, Martin SC, Felmeden DC, et al. Relationship of homocysteine to markers of platelet and endothelial activation in "high risk" hypertensives: a substudy of the Anglo-Scandinavian Cardiac Outcomes Trial[J]. Int J Cardiol, 2004, 94(223): 293-300.
    [17] McAllister AS, Atkinson AB, Johnston GD, et al. Basal nitric oxide production is impaired in offspring of patients with essential hypertension[J]. Clin Sci (Lond), 1999, 97(2): 141-147.
    [18] Zhang YM, Wang KQ, Zhou GM, et al. Endothelin-1 promoted proliferation of vascular smooth muscle cell through pathway of extracellular signal-regulated kinase and cyclin D1[J]. Acta Pharmacol Sin, 2003, 24(6): 563-568.
    [19] Hu FB, Stampfer MJ. Is type 2 diabetes mellitus a vascular condition?[J]. Arterioscler Thromb Vasc Biol, 2003, 23 (10): 1715-1716.
    [20]黄雌友,文格波,曹仁贤,等.葡萄糖诱导人血管内皮细胞凋亡及其对表达的影响[J].中国糖尿病杂志,2003,11(1):37-41.
    [21] Aljada A, Dandona P. Effect of insulin on human aortic endothelial nitric oxide synthase[J]. Metabolism, 2000, 49(2): 147-150.
    [22] Pinkney JH, Stehouwer CD, Coppack SW, et al. Endothelial dysfunction: cause of the insulin resistance syndrome[J]. Diabetes, 1997, 46 [Suppl 2]: S9-S13.
    [23] Stump MM, Jordan GL Jr, DeBakey ME, et al. Endothelium grown from circulating blood on isolated intravascular dacron hub[J]. Am J Pathol, 1963, 43: 361-367.
    [24] Park S, Tepper OM, Galiano RD, et al. Selective recruitment of endothelial progenitor cells to ischemic tissues with increased neovascularization[J]. Plast Reconstr Surg, 2004, 113(1): 284-293.
    [25] Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis[J]. Science, 1997, 275(5302): 964-967.
    [26] Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrow-derived cells[J]. Blood, 1998, 92(2): 362-367.
    [27] Asahara T, Masuda H , Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization[J]. Cir Res, 1999, 85(3): 221-228.
    [28] Caprioli A, Jaffredo T, Gautier R, et al. Blood-borne seeding byhematopoietic and endothelial precursors from the allantois[J]. Proc Natl Acad Sci USA, 1998, 95(4): 1641-1646.
    [29] Gehling UM, Ergün S, Schumacher U, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells[J]. Blood, 2000, 95(10): 3106-3112.
    [30] Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novelmarker for human hematopoietic stem and progenitor cells[J]. Blood, 1997, 90(12): 5002-5012.
    [31] Elsheikh E, Uzunel M, He Z, et al. Only a specific subset of human peripheral-blood monocytes has endothelial-like functional capacity[J]. Blood, 2005, 106(7): 2347-2355.
    [32] Quirici N, Soligo D, Caneva L, et al. Differentiation and expansion of endothelial cells from human bone marrow CD133 (+) cells[J]. Br J Haematol, 2001, 115(1): 186-194.
    [33] Harraz M, Jiao C, Hanlon HD, et al. CD34-blood-derived human endothelial cell progenitors[J]. Stem Cells, 2001, 19(4): 304-312.
    [34] Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors[J]. Blood, 2000, 95(3): 952-958.
    [35] Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow[J]. J Clin Invest, 2002, 109(3): 337-346.
    [36] Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk[J]. N Engl J Med, 2003, 348(7): 593-600.
    [37] Zammaretti P, Zisch AH. Adult 'endothelial progenitor cells'. Renewing vasculature[J]. Int J Biochem Cell Biol, 2005, 37(3): 493-503.
    [38] Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cellsfrom the bone marrow niche requires MMP-9 mediated release of kit-ligand [J]. Cell, 2002, 109(5): 625-637.
