湖北麦冬抗Ⅱ型糖尿病活性与物质基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖北麦冬(Liriope spicata (Thunb.) Lour. var. prolifera Y. T. Ma)是湖北省的道地药材,是中药麦冬的主流品种之一。在中医临床上湖北麦冬与杭麦冬和川麦冬等同入药,用于治疗热病伤津、心烦口渴等症。在古今治疗糖尿病(消渴病)的中药复方中麦冬常作为主药,近年多位学者就麦冬的“消渴”作用做了一些抗糖尿病研究,表明川、杭麦冬具有抗糖尿病的作用,并初步证明其发挥抗糖尿病作用的活性物质主要是麦冬多糖。对湖北麦冬多糖降血糖的相关研究在国内外还未见公开报道,但湖北麦冬多糖极可能也具有降血糖活性。鉴于此,在国家自然科学基金和国家十一五科技支撑计划的资助下,本论文对湖北麦冬抗Ⅱ型糖尿病活性、活性物质(湖北麦冬多糖)的制备工艺、理化性质及结构特征进行了研究。
     本论文由四个部分组成。第一部分为湖北麦冬抗Ⅱ型糖尿病的活性及作用机理研究,证实湖北麦冬抗Ⅱ型糖尿病活性,确定其活性物质基础为多糖成分,并推测改善胰岛素抵抗是其抗Ⅱ型糖尿病机理之一。第二部分为湖北麦冬多糖(TLSP)制备工艺研究,确定出一条稳定、天然、高效的湖北麦冬多糖实验室制备路线。第三部分是湖北麦冬多糖(TLSP)的理化性质及结构研究,获得了TLSP及从中分离出的均一多糖(LSP1和LSP2)稳定的理化参数,并解析出LSP1和LSP2的一级结构特征。第四部分是综述,对2005年1月至2010年12月报道的具有潜在抗糖尿病活性的单体化合物进行了概括。
     第一部分
     为探究湖北麦冬是否具有抗糖尿病(Ⅱ型糖尿病)活性、活性物质是什么,本研究首先采用高脂高糖饲料+小剂量STZ诱导的Ⅱ型糖尿病小鼠模型,对湖北麦冬抗糖尿病活性成分提取溶剂(95%乙醇或水)进行筛选研究,确定只有水提取物(WE)具有较强的抗糖尿病活性(降低糖尿病小鼠的空腹血糖(P<0.01),改善糖尿病小鼠糖耐量(P<0.01))。
     接着,本研究对湖北麦冬水提取物(WE)进行分离、纯化,得到湖北麦冬粗多糖(CP)、总多糖(TLSP)及无糖部位(NP),并采用同样的动物模型对各部位进行活性筛选,确定WE、CP、TLSP均具有较强的抗糖尿病活性(降血糖及改善糖耐量,P<0.01),活性强度依次为WE     为进一步探讨湖北麦冬多糖的抗Ⅱ型糖尿病活性物质基础,本研究又对TLSP进行分离纯化,得到均一多糖1(LSP1)和2(LSP2),并采用同样的动物模型对TLSP、LSP1和LSP2进行活性比较。实验结果证实,TLSP、LSP1和LSP2均可显著降低Ⅱ型糖尿病小鼠的血糖(P<0.01),改善糖耐量(P<0.01)和降低胰岛素抵抗指数(P<0.01),各项作用强度与罗格列酮比较没有显著性差异(P>0.05)。而且能降低血总胆固醇(P<0.01)和甘油三酯(P<0.01)、增加高密度脂蛋白相对含量(P<0.01)并降低低密度脂蛋白水平(P<0.01),其效果均较罗格列酮好(P<0.05或P<0.01),体现湖北麦冬多糖能从多方面综合治疗糖尿病、缓解其症状。通过各方面综合比较,确定三者抗Ⅱ型糖尿病活性强度基本相当:TLSP≈LSP1≈LSP2,100mg/kg≈200mg/kg。由于TLSP的制备工艺相对简单,工业生产周期短、成本低。因此本项目组选择TLSP为候选药物进行后续开发,并初步确定其对小鼠的有效剂量为100mg/kg。
     同时,在对TLSP、LSP1和LSP2的药效学研究中,发现TLSP、LSP1和LSP2均具有改善胰岛素抵抗(HOMA-IR)的作用,因此,本课题顺着胰岛素抵抗这条路线,研究湖北麦冬多糖对改善胰岛素信号转导通路和肝糖代谢的影响,以初步探究抗Ⅱ型糖尿病机理。机理研究结果表明,TLSP、LSP1和LSP2均能明显提高糖尿病小鼠肾脏组织中胰岛素信号因子—胰岛素受体(InsR)、胰岛素受体底物-1(IRS-1)、磷脂酰肌醇3激酶(PI3K)的表达水平(P<0.01),进而改善胰岛素信号传导,增加组织对胰岛素的敏感性,从而改善糖尿病症状,这是湖北麦冬多糖抗糖尿病机理之一。同时,TLSP、LSP1和LSP2还能增加肝糖原含量(P<0.01)及葡萄糖激酶(GcK)活性(P<0.01),降低葡萄糖-6-磷酸酶(G6P)活性(P<0.01),从而改善糖尿病小鼠肝内糖代谢紊乱,增强肝细胞合成糖原及促进葡萄糖利用,进而改善糖尿病症状,这是湖北麦冬多糖抗糖尿病机理之二。
     第二部分
     在确定以湖北麦冬多糖TLSP作为抗糖尿病候选药物开发后,本研究分别采用正交和单因素实验对TLSP的沸水提取、酶解除蛋白质、透析除小分子、醇沉及DEAE-纤维素柱层析脱色工艺进行优化。经反复验证,得到一条稳定的TLSP制备路线。确定出的制备路线为:
     取湖北麦冬干燥块根的粗粉,煎煮3次,每次加入水的体积分别为粗粉重量的4、4和2倍,每次30分钟,合并滤液,60℃减压浓缩得到6倍药材体积粗多糖液;将粗多糖液调节pH 6和水浴温度45℃,加入0.3%药材量的木瓜蛋白酶(12U/mg),酶解2小时,将酶解后的多糖液煮沸5 min,静置放冷,抽滤去沉淀。然后将滤液装入透析袋(Mw1000)(装入的液体量不超过透析袋容积的2/3)用自来水和蒸馏水各透析1天,去除小分子。透析后的袋内多糖液(保留部分)缩到原药材重量的1.5倍体积,加入95%的乙醇,以乙醇终浓度80%在室温下(20±2℃)醇沉24h,收集沉淀;上清液减压浓缩到原药材重量的1.0倍体积,再加入95%的乙醇,以乙醇终浓度80%在室温下(20±2℃)再醇沉24h,收集沉淀;合并沉淀部分,真空/冷冻干燥获得湖北麦冬粗多糖。湖北麦冬粗多糖蒸馏水溶解、调节浓度0.2g/mL,采用DEAE-纤维素52层析柱脱色纯化,上样体积5mL/g填料,上样及洗脱流速2.5柱体积/h(BV/h),蒸馏水/纯水为洗脱剂,水洗量3 BV,收集量6 BV(从上样后第2 BV的下柱液开始收集)。收集到的多糖液减压浓缩、真空/冷冻干燥即得湖北麦冬多糖TLSP。
