小檗碱的生物代谢反应及代谢产物活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小檗碱(Berberine, BBR)是从黄连等植物根茎中提取分离的异喹啉类天然抗腹泻药物,在我国临床使用已有数十年的历史。最近,我们发现BBR是一个作用机制与他汀类完全不同的新型降血脂药物,主要在转录后水平通过上调肝细胞低密度脂蛋白受体(LDLR)的基因表达,进而发挥降血脂作用。此外,我们还发现胰岛素受体(InsR)是BBR发挥降血糖作用的另一个关键靶点。提示,BBR显示出治疗代谢综合征(MS)的潜力。然而,BBR的代谢酶及其代谢产物的活性至今未知。本论文首先从药物代谢的角度,探讨BBR的代谢途径,寻找BBR经机体生物转化后的活性代谢产物及其代谢相关的肝脏CYP450 (cytochrome P450)酶,继而从活性代谢产物着手,开展前药的设计,以期获得具有自主知识产权、较高口服生物利用度的治疗MS候选化合物。
     为了研究BBR的Ⅰ相代谢产物,我们设计了一系列体内外实验。大鼠口服200mg/kg的BBR后,主要的Ⅰ相代谢产物有4个,分别是小檗红碱(berberrubine, M1)、唐松草分定(thalifendine,M2)、2,3-去亚甲基小檗碱(demethyleneberberine, M3)和药根碱(jatrorrhizine,M4)。对于BBR经人体肝药酶的代谢,我们分别从人肝微粒体和重组表达人源P450酶的昆虫微粒体的亚细胞水平,以及3种人肝细胞(人原代肝细胞、Bel-7402和HepG2)的细胞水平进行了考察,仅得到2种代谢产物,M2和M3。自大鼠的肝脏组织分别制备了肝匀浆、S9及微粒体,在体外模拟生理环境对BBR进行孵育,所得结果与人肝体外结果相似。我们认为,在当前构建的几种的肝脏体外代谢模型中,BBR的主要Ⅰ相代谢产物为M2和M3。
     为了进一步考察负责代谢BBR的肝脏P450酶,我们运用计算机小分子与生物大分子的对接手段预测了能够与BBR紧密结合的CYP450蛋白,按照对接评分由高到低分别为CYP2D6、CYP1A2、CYP3A4。接下来,将BBR与8种重组P450酶分别孵育,并结合化学抑制剂实验共同验证了酶筛结果。最后利用整体归一化法(total normalized rate, TNR)对负责代谢BBR的CYP450酶进行了相对贡献值的评估排序。对于M2的生成,3种酶的相对贡献值分别为CYP1A2:78.38%,CYP2D6:18.97%,CYP3A4: 2.65%;对于M3的生成,3种酶的相对贡献值分别为CYP3A4:38.43%, CYP1A2: 31.18%, CYP2D6:30.39%。
     为了深刻理解BBR在体内发挥药理作用的机制和物质基础,我们分别考察了BBR及其体内代谢产物M1-M4上调肝细胞LDLR mRNA的表达、上调InsR mRNA的表达及激活AMPK酶的活性,结果显示,代谢产物M1-M4的活性均表现出一定的活性,但却不及BBR母体本身,我们推测BBR进入体内后,与其代谢产物共同发挥调脂降糖的作用。在其4个代谢产物中M1的活性最高,虽然稍弱于BBR本身,但结构中裸露出的羟基(9-OH)使其通过制备前药而改善BBR的药代动力学特性、提高BBR的口服生物利用度成为可能。
     我们从活性代谢产物M1着手,在其9-OH引入脂溶性增加的载体,制备成M1前药。通过在大鼠血浆中的体外生物转化实验的筛选及动物体内降血脂活性的评价,从中筛选出生物利用度高、降血脂活性略强于或与BBR相当的酯类前药——M1棕榈酸酯(5g)。5g不仅拥有自主知识产权,还在BBR的基础上大大提高了生物利用度,安全性高、药效好,具有良好的应用前景,将BBR转化为具有创新性的新型代谢综合征治疗药物。
     综上所述,我们的研究包括了从亚细胞水平、细胞水平到动物整体水平,从生物学实验、计算机模拟到化学设计等一系列工作。研究表明,BBR在肝脏中发生了生物代谢反应,主要的Ⅰ相代谢酶为CYP2D6、CYP1A2和CYP3A4。BBR及其体内代谢产物M1-M4均具有调节细胞能量代谢活性,以BBR活性最强,M1次之,而设计合成M1前药可在一定程度上解决BBR口服生物利用度低的问题,是发现高效低毒的新型代谢综合征治疗药物的有效途径之一。
Berberine (BBR), an isoquinoline natural product isolated from herbs such as Coptis chinensis, has been used in China for several decades as an anti-diarrhea drug. Our previous studies showed that BBR was a novel LDLR-up-regulator and cholesterol-lowering agent with a mechanism on the post-transcriptional level, which is distinct from that of statins. In addition, we also found that InsR was another key target for its hypoglycemic effect. These results indicate that BBR was a potential drug for the treatment of metabolic syndrome (MS). However, the metabolic enzymes of BBR and bioactivities of BBR metabolites are still unknown. To address this issue, the present study was performed to investigate the active metabolites of BBR and to identify the CYP450 (cytochrome P450) isoenzymes that are responsible for the production of BBR metabolites. Next, we take the active metabolite as a parent compound for the pro-drug study, in order to obtain effective candidate compounds for MS, with independent intellectual property and better bioavailability.
     We have designed a series of in vitro and in vivo experiments to study the I-phase metabolites. In the animal experiment, we used 200 mg/kg of BBR to treat the Wistar rats orally. We identified 4 metabolites, M1 (berberrubine), M2 (thalifendine), M3 (demethyleneberberine) and M4 (jatrorrhizine). For the in vitro studies, we investigated respectively in the rat liver homogenate, S9, liver microsomes, human liver microsomes, insect microsomes expressing human P450, primary hepatocyte, and Bel-7402 and HepG2 cell line. We found metbolites M2 and M3 of BBR in all the in vitro systems.