    [39] Kalka C, Masuda H, Takahashi T, et al. Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects[J]. Circ Res, 2000, 86(12): 1198-1202.
    [40] Fadini GP, Agostini C, Avogaro A. Endothelial progenitor cells in cerebrovascular disease[J]. Stroke, 2005, 36(6): 1112-1113.
    [41] Hiasa K, Ishibashi M, Ohtani K, et al. Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization[J]. Circulation, 2004, 109(20): 2454-2461.
    [42] Yamaguchi J, Kusano KF, Masuo O, et al. Stromal cell derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization[J]. Circulation, 2003, 107(9):1322-1328.
    [43] Vasa M, Fichtlscherer S, Adler K, et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease[J]. Circulation, 2001, 103(24): 2885-2890.
    [44] Iwakura A, Luedemann C, Shastry S, et al. Estrogen-mediated, endothelial nitric oxide synthase2dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury[J]. Circulation, 2003, 108(25): 3115-3121.
    [45] Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1[J]. Nat Med, 2004, 10(8): 858-864.
    [46] Walter DH, Rittig K, Bahlmann FH, et al. Statin therapy acceleratesreendothelialization: a novel effect involving mobilization and incorporation of bone marrow derived endothelial progenitor cells[J]. Circulation, 2002, 105(25): 3017-3024.
    [47] Badorff C, Brandes RP, Popp R, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes [J]. Circulation, 2003, 107(7): 1024-1032
    [48] Simper D, Stalboerger PG, Panetta CJ, et al. Smooth Muscle Progenitor Cells in Human Blood[J]. Circulation. 2002,106:1199-1204.
    [49] Wang CH, Ciliberti N, Li SH, et al. Rosiglitazone facilitates angiogenic progenitor cell differentiation toward endothelial lineage: a new paradigm in glitazone pleiotropy[J]. Circulation. 2004, 109(11): 1392-400.
    [50] Takahashi T, Kalka C, Masuda H, et al. Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization[J]. Nat Med, 1999, 5(4): 434-438.
    [51] Shintani S, Murohara T, Ikeda H, et al. Augmentation of postnatal neovascularization with autologous bone marrow transplantation[J]. Circulation, 2001, 103(6): 897-903.
    [52] Zhang ZG, Zhang L, Jiang Q, et al. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse[J]. Circ Res, 2002, 90(3): 284-288.
    [53] Taguchi A, Soma T, Tanaka H, et al. Administ ration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model[J]. J Clin Invest, 2004, 114(3): 330-338.
    [54] Shirota T, Yasui H, Shimokawa H, et al. Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue[J]. Biomaterials, 2003,24(13):2295-2302.
    [55] Rotmans JI , Heyligers JM , Verhagen HJ, et al. In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts[J]. Circulation, 2005, 112(1) :12-18.
    [56] Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival[J]. Proc Natl Acad Sci USA, 2001, 98(18): 10344-10349.
    [57] Kawamoto A, Tkebuchava T, Yamaguchi J, et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia[J]. Circulation, 2003,107(3): 461-468.
    [58] Iwaguro H, Yamaguchi J, Kalka C, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration[J]. Circulation, 2002, 105(6): 732-738.
    [59] Takebayashi K, Aso Y, Inukai T. Initiation of insulin therapy reduces serum concentrations of high-sensitivity C-reactive protein in patients with type 2 diabetes[J]. Metabolism, 2004, 53(6): 693-699.
    [60] Langouche L, Vanhorebeek I, Vlasselaers D, et al. Intensive insulin therapy protects the endothelium of critically ill patients[J]. J Clin Invest, 2005, 115(8): 2277-2286.
    [61] Shamir R, Shehadeh N, Rosenblat M, et al. Oral insulin supplementation attenuates atherosclerosis progression in apolipoprotein E-deficient mice[J]. Arterioscler Thromb Vasc Biol, 2003, 23(1): 104-110.