     第三部分
     为了更好的对湖北麦冬多糖(TLSP)进行质量控制,本论文对TLSP的理化性质及其主要的组成成分(LSP1和LSP2)的一级结构特征进行研究。
     主要结果如下:
     (1)从TLSP中分离得到2个结构新颖的均一多糖,LSP1和LSP2,两均一多糖分别占TLSP的25.4%和64.2%。
     (2)运用多种物理、化学方法对TLSP、LSP1和LSP2的常规理化性质进行了研究,获得了TLSP、LSP1和LSP2稳定的理化参数。
     (3)运用多种光谱、色谱、化学等方法对LSP1和LSP2的一级结构进行研究,获得LSP1和LSP2较精确的结构信息。LSP1为小分子果聚糖(Mw为3199),聚合度为20,由19个β-D-果糖和1个α-D-葡萄糖构成;其主链是以1、2链接的果糖残基构成,有6个重复单元,每个单元包含1个1、2位连接的双取代果糖残基、1个1、2、6位连接的三取代果糖残基和1个2位连接的单取代果糖残基;多糖主链的一个末端以2位羟基与1个α-D-葡萄糖的1位羟基链接成苷,另一个末端以1位羟基与1个β-D-果糖的2位羟基链接成苷。LSP2也为小分子果聚糖(Mw为4287),聚合度为26,由25个β-D-果糖和1个α-D-葡萄糖构成;其主链是以1、2链接的果糖残基构成,有6个重复单元,每个单元包含2个1、2位连接的双取代果糖残基、1个1、2、6位连接的三取代果糖残基和1个2位连接的单取代果糖残基;多糖主链的一个末端以2位羟基与1个α-D-葡萄糖的1位羟基链接成苷,另一个末端以1位羟基与1个β-D-果糖的2位羟基链接成苷。
     第四部分
     本部分对2005年1月至2010年12月报道的具有抗糖尿病潜力的单体化合物进行了概括,侧重于介绍从药用植物分离获得的一些具有抗糖尿病活性的化合物(包括已知的和新发现的),包括皂甙、黄酮、生物碱、蒽醌类、萜类、香豆素类、酚类、多糖和其他一些化合物,以说明抗糖尿病天然产物研究的必要性。
Liriope spicata (Thunb.) Lour. var. prolifera Y. T. Ma, which belongs to Liliaceae family, is indigenous to Hubei province, China. The tuberous root, recorded as Radix Liriopes in Pharmacopoeia of the People's Republic of China, is frequently used as "maidong" in prescriptions of traditional Chinese medicine for the treatment of diabetes mellitus (DM). Recently, some scholars have discovered that Radix Ophiopogonis (Ophiopogon japonicus (Thunb.) Ker-Gawl), which is another type of traditional Chinese medicine "maidong", showed considerable hypoglycemic effects and the water extract as well as polysaccharides were the main active components. Thus, the tuberous root of Liriope spicata var. prolifera might also have potential anti-diabetic activities. However, anti-diabetic effects of the tuberous root of Liriope spicata var. prolifera and the polysaccharides from it have not been reported. Therefore, supported by the Key Technologies R & D Program and the National Natural Science Foundation of China, the study on screening of active substance from the tuberous root of Liriope spicata var. prolifera on streptozotocin (STZ)-induced type II diabetic mice was carried out, as well as the preparation, physical-chemical properties and structural characteristics of the active substances (polysaccharides).