     In order to further identify P450 isozymes responsible for BBR's metabolism, we firstly used computer assistant docking software, by which we found that CYP2D6, CYP1A2 and CYP3A4 were the top three. Subsequently, two biological experiments, recombinant P450 incubation and inhibitory assay were developed to verify the screening P450 isozymes. Next, we ranked these P450 isozymes with the method of total normalized rate (TNR). For BBR to M2, CYP1A2, CYP2D6 and CYP3A4 are responsible for 78.38%, 18.97%and 2.65%of total transformation, respectively. And for M3 formation, CYP3A4 for 38.43%, CYP1A2 for 31.18%and CYP2D6 for 30.39%, respectively.
     To deeply understand the mechanisms and the chemical entities of BBR's multiple effects, we studied the activities of LDLR mRNA and InsR mRNA up-regulating, AMPK acivating in BBR and its metabolites M1-M4. M1-M4 remained bioactivities, and BBR in its original form showed the highest activity among these chemical entities. We speculated that BBR combined its major metabolites M1-M4 in modulating cellular energy metabolism in vivo. Besides, among the metabolites, Ml showed the best activity, very close to BBR. And the exposed 9-OH in Ml was better convenient for synthesizing pro-drugs, which could improve the bioavailability of BBR.
     Therefore, we semi-synthesized a series of M1 pro-drugs by 9-OH modification. By screening the plasma hydrolysis behavior and animal anti-hyperlipidemic experiment, we found 5g (Ml palmitate) for the first time which transformed BBR to a novel MS drug with better bioavailability and biactivity.
     In summary, evidences from subcellular, cellular level to animal; from biological study, computer technology, to chemical design all prove that BBR was bio-metabolized in vivo. It was metabolized at least through the action of human hepatocyte CYP2D6, CYP1A2 and CYP3A4. The phase I metabolites of BBR remained to be active in on the targets with significantly reduced potency. Designing pro-drugs of BBR's active metabolite M1 was one of the most effective approaches to improve BBR's bioavailability and discover novel MS drugs which are effective and low toxic independently.
引文
[l]李艺,游雪甫,蒋建东.小檗碱的药动学研究进展[J].中国新药杂志,2008,17(9):733-738.
    [2]Abidi P, Zhou Y, Jiang JD, et al. Extracellular signal-regulated kinase-dependent stabilization of hepatic low-density lipoprotein receptor mRNA by herbal medicine berberine[J]. Arterioscler Thromb Vasc Biol,2005,25(10):2170-2176.
    [3]Kong W, Wei J, Abidi P, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins[J]. Nat Med,2004,10(12):1344-1351.
    [4]Zhang H, Wei J, Xue R, et al. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression [J]. Metabolism,2010,59(2): 285-292.
    [5]Kong WJ, Zhang H, Song DQ, et al. Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression[J]. Metabolism,2009, 58(1):109-119.
    [6]Lee YS, Kim WS, Kim KH, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states[J]. Diabetes,2006,55(8):2256-2264.
    [7]Kim WS, Lee YS, Cha SH, et al. Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity [J]. Am J Physiol Endocrinol Metab, 2009,296(4):E812-E819.
    [8]Yin J, Zhang H, Ye J. Traditional Chinese Medicine in Treatment in treatment of metabolic syndrome[J]. Endocr Metab Immune Disord Drug Targets,2008,8(2):99-111.
    [9]熊程忆,施绪保,代宗顺,等.3H-小檗碱在家兔及小鼠体内的药代动力学研究[J].中国药理学通报,1989,5(5):293-296.
    [10]Li BX, Yang BF, Hao XM, et al. Study on the pharmacokinetics of berberine in single dosage and coadministration with oryzanol in rabbits and healthy volunteers[J]. Chin PharmJ,2000,35(1):33-35.
    [11]Chen CM, Chang HC. Determination of berberine in plasma, urine and bile by high-performance liquid chromatography[J]. J Chromatogr B Biomed Appl,1995,665(1): 117-123.
    [12]盛美萍,孙淇,王宏.盐酸小檗碱在Beagle狗静脉注射和口服动力学研究[J].中国药 理学通报,1993,9(1):64-67.
    [13]吴艳萍,谭晓梅,邢学峰.葛根芩连煎剂中小檗碱在犬体内药动学研究[J]. China Pharmacy,2006,17(11):811-813.
    [14]Zuo F, Nakamura N, Akao T, et al. Pharmacokinetics of berberine and its main metabolites in conventional and pseudo germ-free rats determined by liquid chromatography/ion trap mass spectrometry[J]. Drug Metab Dispos,2006,34(12):2064-2072.
    [15]Tsai PL, Tsai TH. Hepatobiliary excretion of berberine[J]. Drug Metab Dispos,2004, 32(4):405-412.
    [16]Tan B, Ma Y, Shi R, et al. Simultaneous quantification of three alkaloids of Coptidis Rhizoma in rat urine by high-performance liquid chromatography:application to pharmacokinetic study[J]. Biopharm Drug Dispos,2007,28(9):511-516.
    [17]Tsai P, Tsai TH. Simultaneous determination of berberine in rat blood, liver and bile using microdialysis coupled to high-performance liquid chromatography[J]. J Chromatogr A, 2002,961(1):125-130.
    [18]包丽华,李宝馨,杨宝峰,等.人口服黄连素的药代动力学研究[J].中国药理学通报,1997,13(1):95.
    [19]Yu C, Zhang H, Pan JF, et al. Determination and preliminary studies of metabolism of berberine in human urine after oral administration[J]. Chin J CLin Pharmacol,2000,16(1): 36-39.
    [20]Pan JF, Yu C, Zhu DY, et al. Identification of three sulfate-conjugated metabolites of berberine chloride in healthy volunte ers'urine after oral administration[J]. Acta pharmacol Sin,2002,23(1):77-82.
    [21]邱峰,朱志勇,朴淑娟,等.人口服盐酸小檗碱后尿液中代谢产物的研究[J].中国医学研究与临床,2005,3(8):6-9.
    [22]汪凤梅,姚彤炜,吴越,等HPLC测定人肝转基因细胞中的维拉帕米[J].中国现代应用药学杂志,2001,18(5):379-381.
    [23]Tracy TS, Korzekwa KR, Gonzalez FJ, et al. Cytochrome P450 isoforms involved in metabolism of the enantiomers of verapamil and norverapamil[J]. Br J Clin Pharmacol, 1999,47(5):545-552.
    [24]Tracqui A, Toumoud C, Kintz P, et al. HPLC/MS findings in a fatality involving sustained-release verapamil[J]. Hum Exp Toxicol,2003,22(9):515-521.