    [62] Bevan P. Insulin signaling[J]. J Cell Sci, 2001, 114 (pt 8): 1429-1430.
    [63] Aikawa R , Nawano M, Gu Y, et al. Insulin prevents cardiomyocytes fromoxidative stress-induced apoptosis through activation of PI3 kinase/Akt[J]. Circulation, 2000, 102(23): 2873-2879.
    [64] Cho H , Mu J , Kim JK, et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ) [J].Science, 2001, 292(5522): 1728-1731.
    [65] Diaz R, Paolasso EA, Piegas LS, et al. Metabolic modulation of acute myocardial infarction. The ECLA (Estudios Cardiologicos Latinoamerica) Collaborative Group[J]. Circulation, 1998, 98(21): 2227-2234.
    [66] Gao F, Gao E, Yue TL, et al. Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation[J]. Circulation, 2002, 105(12): 1497-1502.
    [67] Ma H, Zhang HF, Yu L, et al. Vasculoprotective effect of insulin in the ischemic/reperfused canine heart: role of Akt-stimulated NO production[J]. Cardiovasc Res, 2006, 69(1): 57-65.
    [68] Lawlor MA , Alessi DR. PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? [J]. J Cell Sci, 2001, 114(pt 16): 2903-2910.
    [69] Federici M, Menghini R, Mauriello A, et al. Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation, 2002, 106(4): 466-472.
    [70] Malmberg K, Ryden L, Efendic S, et al. Randomised trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI Study): effects on mortality at 1 year. J Am Coll Cardiol, 1995, 26(1): 57–65.
    [71] Buckingham RE. Thiazolidinediones: pleiotropic drugs with potentanti-inflammatory properties for tissue protection[J]. Hepatol Res, 2005, 33(2):167-170.
    [72] Hsueh WA, Bruemmer D. Peroxisome proliferator activated receptor gamma: implications for cardiovascular disease[J]. Hypertension, 2004, 43(2): 297-305.
    [73] Staels B. PPARgamma and atherosclerosis[J]. Curr Med Res Opin, 2005, 21(suppl 1): S13-S20.
    [74] Ontonoz P, Nagy L, Alvarez JG, et al. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL[J]. Cell, 1998, 93(2): 241-252.
    [75] Saladin R, Fajas L, Dana S, et al. Differential regulation of peroxisome proliferator activated receptor gamma1 ( PPARgamma1) and PPARgamma2 messenger RNA expression in the early stages of adipogenesis[J]. Cell Growth Differ, 1999, 10(1):43-48.
    [76] Lin FT, Lane MD. CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program[J]. Proc Natl Acad Sci USA, 1994, 91(13):8757-8761.
    [77] E1-Jack AK, Hamm JK, Pilch PF, et al. Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both PPARgamma and C/EBP alpha[J]. J Biol Chem, 1999, 274(12):7946-7951.
    [78] Rubin GL ,Zhao Y, Kalus AM, et al. Peroxisome proliferator-activated receptor gamma ligands inhibit estrogen biosynthesis in human breast adipose tissue: possible implications for breast cancer therapy[J]. Cancer Res, 2000, 60(6): 1604-1608.
    [79] Clay CE, Namen AM, Atsumi G, et al. Magnitude of peroxisome proliferators-activated receptor-gamma activation is associated withimportant and seemingly opposite biological responses in breast cancer cells[J]. J Investig Med, 2001, 49(5): 413-420.
    [80] Suchanek KM, May FJ, Robinson JA, et al. Peroxisome proliferator- activated receptor alpha in the human breast cancer cell lines MCF-7 and MDA-MB-231 [J]. Mol Carcinog, 2002, 34(4): 165-171.
    [81] Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation[J]. Nature, 1998, 391(6662): 79-82.
    [82] Liu HR, Tao L, Gao E, et al. Anti-apoptotic effects of rosiglitazone in hypercholesterolemic rabbits subjected to myocardial ischemia and reperfusion [J]. Cardiovasc Res, 2004, 62(1): 135-144.