     My work was composed by four parts. The first part was about the anti-diabetic activity of Liriope spicata var. prolifera, as well as the mechanisms of action. The second part was about the preparation of a polysaccharide faction (TLSP) from Liriope spicata var. prolifera. The third part was about physical-chemical properties and structural characteristics of TLSP and two new polysaccharides (LSP1 and LSP2) separated from it. The last part was a review on natural compounds with anti-diabetic potential reported from 2005 to 2010.
     Part One
     To investigate whether the tuberous root of Liriope spicata var. prolifera possesses anti-diabetic (type 2 diabetic) activities and find out the active substances, this study firstly screened the activities of 95% ethanol extract (EE) and water extract (WE) form the tuberous root on a type 2 diabetic mice model induced by diets high in fat and fructose and intraperitoneal injection of STZ at a low dose (40 mg/kg). The results indicated that only the water extract (WE) showed significant anti-diabetic effects (a marked decrease of fasting blood glucose (FBG) and a significant improvement on glucose tolerance).
     After that, based on the separation and purification, the crude polysaccharides (CP), a polysaccharide faction (TLSP) and a non-polysaccharide faction (NP, contained no polysaccharides) were obtained from WE. Activity screening of WE, CP, TLSP and NP was also carried out on STZ-induced type 2 diabetic mice. The results proved that WE, CP and TLSP all showed significant anti-diabetic effects (a marked decrease of FBG and a significant improvement on glucose tolerance). Compared the activities, WE     In order to further investigate the anti-diabetic material foundation of polysaccharides from Liriope spicata var. prolifera, separation was performed on TLSP to obtain two polysaccharides both with a single molecular weight, LSP1 and LSP2. Activity screening of TLSP, LSP1 and LSP2 was also carried out on STZ-induced type 2 diabetic mice. The results proved that they all caused a marked decrease of FBG and a significant improvement on glucose tolerance and insulin resistance (HOMA-IR), and all the above effects were the same marked as rosiglitazone. In addition, while lowering total cholesterol (TC), triglyceride (TG) and low-density lipoprotein (LDL) cholesterol levels, TLSP, LSP1 and LSP2 elevated the relative high-density lipoprotein (HDL) cholesterol level (HDL/TC) in serum, and the activities of them were more marked than rosiglitazone. All the above results reflected polysaccharides from Liriope spicata var. prolifera could therapy type 2 diabetes and release symptoms in many ways. Compared with the synthetic activities, there was no difference among TLSP, LSP1 and LSP2 (TLSP≈LSP1≈LSP2,100 mg/kg≈200 mg/kg). Because the preparation of TLSP was easier, shorter (time) and cost-lower than LSP1 and LSP2, our group chose TLSP as a candidate drug for further exploitation.
     During the pharmacodynamics research of polysaccharides from Liriope spicata var. prolifera, we found that TLSP, LSP1 and LSP2 could improve insulin resistance (HOMA-IR). So, following the idea of insulin resistance, our group studied the effects of TLSP, LSP1 and LSP2 on insulin signaling transduction and glucose metabolism to explain the possible anti-diabetic mechanisms. The results indicated that after oral administration of TLSP, LSP1 and LSP2, the protein expression levels of insulin receptor-α(InsR-α), insulin receptor substrate-1 (IRS-1) and phosphatidylinositol 3-kinase (PI3K) in renal tissues of the diabetic mice were significantly increased. In addition, the glycogen content and glucokinase (GK) activity in liver were significantly increased, yet the hepatic glucose-6-phosphatase (G6Pase) activity was decreased. So, the possible anti-diabetic mechanisms of TLSP, LSP1 and LSP2 may be due to the improvement of insulin signaling transduction and glucose metabolism.