    [25]Nelson AC, Huang W, Moody DE. Variables in human liver microsome preparation: impact on the kinetics of 1-alpha-acetylmethadol (LAAM) n-demethylation and dextromethorphan O-demethylation[J]. Drug Metab Dispos,2001,29(3):319-325.
    [26]Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent[J]. J Biol Chem,1951,193(1):265-275.
    [27]Farombi EO. Mechanisms for the hepatoprotective action of kolaviron:studies on hepatic enzymes, microsomal lipids and lipid peroxidation in carbontetrachloride-treated rats[J]. Pharmacol Res,2000,42(1):75-80.
    [28]孔琦,张振清.药物代谢转化和样品前处理技术的研究进展[J].国际药学研究杂志,2008,35(2):124-127.
    [29]Holcapek M, Kolarova L, Nobilis M. High-performance liquid chromatography-tandem mass spectrometry in the identification and determination of phase Ⅰ and phase Ⅱ drug metabolites[J]. Anal Bioanal Chem,2008,391(1):59-78.
    [30]Baranczewski P, Stanczak A, Kautiainen A, et al. Introduction to early in vitro identification of metabolites of new chemical entities in drug discovery and development[J]. Pharmacol Rep,2006,58(3):341-352.
    [31]FDA. Guidance for industry:Bioanalytical method validation[S]. U.S.:Department of Health and Human Services.2001.
    [32]国家食品药品监督管理局.化学药物非临床药代动力学研究技术指导原则[S].北京:中国医药科技出版社,2005.
    [33]Qi ML. Matrix effects in liquid chromatography-mass spectrometry determination of drugs in biological samples[J]. Chin J Pharm Anal,2005,25(4):476-479.
    [34]Hengstler JG, Utesch D, Steinberg P, et al. Cryopreserved primary hepatocytes as a constantly available in vitro model for the evaluation of human and animal drug metabolism and enzyme induction[J]. Drug Metab Rev,2000,32(1):81-118.
    [35]韩凤梅,朱明明,陈怀侠,等.液相色谱-串联电喷雾离子阱质谱法鉴定大鼠尿液中药根碱代谢物[J].药学学报,2006,4l(9):846-851.
    [36]TSAI PL, TSAI TH. Hepatobiliary excretion of berberine[J]. DMD,2004.32(4):405-412.
    [37]杨异卉,甘春丽.黄连化学成分的分离与鉴定[J].黑龙江医药,2009,22(4):480-481.
    [38]Sansen S, Yano JK, Reynald RL, et al. Adaptations for the Oxidation of Polycyclic Aromatic Hydrocarbons Exhibited by the Structure of Human P450 1A2[J]. J Biol Chem, 2007,282(19):14348-1455.
    [39]Sansen S, Hsu MH, Stout CD, et al. Structural insight into the altered substrate specificity of human cytochrome P450 2A6 mutants[J]. Arch Biochem Biophys,2007,464(2): 197-206.
    [40]Wester MR, Yano JK, Schoch GA, et al. The Structure of Human Cytochrome P450 2C9 Complexed with Flurbiprofen at 2.0-A Resolution[J]. J Biol Chem,2004,279(34): 35630-35637.
    [41]Rowland P, Blaney FE, Smyth MG, et al. Crystal structure of human cytochrome P450 2D6[J]. J Biol Chem,2006,281(11):7614-7622.
    [42]Porubsky PR, Meneely KM, Scott EE. Structures of human cytochrome P450 2E1:insights into the binding of inhibitors and both small molecular weight and fatty acid substrates[J]. J Biol Chem,2008,283(48):33698-33707.
    [43]Ekroos M, Sjogren T. Structural basis for ligand promiscuity in cytochrome P450 3A4[J], Proc Natl Acad Sci U S A,2006,103(37):13682-13687.
    [44]Yano JK, Wester MR, Schoch GA, et al. The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution[J]. J Biol Chem, 2004,279(37):38091-38094.
    [45]Szklarz GD, Halpert JR. Molecular basis of P450 inhibition and activation implications for drug development and drug therapy [J]. Drug Metab Dispos,1998,26(12):1179-1184.
    [46]Gotoh O. Cytochrome P450 Family 2 (CYP2) Proteins inferred from Comparative Analyses of Amino Acid and Coding Nucleotide Sequences[J]. J Biol Chem,1992,267(1): 83-90.
    [47]Fu DH, Jiang W, Zheng JT, et al. Jadomycin B, an Aurora-B kinase inhibitor discovered through virtual screening[J]. Mol Cancer Ther,2008,7(8):2386-2393.
    [48]FDA. Guidance for industry:Drug interaction studies[S]. U.S. Department of Health and Human Services.2006.
    [49]Cai CZ, Li ZR, Wang WL, et al. Advances in modeling of biomolecular interactions[J]. Acta Pharmacol Sin,2004,25(1):1-8.
    [50]Sun H, Scott DO. Structure-based drug metabolism predictions for drug design[J]. Chem Biol Drug Des,2010,75(1):3-17.
    [51]Yamashita F, Hashida M. In silico approaches for predicting ADME properties of drugs[J]. Drug Metab Pharmacokinet,2004,19(5):327-338.
    [52]Yu J, Paine MJ, Marechal JD, In silico prediction of drug binding to CYP2D6: identification of a new metabolite of metoclopramide[J]. Drug Metab Dispos,2006,34(8): 1386-1392.
    [53]Shimada T, Murajama N, Tanaka K, et al. Interaction of polycyclic aromatic hydrocarbons with human cytochrome P450 1B1 in inhibiting catalytic activity[J]. Chem Res Toxicol, 2008,21(12):2313-2323.
    [54]Rodrigues AD. Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes[J]. Biochem Pharmacol,1999,57(5):465-480.
    [55]Casabar RC, Wallace AD, Hodgson E, et al. Metabolism of endosulfan-alpha by human liver microsomes and its utility as a simultaneous in vitro probe for CYP2B6 and CYP3A4[J]. Drug Metab Dispos,2006,34(10):1779-1785.
    [56]Houston JB, Kenworthy KE. In vitro-in vivo scaling of CYP kinetic data not consistent with the classical Michaelis-Menten model[J]. Drug Metab Dispos,2000,28(3):246-254.
    [57]Bjornsson TD, Callaghan JT, Einolf HJ, et al. The conduct of in vitro and in vivo drug-drug interaction studies a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective[J]. Drug Metab Dispos,2003,21(7):815-832.