    [83] Stumvoll M, Wahl HG, Loblein K, et al. Pro12Ala polymorphism in the peroxisome proliferator-activated receptor-gamma2 gene is associated with increased antilipolytic insulin sensitivity[J]. Diabetes, 2001, 50(4): 876-881.
    [84] Tang Y, Osawa H, Onuma H, et al. Adipocyte-specific reduction of phosphodiesterase 3B gene expression and its restoration by JTT-501 in the obese, diabetic KKAy mouse[J]. Eur J Endocrinol, 2001, 145(1):93-99.
    [85] Marx N, Kehrle B, Kohlhammer K, et al. PPAR Activators as antiinflammatory mediators in human T lymphocytes implications for atherosclerosis and transplantation-associated arteriosclerosis[J]. Circ Res, 2002, 90: 703-710.
    [86] Malerod L, Sporstol M, Juvet LK, et al. Hepatic scavenger receptor class B, type I is stimulated by peroxisome proliferator-activated receptor gamma and hepatocyte nuclear factor 4alpha [J]. Biochem Biophys Res Commun, 2003, 305(3): 557-565.
    [87] Argmann CA, Sawyez CG, McNeil CJ, et al. Activation of peroxisome proliferators-activated receptor gamma and retinoid X receptor results in net depletion of cellular cholesteryl esters in macrophages esposed to oxidized lipoproteins[J]. Arterioscler Thromb Vasc Biol, 2003, 23(3): 475-482.
    [88] Sugawara A, Takeuchi K, Uruno A, et al. Transcriptional supression of type 1 angiotensinⅡreceptor gene expression by peroxisome proliferator- activated receptor-gamma in vascular smooth muscle cells[J]. Endocrinology, 2001, 142(7): 3125-3134.
    [89] Ikeda U,Shimpo M,Murakami Y, et al. Peroxisome proliferator-activated receptor-gamma ligands inhibit nitric oxide synthesis in vascular smooth muscle cells[J]. Hypertension, 2000, 35: I232-I236.
    [90] Hwang J, Kleinhenz DJ, Lassegue B, et al. Peroxisome proliferator-activated receptor-γligands regulate endothelial membrane superoxide production[J]. Am J Physiol cell Physiol, 2005, 288: C899-C905.
    [91] Urbich C,Dimmeler S. Risk factors for coronary artery disease, circulating endothelial progenitor cells, and the role of HMG-CoA reductase inhibitors. Kidney International,2005,67:1672.
    [92] Aicher A, Heeschen C, Mildner-Rihm C, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells[J]. Nat Med, 2003, 9:1370-1376.
    [93]楚罗香,姜德谦,刘照云.吡格列酮对人脐静脉内皮细胞CD40/CD40表达的影响[J].中国药物与临床,2006, 6: 48-51.
    [94]马凤霞,任倩,韩忠朝.Akt/eNOS信号途径调节内皮祖细胞存活和功能的实验研究[J].中华心血管病杂志,2007, 35:173-177.
    [95] Gensch C, Clever Y, Werner C, et al. The PPAR-γagonist pioglitazone increases neoangiogenesis and prevents apoptosis of endothelial progenitorcells[J]. Atherosclerosis, 2007, 192: 67-74.
    [96] Humpert PM,Neuwirth R,Battista MJ,et al. SDF-1 Genotype Influences Insulin-Dependent Mobilization of Adult Progenitor Cells in Type 2 Diabetes[J]. Diabetes Care, 2005, 28: 934-936.
    [97] Schatteman GC, Hanlon HD, Jiao C, et al. Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice[J]. J Clin Invest, 2000, 106(4): 571-578.
    [98]赵力,王海昌,尹涛,等.胰岛素对内皮祖细胞增殖、衰老及NO分泌的影响[J].第四军医大学学报,2007,28(7):603-605.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700