     Part Two
     When TLSP was chosen as a candidate drug for further exploitation, orthogonal experiments or/and single-factor designs were investigated to get the best preparation conditions of TLSP from the tuberous root of Liriope spicata var. prolifera, including the extraction by hot water, deproteinization by the Papain enzymolysis, dialysis by a regenerated cellulose membrane tube, repeated precipitation by ethanol, decolorization by a diethylaminoethyl cellulose 52 (DEAE-cellulose 52) column. By repeated verification, we got a stabile preparation of TLSP. The best preparation conditions were as follows:
     Powdered tuberous root was boiled in distilled water three times,0.5 h each time, and the ratios of liquid to solid were 4∶1 (v/w),4∶1,2∶1, respectively. Each extract was then filtered and combined. The water extract was deproteinated by an enzymolysis method with Papain. Deproteinization conditions were pH 5.91 (phosphate buffer), ratio of Papain (12μ/mg) to raw material was 0.3%, and kept in water-bath (45℃) for 2 h. The deproteinated extract was then boiled for 5 min, stored overnight at 4℃and fitered, the filtrate dialyzed using the regenerated cellulose membrane tube (Mw cut-off 1000) against tap water for 1 days and distilled water for another day. The retentate portion (nondialysate) was concentrated to a volume which was 1.5 times of the powdered material weight, and then precipitated by addition of ethanol to a final concentration of 80% (v/v); after 24 h, the precipitates were collected, the supernatant was concentrated to a volume which was 1.2 times of the powdered material weight, and then precipitated again by addition of ethanol to a final concentration of 80%(v/v); after 24 h, the precipitates were collected. The precipitates obtained by twice ethanol precipitation were combined, vacuum dried to obtain the crude polysaccharides. The crude polysaccharides were dissolved in water in a concentration of 0.2 g/mL, applied to a DEAE-cellulose 52 column. The sample volume was 5 mL/g column filler, the flow was 2.5 column body volumes (BV) per hour, the amount of water used for elution was 3 BV, and the collection amount of elution was 6 BV (from the 2nd BV to 7th BV of the elution). The fraction eluted with water was further vcuum concentrated, vacuum dried or lyophilized to obtain TLSP.
     Part Three
     In order to make the quality of TLSP be easy controlled, this study investigated the physical-chemical properties of TLSP, LSP1 and LSP2, as well as the primary structural characteristics of LSP1 and LSP2.
     The main results as follows:
     (1) Two new polysaccharides, LSP1 and LSP2, were separated from TLSP. Their yields were 25.4% and 64.2%, respectively.
     (2) On the basis of several chemical and physical methods, the stable physical-chemical parameters of TLSP, LSP1 and LSP2 were finally determined.
     (3) The primary structural characteristics of LSP1 and LSP2 were investigated by HPGPC, FT-IR, UV, NMR spectroscopy, periodate oxidation and Smith degradation, methylation analysis and GC-MS. Based on the data obtained, LSP1 and LSP2 were two fructans with the molecular weights 3.20 and 4.29 kDa, respectively. They both have a backbone structure with six repeating units; each repeating unit in LSP1 comprises (1, 2→)-linked, (1,2,6→)-linked, and (2→)-linked fructosyl residues in the ratio of 1∶1∶1 and in LSP2 in the ratio of 2∶1∶1; a glucosyl residue and a fructosyl residue linked with the two terminals of the backbone of both LSP1 and LSP2, respectively.
     Part Four
     The last part was a review on natural compounds with anti-diabetic potential reported in the literature from January 2005 to December 2010, in order to identify the research needs in this area. it focuses on some new and known chemical compounds isolated mainly from medicinal plants possessing anti-diabetic properties, including saponins, flavonoids, alkaloids, anthraquinones, terpenes, coumarins, phenolics, polysaccharides, and some other compounds.
引文
[1]Yang, W., Dou, K., Song, W., et al. Prevalence of Diabetes among Men and Women in China. The New England Journal of Medicine 2010,362:1090-1101.
    [2]http://www.fda.gov/ForConsumers/ConsumerUpdates/ucm201509.htm.(美国FDA网站)
    [3]Xie, J., Wu, J., Mehedale, S., et al. Anti-hyperglycemic effect of the polysaccharides fraction from American ginseng berry extract in ob/ob mice. Phytomedicine 2004,11: 182-187.
    [4]Zhou, X., Wang, D., Sun, P., et al. Effects of soluble tea polysaccharides on hyperglycemia in alloxan-diabetic mice. Journal of Agricultural and Food Chemistry 2007,55:5523-5528.
    [5]Alarcon-Aguilar, F., Jimenez-Estrada, M., Reyes-Chilpa, R., et al. Hypoglycemic effect of extracts and fractions from Psacalium decompositum in healthy and alloxan-diabetic mice. Journal of Ethnopharmacology 2000,72:21-27.
    [6]Yuan, Z., He, P., Cui, J., et al. Hypoglycemic effect of water-soluble polysaccharide from Auricularia auricular-judae Quel. on genetically diabetic KKAy mice. Bioscience, Biotechnology, Biochemistry 1998,62:1898-1903.
    [7]周云枫,吴勇,欧阳静萍.黄芪多糖对2型糖尿病大鼠肾组织胰岛素信号转导的影响.武汉大学学报2005,26(2):140-142.
    [8]Li, S., Zhang, G., Zeng, Q., et al. Hypoglycemie activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia. Phytomedicine,2006,23: 428-433.
    [9]Kiho, T., Morimoto, H., Kobayashi, T., et al. Effect of a polysaccharide (TAP) from the fruiting bodies of Tremella on glucose metabolism in mouse liver. Bioscience, Biotechnology, Biochemistry2000,64:417-419.