    [58]Lu AY, Wang RW, Lin JH. Cytochrome P450 in vitro reaction phenotyping:a re-evaluation of approaches used for P450 isoform identifications[J]. Drug Metab Dispos, 2003,31(4):345-350.
    [59]钟大放.药物代谢.北京:中国医药科技出版社,1996,3-13.
    [60]陈晓光.新药药理学.北京:中国协和医科大学出版社,2004,156-160.
    [6l]杨世杰.药理学.北京:人民卫生出版社,200l,27.
    [62]Smith DA, Waterbeemd H, Walker DK. Pharmacokinetics and Metabolism in Drug Design. Weinheim. Wiley-VCH Verlag GmbH,2001,75-78.
    [63]Coon MJ, Ding XX, Pernecky SJ, et al. Cytochrome P450:progress and predictions[J]. FASEB J.1992,6(2):669-673.
    [64]Porter TD. Jud Coon:35 years of P450 research, a synopsis of P450 history[J]. Drug Metab Dispos,2004,32(1):1-6.
    [65]周宏灏.遗传药理学.北京:科学出版社,200l,53,62-63.
    [66]Nishimura M, Yaguti H, Yoshitsugu H, et al. Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR[J]. Yakugaku Zasshi,2003,123(5):369-375.
    [67]Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals studies with liver microsomes of 30 Japanese and 30 Caucasians[J]. J Pharmacol Exp Ther,1994,270(1):414-423.
    [68]Aronson JK. Classifying drug interactions[J]. Br J Clin Pharmacol,2004,58(4):343-344.
    [69]Brockmoller J, Cascorbi I, Kerb R, et al.Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modulators of bladder cancer risk[J]. Cancer Res,1996,56(17):3915-3925.
    [70]Chou WH, Yan FX, Robbins-Weilert DK, et al. Comparison of two CYP2D6 genotyping methods and assessment of genotype-phenotype relationships[J]. Clin Chem,2003,49(4): 542-551.
    [71]Celebi A, Kocaman O, Savli H, The prevalence of CYP2C19 mutations in Turkish patients with dyspepsia[J]. Turk J Gastroenterol,2009,20(3):161-164.
    [72]Brown RR, Miller JA, Miller EC.The metabolism of methylated aminoazo dyes. Ⅳ. Dietary factors enhancing demethylation in vitro[J]. J Biol Chem,1954,209(1):211-222.
    [73]Conney AH, Miller EC, Miller JA. The metabolism of methylated aminoazo dyes. Ⅴ. Evidence for induction of enzyme synthesis in the rat by 3-methylcholanthrene[J]. Cancer Res,1956,16(5):450-459.
    [74]Sinz M, Wallace G, Sahi J. Current industrial practices in assessing CYP450 enzyme induction:preclinical and clinical[J]. AAPS J.2008,10(2):391-400.
    [75]Lin JH. CYP induction-mediated drug interactions:in vitro assessment and clinical implications[J]. Pharm Res,2006,23(6):1089-1116.
    [76]Tang C, Lin JH, Lu AY. Metabolism-based drug-drug interactions:what determines individual variability in cytochrome P450 induction?[J]. Drug Metab Dispos,2005,33(5): 603-613.
    [77]Obach RS, Walsky RL, Venkatakrishnan K, et al. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug-drug interactions[J]. J Pharmacol Exp Ther,2006, 316(1):336-348.
    [78]Monahan BP, Ferguson CL, Killeavy ES, et al. Torsades de pointes occurring in association with terfenadine use [J]. Jama,1990,264(21):2788-2790.
    [79]Bibi Z. Role of cytochrome P450 in drug interactions[J]. Nutr Metab (Lond).2008,18(5): 27.
    [80]Saxena A, Parijat Tripathi K, Roy S, et al. Pharmacovigilance:Effects of herbal components on human drugs interactions involving Cytochrome P450[J]. Bioinformation. 2008;3(5):198-204.
    [81]Foster BC, Vandenhoek S, Tang R, et al. Effect of several Chinese natural health products of human cytochrome P450 metabolism[J]. J Pharm Pharm Sci.2002,5(2):185-189.
    [82]Baranczewski P, Stanczak A, Sundberg K, et al. Introduction to in vitro estimation of metabolic stability and drug interactions of new chemical entities in drug discovery and development[J]. Pharmacol Rep,2006,58(4):453-472.
    [83]Stapleton HM, Kelly SM, Pei R, et al. Metabolism of polybrominated diphenyl ethers (PBDEs) by human hepatocytes in vitro[J]. Environ Health Perspect,2009,117(2): 197-202.
    [84]Wang Q, Jia R, Ye C, et al. Glucuronidation and sulfation of 7-hydroxycoumarin in liver matrices from human, dog, monkey, rat, and mouse[J]. In Vitro Cell Dev Biol Anim,2005, 41(3-4):97-103.
    [85]Salonen JS, Nyman L, Boobis AR, et al. Comparative studies on the cytochrome P450-associated metabolism and interaction potential of selegiline between human liver-derived in vitro system[J]. Drug Metab Dispos,2003,31(9):1093-1102.
    [86]Royman D, Annaert P, Houdt JV, et al. Expression and induction potential of cytochrome P450 in human cryopreserved hepatocytes[J]. Drug Metab Dispos,2005,33(7): 1004-1016.
    [87]McGinnity DF, Berry AJ, Kenny JR, et al. Evaluation of time-dependent cytochrome P450 inhibition using cultured huamn hepatocytes[J]. Drug Metab Dispos,2006,34(8): 1291-1300.
    [88]Mehvar R, Chimalakonda AP. Hepatic disposition of cyclosporine A in isolated perfused rat livers[J]. J Pharm Pharm Sci,2004,17,7(1):47-54.
    [89]Le Couteur DG, Hickey H, Harvey PJ, et al. Hepatic artery flow and propranolol metabolism in perfused cirrhotic rat liver[J]. J Pharmacol Exp Ther, Jun,1999,289(3): 1553-1558.
    [90]Gandolfi AJ, W-ijeweera J, Brendel K. Use of Precision-Cut Liver Slices as an In Vitro Tool for Evaluating Liver Function[J]. Toxicol Pathol,1996,24(1):58-61.
    [91]McGinnity DF, Parker AJ, Soars M, et al. Automated Definition of the Enzymology of Drug Oxidation by the Major Human Drug Metabolizing Cytochrome P450s[J]. Drug Metab Dispos,2000,28 (11):1327-1334.