    [10]徐昭玺.中药种植技术指南[M].北京:中国农业出版社,2000,(9):262-266.
    [11]Amala, S. Traditional medicines for modern times:antidiabetic plants. Boca Raton: Taylor & Francis 2006:142.
    [12]张卫星.麦冬多糖对四氧嘧啶糖尿病小鼠高血糖的降低作用.中草药1993,24(1):30-31.
    [13]陈卫辉,钱华,王慧中.麦冬多糖对正常和实验性糖尿病小鼠血糖的影响.中国现代应用药学杂志1998,15(4):21-23.
    [14]黄琦,许家鸾.麦冬多糖对2型糖尿病血糖及胰岛素抵抗的影响.浙江中西医结合杂志2002,12(2):81-82.
    [15]Grundy, G., Brewer, H., Cleeman, J., et al. Definition of metabolic syndrome:Report of the national heart, lung, and blood institute/American Heart Association Conference on scientific issues related to definition. Journal of the American Heart Associaton Circulation 2004,109:433-438.
    [16]Zethelius, B., Hales, C., Lithell, H., et al. Insulin resistance, impaired early insulin response, and insulin propeptides as predictors of the development of type 2 diabetes:a population-based,7-year follow-up study in70-year-old men. Diabetes Care 2004,27: 1433-1438.
    [17]Basu, R., Breda, E., Oberg, A., et al. Mechanisms of the age-associated deterioration in glucose tolerance:contribution of alterations in insulin secretion, action, and clearance. Diabetes 2003,52:1738-1748.
    [18]Saltiel, A. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 2001,104:517-529.
    [19]Saltie, A., Kahn C. Insulin signaling and the regulation of glucose and lipid metabolism. Nature 2001,414:799-806.
    [20]Folli, F., Saad M., Backer J., et al. Regulation of phosphatidylinositol 3-kinase activity in liver and muscle of animal models of insulin-resistant and insulin-deficient diabetes mellitus. Journal of Clinical Investigation 1993,92:1787-1794.
    [21]徐叔云,卞濂,陈修.药理实验方法学[M].北京:人民卫生出片社1982,1275-1277.
    [22]Dubois, M. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 1956,28:350-356.
    [23]任颖,陆广华,厉锦华,等.HOMA法和血糖钳夹法胰岛素抵抗指数的关系.上海第二军医大学学报2002,22(4):325-330.
    [24]张铭,司少艳,韩瑞刚,等.免疫组化SP法与PicTureTM两步法的比较.诊断病理学杂志2004,11(1):58-59.
    [25]刘建文.药理实验方法学-新技术与新方法(第二版)[M].北京:化学工业出版社.2008,244.
    [26]Tranulis, M., Dregni, O., Christophersen, B., et al. A glucokinase-like enzyme in the liver of Atlantic salmon (Salmo salar). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 1996,114:35-39.
    [27]Massa, L., Baltrusch, S., David, A. et al. Interaction of 6-phosphofructo-2-kinase fructose-2,6-bisphosphatase (PFK-2/FBPase-2) with glucokinase activates glucose phosphorylation and glucose metabolism in insulinproducingcells. Diabetes 2004,53: 1020-1029.
    [28]Trinder, P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Annals of Clinical Biochemistry 1969; 6:24-27.
    [29]Pushparaj, P., Tan, B., Tan, C., et al. The mechanism of hypoglycemic action of the semi-purified fractions of Averrhoa bilimbi in streptozotocin-diabetic rats. Life Sciences 2001,70:535-547.
    [30]Seifter, S., Dayton, S., Novic, B., et al. The estimation of glycogen with the anthrone reagent. Archives of Insect Biochemistry and Physiology 1950,25:191-200.
    [31]郭啸华,刘志红,李恒,等.高糖高脂饮食诱导的Ⅱ型糖尿病大鼠模型及其肾病特点.中国糖尿病杂志2002,10(5):290-294.
    [32]Polonsky, K., Sturis, J., Bell, G., et al. Non-insulin-dependent diabetes mellitus a genet-ically programmed failure of the beta cell to compensate for insulin resistance. The New England Journal of Medicine 1996,334:777-783.
    [33]Emoto, M., Nishizawa, Y., Maekawa, K., et al. Homeostasis model assessment as a clinical index of insulin resistanc in type 2 diabetic patients treated with Sulfonylureas. Diabetes Care 1999,22:818-822.
    [34]郑以漫.非胰岛素依赖性糖尿病合并冠心病发病机制的研究进展.国外医学:内科学分册1998,25(1):1-3
    [35]段淑芳,周国英.高脂血症与2型糖尿病关系的研究进展.现代中西医结合杂志2004,13(10):1390-1391.
    [36]Rhoads, G., Gulbrandse, C., Kagen, A. Serum lipoprotein and coronary artery disease in a population study of Hawaiian Japanese men. New England Journal of Medicine 1976,294:293-298.
    [37]Mayne, P. Clinical Chemistry in Diagnosis and Treatment [M]. London:Edward Arnold (A Division of Hodder Headline Plc) 1996,224-241.
    [38]Quinn, L. Mechanisms in the development of type 2 diabetes mellitus. The Journal of Cardiovascular Nursing 2002,16:1-16.
    [39]Shao, J., Yamashita, H., Qiao, I., et al. Phosphatidylinositol 3-kinase redistribution is associated with skeletal muscle insulin resistance in gestational diabetes mellitus. Diabetes,2002,57:19.
    [40]金丹,陆付耳.P13-K在Ⅱ型糖尿病发病机制中的作用.医学综述2007,13(1):21-23.
    [41]Cusi, K., Maezono, K., Osman, A., et al. Insulin resistance differentially affects the PI-3-kinase and MAP kinase-mediated signaling in human muscle. The Journal of Clinical Investigation 2000,105:311-320.
    [42]Pagliassotti, M., Kang J, Thresher J., et al. Elevated basal PI-3-kinase activity and reduced insulin signaling in sucrose-induced hepatic insulin resistance. American Journal of Physiology (Endocrinology and Metabolism) 2002,282:170-176.
    [43]Hikino, H., Kobayashi, M., Suzuki, Y., et al. Mechanisms of hypoglycemic activity of aconitan A, a glycan from Aconitum carmichaeli roots. Journal of Ethnopharmacology 1989,25:295-304.
    [44]Chandramohan G., Ignacimuthu, S., Pugalendi, K., et al. A novel compound from Casearia esculenta (Roxb.) root and its effect on carbohydratemetabolism in streptozotocin-diabetic rats. European Journal of Pharmacology 2008,590:437-443.
    [45]Golden, S., Wals, P., Okajima, F., et al. Glycogen synthesis by hepatocytes from diabetic rats. The Biochemical journal 1979,182:727-734.
    [46]DeFronzo, R., Bonadonna, R., Ferrannini, E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care 1992,15:318-368.
    [47]张玲,李青,夏作理,等.预防治疗Ⅱ型糖尿病药物分子作用靶点的相关研究与进展.中国组织工程研究与临床康复2007,11(4):729-732.
    [48]方晓明,姚燕.黄精多糖的提取及含量测定.时珍国药研究1995,6(1),16-18.
    [49]周学敏.槐耳多糖的含量测定.中草药1993,24(3):127-129.
    [50]张小燕,张旭,蔡宝昌,等.麦冬多糖的提取工艺考察.中药新药与临床药理2006,17(6):458-460.
    [51]邹一愚,顾学裘,陈骐.双多糖多相脂质体的研究(1.多糖中有教成分的选择和鉴定).沈阳医学院学报1987,4(3):170-175.
    [52]林元藻,王凤山,王转花.生化制药.北京:人民卫生出版杜.1998,356-358.
    [53]方福穗.分子生物学前沿技术.北京医科大学,中国协和医科大学联台 出版杜1998,278-280.
    [54]梁息岩.长白山松杉灵芝子实体水溶性多糖的分离鉴定与结构研究.生物化学与生物物理学报1993,25(1):59-61.
    [55]Lowry, O., Rosebrough, N., Farr, A., et al. Protein measurement with the Folin phenol reagent. Journal of Chemical Biology 1951,1:265-269.
    [56]Ooi, V., Liu, F. Immunomodulation and anti-cancer activity of polysaccharide protein complexes. Current Medicinal Chemistry 2000,7:715-729.
    [57]刘吉成,牛英才.多糖药物学.人民卫生出版社2008.
    [58]Bradford, M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-binding. Analytical Biochemistry 1976,72:248-252.
    [59]William S. Isolation and characterization of plant cell walls and cell wall components. Methods in Enzymology 1985,118,33-40.
    [60]Chandra, K., Ghosh, K., Ojha, a., et al. A water-soluble glucan isolated from an edible mushroom Termitomyces microcapus. Carbohydrate Polymers 2007,342:2484-2489.
    [61]Needs, P., Selvendran, R. Avoiding oxidative degradation during sodium hydroxide methyl iodide mediated carbohydrate methylation in dimethyl sulfoxide. Carbohydrate Research 1993,245:1-10.
    [62]Perret, J., Bruneteau, M., Michel, M., et al. Effect of growth conditions on the structure of β-D-glucans from Phytophthora parasitica dastur, a phytopathogenic fungus. Carbohydrate Polymers 1992,17,231-236.
    [63]Bjorndal, H., Lindberg, B., Svensson, S. Mass spectrometry of partially methylated alditol acetates. Carbohydrate Research 1967,5:433-440.
    [64]Sweet, D., Shapiro, R., Albersheim, P. Quantitative analysis by various g.l.c. response-factor theories for partially methylated and partially ethylated alditol acetates. Carbohydrate Research 1975,40:217-225.
    [65]Deters, A., Dauer, A., Schneta, E., et al. High molecular compounds (polysaccharides and proanthocyanidins) from Hamamelis virginiana bark:influence on human skin keratinocyte proliferation and differentiation and influence on irritated skin. Phytochemistry 2001,58:949-958.