    [92]Lin JH, Lu AY. Role of pharmacokinetics and metabolism in drug discovery and development[J]. Pharmacol Rev,1997,49(4):403-449.
    [93]McGinnity DF, Waters NJ, Tucker J, et al. Integrated in vitro analysis for the in vivo prediction of cytochrome P450-mediated drug-drug interactions[J]. Drug Metab Dispos, 2008,36(6):1126-1134.
    [94]Lin JH, Lu AY. Inhibition and induction of cytochrome P450 and the clinical implications[J]. Clin Pharmacokinet,1998,35(5):361-390.
    [95]De Graaf IA, Van Meijeren CE, Pektas F, et al. Comparison of in vitro preparations for semi-quantitative prediction the in vivo drug metabolism[J]. Drug Metab Dispos,2002, 30(10):1129-1136.
    [96]Riley RJ, McGinnity DF, Austin RP. A unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomes[J]. Drug Metab Dispos.2005,33(9):1304-1311.
    [97]Obach RS, Baxter JG, Liston TE, et al. The Prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data[J]. Drug Metab Dispos,1997, 283(1):46-58.
    [98]Andersson TB, Sjoberg H, Hoffmann KJ, et al. An assessment of human liver-derived in vitro systems to predict the in vivo metabolism and clearance of almokalant[J]. Drug Metab Dispos,2001,29(5):712-720.
    [99]Lau YY, Sapidou E, Cui X, et al. Development of a novel in vitro model to predict hepatic clearance using fresh, cryopreserved, and sandwich-cultured hepatocytes[J]. Drug Metab Dispos,2002,30(12):1446-1454.
    [100]Griffin SJ, Houston JB. Prediction of in vitro intrinsic clearance from hepatocytes: comparison of suspensions and monolayer cultures[J]. Drug Metab Dispos,2005,33(1): 115-120.
    [101]Griffin SJ, Houston JB. Prediction of metabolic clearance using cryopreserved human hepatocytes kinetic characteristics for five benzodiazepines[J]. Drug Metab Dispos,2004, 32(12):552-558.
    [102]Naritomi Y, Terashita S, Kagayama A, et al. Utility of hepatocytes in predicting drug metabolism:comparison of hepatic intrinsic clearance in rats and humans in vivo and in vitro[J]. Drug Metab Dispos,2003,31(5):580-588.
    [103]White R. Short-and long-term projrctions about the use of drug metabolism in drug discovery and development[J]. Drug Metab Dispos,1998,26(12):1213-1216.
    [1]杨峻山.中药和天然药物学科发展概况及展望[A].第九届全国中药和天然药物学术研讨会大会报告及论文集[C],2007.
    [2]谷黎红,陈英杰,刘力.中药代谢化学的研究进展[J].沈阳药科大学学报,1993,10(3):225.
    [3]董丽丽.国外天然药物发展概况及其对我国中药现代化的借鉴意义[D].沈阳药科大学,2006.
    [4]左风,严梅桢,周钟鸣.肠道菌群对中药有效成分代谢作用的研究进展[J].中国中药杂志,2002,27(8):568.
    [5]S. E. Nielsen, V. Breinholt, U. Justesen, et al. In vitro biotransformation of flavonoids by rat liver microsomes[J]. Xenobiotica,1998,28(4):389.
    [6]文敏,李雪,付守廷.黄芩苷药理作用研究新进展[J].沈阳药科大学学报,2008,25(2): 158.
    [7]王(?).黄芩苷在大鼠体内代谢及其代谢产物的生物活性研究[D].中国优秀硕士学位论文全文数据库,2007.
    [8]刑杰.黄芩苷在动物体内的吸收和代谢研究[D].中国博士学位论文全文数据库,2007.
    [9]Zhang L, Lin Q Zuo Z. Involvement of UDP-Glucuronosyltransferases in the Extensive Liver and Intestinal First-Pass Metabolism of Flavonoid Baicalein[J]. Pharm Res,2007,24(1):81.
    [10]舒毅,谭陶,张思宇,等.槲皮素的药理学研究进展[J].华西药学杂志,2008,23(6):689.
    [11]Kim DH, Kim SY, Park SY,et al. Metabolism of quercitrin by human intestinal bacteria and its relation to some biological activities[J]. Biol Pharm Bull,1999,22(7):749.
    [12]李云峰,郭长江.槲皮素代谢的研究进展[J].生理科学进展,2002,33(1):53.
    [13]Galati G, Moridani MY, Chan TS, et al. Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin:glutathione oxidation and conjugation[J]. Free Radic Biol Med, 2001,30(4):370.
    [14]Silva ID, Rodrigues AS, Gaspar J, et al. Involvement of rat cytochrome 1Al in the biotransformation of kaempferol to quercetin:relevance to the genotoxicity of kaempferol[J]. Mutagenesis,1997,12(5):383.
    [15]潘燕,张岫美.葛根素药理研究近况[J].食品与药品,2005,7(12):10.
    [16]Tian H, Yang B, Xu J, et al. Liquid chromatography-mass spectrometric analysis of puerarin and its metabolite in human urine[J]. J Sep Sci.2006,29(17):2692.
    [17]朱秀媛,苏成业,李振华,等.葛根有效成分的代谢研究III.葛根素的代谢及其药代动力学分析[J].药学学报,1979,14(6):349.
    [18]Prasain JK, Barnes S. Metabolism and bioavailability of flavonoids in chemoprevention: current analytical strategies and future prospectus[J]. Mol Pharm,2007,4(6):846.
    [19]Prasain JK, Jones K, Brissie N, et al. Identification of puerarin and its metabolites in rats by liquid chromatography-tandem mass spectrometry[J]. J Agric Food Chem,2004,52(12):3708.
    [20]张萍,郑万金,仲英.染料木素的研究进展[J].齐鲁药事,2008,27(2):l03.
    [21]Kulling SE, Honig DM, Simat TJ, et al. Oxidative in vitro metabolism of the soy phytoestrogens daidzein and genistein[J]. J Agric Food Chem,2000,48(10):4963.
    [22]Atherton KM; Mutch E, Ford D. Metabolism of the soyabean isoflavone_daidzein_by CYP1 A2 and the extra-hepatic CYPs 1A1 and 1B1 affects biological activity[J]. Biochem Pharmacol,2006,72(5):624.
    [23]Breinholt VM, Rasmussen SE, Brφsen K, et al. In vitro metabolism of genistein and tangeretin by human and murine cytochrome P450s[J]. Pharmacol Toxicol,2003,93(1):14.
    [24]Hu M, Krausz K, Chen J, et al. Identification of CYP1A2 as the main isoform for the phase I hydroxylated metabolism of genistein and a prodrug converting enzyme of methylated isoflavones[J]. Drug Metab Dispos,2003,31(7):924.
    [25]Roberts-Kirchhoff ES, Crowley JR, Hollenberg PF, et al. Metabolism of genistein by rat and human cytochrome P450s[J]. Chem Res Toxicol,1999,12(7):610.
    [26]郭齐,李贻奎,王志国,等.丹皮酚药理研究进展[J].中医药信息.2009,26(1):20.
    [27]Pan JY, Cheng YY. Identification and analysis of absorbed and metabolic components in rat plasma after oral administration of'Shuangdan'granule by HPLC-DAD-ESI-MS/MS[J]. J Pharm Biomed Anal,2006,42(5):565.
    [28]Xie Y, Zhou H, Wong YF, et al. Study on the pharmacokinetics and metabolism of paeonol in rats treated with pure paeonol and an herbal preparation containing paeonol by using HPLC-DAD-MS method[J]. J Pharm Biomed Anal,2008,46(4):748.
    [29]Yasuda T, Kon R, Nakazawa T, et al. Metabolism of Paeonol in Rats[J]. J Nat Prod,1999, 62(8):1142.
    [30]应景艳,顾少君,姚彤炜.木犀草素(苷)与药物代谢酶相互作用的研究进展[J].药学学报,2008,43(4):335.
    [31]Shimoi K, Saka N, Kaji K, et al. Metabolic fate of luteolin and its functional activity at focal site[J]. Biofactors,2000,12(1-4):181.
    [32]王海娣,刘艾林,杜冠华.芹菜素药理作用的研究进展[J].中国新药杂志,2008,17(18):1561,
    [33]常佩亮,夏薇,张宇,等.大鼠肠道菌群对芹菜素代谢影响[J].中国公共卫生,2008,24(3):382.
    [34]Gradolatto A, Canivenc-Lavier MC, Basly JP, et al. Metabolism of apigenin by rat liver phase I and phase Ⅱ enzymes and by isolated perfused rat liver[J]. Drug Metab Dispos,2004,32(1):58.
    [35]赵秀娟,夏薇,赵艳,等.芹菜素人体内代谢研究[J].中国公共卫生,2008,24(4):446.
    [36]李娌,王学美.淫羊藿苷药理作用研究进展[J].中国中药杂志,2008,33(23):2727.
    [37]刘健.淫羊藿苷体内外代谢行为及其代谢产物相关活性研究[D].中国优秀硕士学位论文全文数据库,2004.
    [38]徐文,张亚萍,张卫东,等.离体大鼠肠道菌群对淫羊藿苷的代谢研究[J].世界科学技术-中医药现代化,2006,8(6):98.
    [39]刘铁汉,王毅,王本祥,等.淫羊藿苷的肠菌代谢研究I.肠内细菌对淫羊藿苷的代谢转化[J].中草药,2000,31(11):834.
    [40]常国彬,李季平.水飞蓟及其药用有效成分研究[J].辽宁师专学报,2004,6(1):24-25,44.
    [41]Gunaratna C, Zhang T. Application of liquid chromatography-electrospray ionization-ion trap mass spectrometry to investigate the metabolism of silibinin in human liver microsomes[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2003,794(2):303.
    [42]伍石华,罗招阳,张坚松.白杨素的抗肿瘤作用及机理研究[J].湖南师范大学学报(医学版),2006,3(4):78.
    [43]Otake Y, Walle T. Oxidation of the flavonoids galangin and kaempferide by human liver microsomes and CYP1A1, CYP1A2, and CYP2C9[J]. Drug Metab Dispos,2002,30(2):103.
    [44]张冬松,高慧媛,吴立军.橙皮苷的药理活性研究进展[J].中国现代中药,2006,8(7):25.
    [45]苏玲,刘启德.柚皮苷生物活性和药代动力学研究新进展[J].创新与管理,2008,2(10):74.
    [46]邓婷婷,刘素纯,贺建华.柚皮提取物有效成分的研究概况[J].中国食物与营养,2008,(6):16.
    [47]Brett GM, Hollands W, Needs PW, et al. Absorption, metabolism and excretion of flavanones from single portions of orange fruit and juice and effects of anthropometric variables and contraceptive pill use on flavanone excretion[J]. Br J Nutr,2009,101(5):664.
    [48]Zhang J, Brodbelt JS. Screening flavonoid metabolites of naringin and narirutin in urine after human consumption of grapefruit juice by LC-MS and LC-MS/MS[J]. Analyst,2004,129(12): 1227.
    [49]廖咏玲,许锋,程水源.银杏叶萜内酯的研究进展[J].安徽农业科学,2006,34(19):4956.
    [50]卢鑫,高尔.银杏苦内酯药理作用的研究进展[J].中国药房,2006,17(3):221.
    [51]王旋,张慧灵,顾振纶,等.银杏内酯药理作用的研究进展[J].中草药,2005,36(11):1741.
    [52]裘雅渔.银杏萜内酯的体外代谢及其药物相互作用[D].中国优秀硕士学位论文全文数据库,2005.
    [53]戴桂馥,王俊峰,何帅伟,等.穿心莲内酯及其衍生物的药理活性研究进展[J].中成药,2006,28(7):1032.
    [54]何祥久.穿心莲内酯大鼠体内代谢产物及瓜萎薤白白酒汤活性成分研究[D].中国博士学位论文全文数据库,2002.
    [55]崔亮.穿心莲内酯在人体内的代谢产物研究[D].中国博士学位论文全文数据库,2004.
    [56]张春枝,安利佳,金凤燮.人参皂苷生理活性的研究进展[J].食品与发酵工业,2002,28(4):70.
    [57]王海南.人参皂苷药理研究进展[J].中国临床药理学与治疗学,2006,11(11):1201-1206.
    [58]Karikura M, Miyase T, Tanizawa H, et al. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. VI. The decomposition products of ginsenoside Rb2 in the stomach of rats[J]. Chem Pharm Bull (Tokyo),1991,39(2):400.
    [59]王毅,刘铁汉,王巍,等.人参皂苷Rg1的肠内菌代谢及其代谢产物吸收入血的研究[J].药学学报,2000,35(4):284.