    [66]Linker, A., Evans, L., Impallomeni, G. The structure of a polysaccharide from infectious strains of Burkholderia cepacia. Carbohydrate Research 2001,335:45-54.
    [67]Afkhami, A., Zarei, A. Spectrophotometric determination of periodate and iodate by a differential kinetic method. Talanta 2001,53:815-821.
    [68]Togola, A., Naess, K., Daollo, D., et al. A polysaccharide with 40% mono-O-methylated monosaccharides from the bark of Cola cordifolia (Sterculiaceae), a medicinal tree from Mali (West Africa). Carbohydrate Polymers 2008,73:280-288.
    [69]Somboonpanyakul, P., Wang, O., Cui, W., et al. Malva nut gum. (Part Ⅰ):Extraction and physicochemical characterization. Carbohydrate Polymers 2006,64:247-253.
    [70]Krishnamoorthi, S., Mal, D., Singh, R. Characterization and solution properties of a partially hydrolyzed graft copolymer of polysaccharide and dextran. Journal of Applied Polymer Science 2008,110:1297-1303.
    [71]Xu, X., Liu, W., Zhang, L. Rheological behavior of Aeromonas gum in aqueous solutions. Food Hydrocolloids 2006,20:723-729.
    [72]Tong, H., Liang, Z., Wang, G. Structural characterization and hypoglycemic activity of a polysaccharide isolated from the fruit of Physalis alkengi L. Carbohydrate Polymers 2008,71:316-323.
    [73]Zhang, W. Biochemical technology of glycoconjugate research; Shanghai Science and Technology Press 1987, p 127-128.
    [74]Park, F. Application of IR spectroscopy in biochemistry, biology, and medicine. New York:Plenum 1971, p 100-140.
    [75]Yang, X., Zhao, Y., Lv, Y. Chemical composition and antioxidant activity of an acidic polysaccharide extracted from Cucurbita moschata Duchesne ex Poiret. Journal of Agricultural and Food Chemistry 2007,55:4684-4690.
    [76]Mondal, S., Ray, B., Ghosal, P., et al. Structural features of a water soluble gum polysaccharide from Murraya paniculata fruits. International Journal of Biological Macromolecules 2001,29:169-174.
    [77]陈云龙,何国庆,华允芬,等.细茎石斛多糖的提取分离纯化和性能分析.中国药学杂志2003,38(7):4941-4943.
    [78]York, W. Isolation and characterization of plant cell walls and cell wall components. Methods in Enzymology 1985,118:33-40.
    [79]张维杰.糖复合物生化研究技术(第二版).杭州:浙江大学出版社1999,p130-131.
    [80]Chen, X., Tian, G. Structural elucidation and antitumor activity of a fructan from Cyathula officinalis Kuan. Carbohydrate Research 2003,338:1235-1241.
    [81]Davis, H., Hines, H., Edwards, J., et al. Structural elucidation of a water insoluble glucan produced by a cariogenic oral Streptococcus. Carbohydrate Research 1986,156: 69-77.
    [82]Rolf, D., Gray, G. Analysis of the linkage positions in D-fructofuranosyl residues by the reductive-cleavage method. Carbohydrate Research 1984,131:17-28.
    [83]Peter, J., Simms, W., Boyko, J., et al. The structural analysis of a levan produced by Streptococcus salivarius SS2. Carbohydrate Research 1990,208:193-198.
    [84]Spies, T., Praznik, W., Hofinger, A., et al. The structure of the fructan sinistrin from Urginea maritima. Carbohydrate Research 1992,235:221-230.
    [85]蔡孟深,李中军.糖化学.北京:化学工业出版社2007,398-407.
    [86]Zhang, W. J. Technology of biochemical research on compound polysaccharide. Zhejiang:Zhejiang University Press 1999, p 193-198.
    [87]Cerantola, S., Kervarec, N., Pichon, R., et al. NMR characterization of inulin-type fructooligosaccharides as the major water-solution carbohydrates from Matricaria maritime (L.). Carbohydrate Research 2004,339:2445-2449.
    [88]Ritsema, T., Smeekens, S. Fructans:beneficial for plants and humans. Current Opinion in Plant Biology 2003,6:223-230.
    [89]Hendry, G. Evolutionary origins and natural functions of fructans--a climatological, biogeographic and mechanistic appraisal. The New Phytologist 1993,123:3-14.
    [90]Chatterton, N., Harrison, P. Fructan oligomers in Poa ampla. The New Phytologist 1997,136:3-10.
    [91]Wei, J., Chatterton, N., Harrison, P., et al. Characterization of fructan biosynthesis in big bluegrass (Poa secunda). Journal of Plant Physiology 2002,159:705-715.
    [92]Livingston, D., Chatterton, N., Harrison, P. Structure and quantity of fructan oligomers in oat (Avena spp.). The New Phytologist 1993,123:725-734.
    [93]Sims, I., Pollock, C., Horgan, R. Structural analysis of oligomeric fructans from excised leaves of Lolium temulentum. Phytochemistry 1992,31:2989-2992.