    [60]Karikura M, Miyase T, Tanizawa H, et al. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. V. The decomposition products of ginsenoside Rb2 in the large intestine of rats[J]. Chem Pharm Bull (Tokyo),1990,38(10):2859.
    [61]弓晓杰.人参皂苷酶代谢产物化学修饰及其抗癌活性研究[D].2004.
    [62]王利平.人参皂苷的体内代谢[J].海峡药学,2000,12(4):3.
    [63]张怡轩,陈晓莹,赵文倩.人参皂苷生物转化的研究进展[J].沈阳药科大学学报,2008,25(5):419.
    [64]Hasegawa H, Sung JH, Matsumiya S, et al. Main ginseng saponin metabolites formed by intestinal bacteria[J]. Planta Med,1996,62(5):453.
    [65]张蓓,林东海,刘珂.人参皂苷的体内分布与代谢研究概况[J].中国中医药信息杂志,2007,14(2):92.
    [66]董淑华,陈波,马忠泽.人参皂苷的体内代谢研究[J].2004,15(1):2.
    [67]郭燕,王俊,陈正堂.青蒿素类药物的药理作用新进展[J].中国临床药理学与治疗学,2006,11(6):615.
    [68]唐红婕.青蒿素类药物临床应用研究进展[J].华北煤炭医学院学报,2008,10(3):309.
    [69]Svensson US, Ashton M. Identification of the human cytochrome P450 enzymes involved in the in vitro metabolism of artemisinin[J]. Br J Clin Pharmacol,1999,48(4):528.
    [70]Li XQ, Bjorkman A, Andersson TB, et al. Identification of human cytochrome P450s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data[J]. Eur J Clin Pharmacol,2003,429.
    [71]Mukanganyama S, Naik YS, Widersten M, et al. Proposed reductive metabolism of artemisinin by glutathione transferases in vitro[J]. Free Radic Res,2001,35(4):427.
    [72]胡南,许惠玉,陈志伟.芍药苷的药理学研究进展[J].齐齐哈尔医学院学报,2007,28(9):1093.
    [73]Takeda S, Isono T,Wakui Y, et al. In-vivo assessment of extrahepatic metabolism of paeoniflorin in rats:relevance to intestinal floral metabolism [J]. J Pharm Pharmacol,1997, 49(1):35.
    [74]赵锐,邢增涛,李向高.肠内细菌对天然药物的化学修饰[J].吉林农业大学学报,1998,20(2):103.
    [75]孟艳秋,陈瑜,王瓒,等.熊果酸的研究进展[J].中国新药杂志,2007,16(1):25.
    [76]肖坤福,郑云法,刘成左,等.熊果酸的研究进展[J].时珍国医国药,2005,16(12):1298.
    [77]程晓华.熊果酸体外吸收及代谢机制的研究[D].中国优秀硕士学位论文全文数据库,2007.
    [78]崔岚,祝德秋,安富荣.吴茱萸碱药理作用研究进展[J].中国中医药信息杂志,2005,12(6):108.
    [79]Li L, Liu R, Ye M, et al. Microbial metabolism of evodiamine by Penicillium janthinellum and its application for metabolite identification in rat urine[J].2006,39(4):561.
    [80]李丽.吴茱萸碱、吴茱萸次碱和左旋四氢巴马亭在微生物和大鼠体内的代谢研究[D].
    [81]李艺,游雪甫,蒋建东.小檗碱的药动学研究进展[J].中国新药杂志,2008,17(9):733.
    [82]李波,朱维良,陈凯先.小檗碱及其衍生物的研究进展[J].药学学报,2008,43(8):773.
    [83]Qiu F, Zhu Z, Kang N, et al. Isolation and identification of urinary metabolites of berberine in rats and humans[J]. Drug Metab Dispos,2008,36(11):2159.
    [84]Zuo F, Nakamura N, Akao T, et al. Pharmacokinetics of berberine and its main metabolites in conventional and pseudo germ-free rats determined by liquid chromatography/ion trap mass spectrometry[J]. Drug Metab Dispos,2006,34(12):2064.
    [85]Tsai PL, Tsai TH. Hepatobiliary excretion of berberine[J]. Drug Metab Dispos,2004,32(4): 405.
    [86]刘秀金.苦参化学成分及其生物活性研究[D].中国优秀硕士学位论文全文数据库,2008.
    [87]张宏利,张跃进,韩崇选,等.苦参生物活性研究进展[J].西北农林科技大学学报(自然科学版),2004,32(5):31.
    [88]张白嘉,戴瑛,刘榴.苦参总碱、苦参碱药理作用及药代动力学研究近况[J].四川生理科学杂志,1999,2l(4):7.
    [89]陈勇,陈怀侠,杜鹏,等LC/MS分析大鼠体内氧化苦参碱及其主要代谢物[J].药学学报,2005,40(8):740.
    [90]王素军,王广基,李晓天,等LC-MS法研究血浆中氧化苦参碱及其代谢物在犬体内的药代学[J].中国中药杂志,2005,30(2):133.
    [91]Wu XL, Hang TJ, Shen JP, et al. Determination and pharmacokinetic study of oxymatrine and its metabolite-matrine in human plasma by liquid chromatography tandem mass spectrometry[J]. J Pharm Biomed Anal,2006,41(3):918.
    [92]王明雷,周秋丽,王本祥.氧化苦参碱肠内菌代谢及吸收入血活性成分的研究[J].中国中药杂志,2001,26(4):272.
    [93]李乐,张彩玲,宋必卫.青藤碱的药理研究与临床应用[J].中药新药与临床药理,2006, 17(4):310.
    [94]程维明.青风藤化学成分及青藤碱大鼠体内代谢研究[D].中国博士学位论文全文数据库,2005.
    [95]Cheng WM, Qiu F, Yao XS. Three major urinary metabolites of sinomenine in rats[J]. J Asian Nat Prod Res,2007,9(1):13.
    [96]丁镇.大黄的化学成分及有效成分大黄酸的半合成研究[D].中国优秀硕士学位论文全文数据库,2007.
    [97]王淑玲,孙云廷,刘昱霞,等.大黄素的药理学研究近况[J].中成药,2007,29(6):877.
    [98]余佳,吴晓晴,孙海峰,等.大黄酸及其衍生物的生物活性研究进展[J].药学与临床研究,2008,16(2):125.
    [99]孙阳,粟强,陈琼华.大黄素及其代谢产物在小鼠体内排泄的定量分析[J].中国药科大学学报,1986,17(2):132.
    [100]Mueller SO, Stopper H, Dekant W. Biotransformation of the anthraquinones emodin and chrysophanol by cytochrome P450 enzymes. Bioactivation to genotoxic metabolites[J]. Drug Metab Dispos,1998,26(6):540.
    [101]Dahms M, Lotz R, Lang W, et al. Elucidation of phase Ⅰ and phase Ⅱ metabolic pathways of rhein:species differences and their potential relevance[J]. Drug Metab Dispos,1997,25(4):442.
    [102]孙阳,陈琼华.中药大黄的生化学研究XVI.大黄素甲醚在动物体代谢产物的分离和鉴定[J].药学学报,1986,2l(10):748.
    [103]Song R, Lin H, Zhang Z, et al. Profiling the metabolic differences of anthraquinone derivatives using liquid chromatography/tandem mass spectrometry with data-dependent acquisition[J]. Rapid Commun Mass Spectrom,2009,23(4):537.
    [104]蔡丽萍,习志刚,杨红.丹参酮的药理作用和临床研究进展[J].广东药学院学报,2008,24(3):321.
    [105]Sun JH, Yang M, Wang XM, et al. Identification of tanshinones and their metabolites in rat bile after oral administration of TTE-50, a standardized extract of Salvia miltiorrhiza by HPLC-ESI-DAD-MSn[J]. J Pharm Biomed Anal,2007,44(2):5645.
    [106]Li P, Wang GJ, Li J, et al. Simultaneous determination of tanshinone IIA and its three hydroxylated metabolites by liquid chromatography/tandem mass spectrometry [J]. Rapid Commun Mass Spectrom,2006,20(5):815.
    [107]Li P, Wang GJ, Li J, et al. Identification of tanshinone IIA metabolites in rat liver microsomes by liquid chromatography-tandem mass spectrometry [J]. J Chromatogr A,2006, 1104(1-2):366.
    [108]Hao H, Wang G, Cui N, et al. Identification of a novel intestinal first pass metabolic pathway: NQO1 mediated quinone reduction and subsequent glucuronidation[J]. Curr Drug Metab,2007, 8(2):137.
    [109]尉芹,马希汉.绿原酸及其提取分离方法评述[J].中成药,2001,23(2):135.
    [110]陈为烤,居文政,谈恒山.绿原酸的体内过程及药物相互作用[J].中药药理与临床,2008,24(3):ll8.
    [111]dos Santos MD, Martins PR, dos Santos PA, et al. Oxidative metabolism of 5-o-caffeoylquinic acid (chlorogenic acid), a bioactive natural product, by metalloporphyrin and rat liver mitochondria[J]. Eur J Pharm Sci,2005,26(1):62.
    [112]Moridani MY, Scobie H, Jamshidzadeh A, et al. Caffeic acid, chlorogenic acid, and dihydrocaffeic acid metabolism:glutathione conjugate formation[J]. Drug Metab Dispos,2001, 29(11):1432.
    [113]罗海,孙中吉.天麻素的基础药理研究和临床应用[J].2007,16(4):465.
    [114]Lin LC, Chen YF, Lee WC, et al. Pharmacokinetics of gastrodin and its metabolite p-hydroxybenzyl alcohol in rat blood, brain and bile by microdialysis coupled to LC-MS/MS[J]. J Pharm Biomed Anal,2008,48(3):909.
    [115]Liu KX, Han GZ, Chang YL, et al. Simultaneous determination of gastrodin and its metabolite by HPLC[J]. Biomed Chromatogr,1987,2(1):17.
    [116]王立青,江荣高,陈蕙芳.厚朴酚与和厚朴酚药理作用的研究进展[J].中草药,2005,36(10):1591.
    [117]殷帅文,何旭梅,郎锋祥,等.厚朴化学成分和药理作用研究概况[J].贵州农业科学,2007,35(6):133.
    [118]张永太,吴皓.厚朴药理学研究进展[J].中国中医药信息杂志,2005,12(5):96.
    [119]Hattori M, Sakamoto T, Endo Y, et al. Metabolism of magnolol from magnoliae cortex. I. Application of liquid chromatography-mass spectrometry to the analysis of metabolites of magnolol in rats[J]. Chem Pharm Bull (Tokyo),1984,32(12):5010.
    [120]Nakazawa T, Yasuda T, Ohsawa K. Metabolites of orally administered Magnolia officinalis extract in rats and man and its antidepressant-like effects in mice[J]. J Pharm Pharmacol,2003, 55(11):1583.
    [12l]周则卫,沈秀.蛇床子素药理活性的研究概况[J].中国新药杂志,2006,15(20):1726.
    [122]孙小兵,叶吉琴.蛇床子素研究进展[J].大众科技,2009,(2):132.
    [123]刘建新,连其深.蛇床子素的药理学研究进展[J].时珍国医国药,2005,16(12):1235.
    [124]张丽芳.蛇床子素在大鼠原代肝细胞中代谢的研究[D].中国优秀硕士学位论文全文数据库,2008.
    [125]马超,郝青南,马兵钢.白藜芦醇的药理功能及分离检测研究进展[J].北方园艺,2008, (4):61.
    [126]韩晶晶,刘炜,毕玉平.白藜芦醇的研究进展[J].生物工程学报,2008,24(11):1851.
    [127]黎永胜,文军.白藜芦醇的药理作用研究进展[J].医学综述,2008,14(3):469.
    [128]Yu C, Shin YG, Chow A, et al. Human, rat, and mouse metabolism of resveratrol[J]. Pharm Res,2002,19(12):1907.
    [129]Piver B, Fer M, Vitrac X, et al. Involvement of cytochrome P450 1A2 in the biotransformation of trans-resveratrol in human liver microsomes[J]. Biochem Pharmacol,2004, 68(4):773.
    [130]刘国敏,郭素华,程维明.栀子的药理作用及其机制研究新进展[J].海峡药学,2008,20(11):8.
    [131]田智勇,于培明,许启泰.中药栀子的研究进展[J].时珍国医国药,2004,15(11):7824.
    [132]Akao T, Kobashi K, Aburada M. Enzymic studies on the animal and intestinal bacterial metabolism of geniposide[J]. Biol Pharm Bull,1994,17(12):1573.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700