    [94]Pavis, N., Chatterton, N., Harrison, P., et al. Structure of fructans in roots and leaf tissues of Lolium perenne. The New Phytologist 2001,150:83-95.
    [95]Chen, X., Liu, Y., Bai, X., et al. Hypoglycemic polysaccharides from the tuberous root of Liriope spicata. Journal of Natural Produscts 2009,72:1988-1992.
    [96]Chen, X., Bai, X., Liu, Y., et al. Anti-diabetic effects of water extract and crude polysaccharides from tuberous root of Liriope spicata var.prolifera in mice. Journal of Ethnopharmacology 2009,122:205-209.
    [97]Bai, X., Chen, X., Liu, Y., et al. Effects of water extract and crude polysaccharides from Liriope spicata var. prolifera on InsR/IRS-1/PI3K pathway and glucose metabolism in mice. Journal of Ethnopharmacology 2009,125:482-486.
    [1]Agarwal, S., Venkatesh, P., Tandon, N. The kidney and the eye in people with diabetes mellitus. The National Medical Journal of India 2008,21:82-89.
    [2]Qi, L., Hu, F., Hu, G. Genes, environment, and interactions in prevention of type 2 diabetes:a focus on physical activity and lifestyle changes. Current Molecular Medicine 2008,8:519-532.
    [3]Wild, S., Rogic, G., Green, A., et al. Global prevalence of diabetes:estimates for the year 2000 and projections for 2030. Diabetes Care 2004,27:1047-1053.
    [4]Yang, W., Lu, J., Weng, J., et al. Prevalence of Diabetes among Men and Women in China. The New England Journal of Medicine 2010,362:1090-1101.
    [5]Roglic, G., Unwin, N., Bennett, P., et al. The burden of mortality attributable to diabetes:realistic estimates for the year 2000. Diabetes Care 2005,28:2130-2135.
    [6]Halimi, S., Schweizer, A., Minic, B., et al. Combination treatment in the management of type 2 diabetes:focus on vildagliptin and metformin as a single tablet. Vascular Health and Risk Management 2008,4:481-492.
    [7]Koehn, F., Carter, G. The evolving role of natural products in drug discovery. Nature Reviews Drug Discovery.2005,4:206-220.
    [8]Jung, M., Park, M., Lee, H., et al. Antidiabetic agents from medicinal plants. Current Medicinal Chemistry.2006,13:1203-1218.
    [9]Tan, M., Ye, J., Turner, N., et al. Anti-diabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chemistry & Biology 2008,15:263-273.
    [10]Tanaka, M., Misawa, E., Ito, Y., et al. Identification of five phytosterols from Aloe vera gel as antidiabetic compounds. Biological & Pharmaceutical Bulletin 2006,29: 1418-1422.
    [11]Misawa, E., Tanaka, M., Nomaguchi, K., et al. Administration of phytosterols isolated from Aloe vera gel reduce visceral fat mass and improve hyperglycemia in Zucker diabetic fatty (ZDF) rats. Obesity Research & Clinical Practice 2008,4:239-245.
    [12]Norberg, A., Hoa. N., Liepinsh, E., et al. A novel insulin-releasing substance, phanoside, from the plant Gynostemma pentaphyllum. Journal of Chemical Biology 2004,279:41361-41367.
    [13]Hoa, N., Norberg, A., Sillard, R., et al. The possible mechanisms by which phanoside stimulates insulin secretion from rat islets. Journal of End ocrinology 2007,192: 389-394.
    [14]Miura, T., Ueda, N., Yamada, K., et al. Anti-diabetic effects of corosolic acid in KK-Ay diabetic mice. Biological & Pharmaceutical Bulletin 2006,29:585-587.
    [15]Daisy, P., Jasmine, R., Ignacimuthu, S., et al. A novel Steroid from Elephantopus scaber L. an Ethnomedicinal plant with anti-diabetic activity. Phytomedicine 2009,16: 252-257.
    [16]Zhang, Z., Li, X., Yang, Y., et al. Ginsenoside Re reduces insulin resistance through inhibition of c-Jun NH2-terminal kinase and nuclear factor-kappaB. Molecular endocrinology 2008,22:186-195.
    [17]Lai, D., Tu, Y., Liu, I., et al. Mediation of β-endorphin by ginsenoside Rh2 to lower plasma glucose in streptozotocin-induced diabetic rats. Planta Medica 2006,72:9-13.
    [18]Perez Gutierrez, R., Vargas Solis, R., Garcia Baez, E., et al. Hypoglycemic activity of constituents from Astianthus viminalis in normal and streptozotocin-induced diabetic mice. Journal of Natural Medicines 2009,63:393-401.
    [19]Gao, D., Li, Q., Li, Y., et al. Anti-diabetic potential of oleanolic acid from Ligustrum lucidum Ait. Canadian Journal of Physiology and Pharmacology 2007,85:1076-1083.
    [20]Sato, H., Genet, C., Strehle, A., et al. Anti-hyperglycemic activity of a TGR5 agonist isolated from Biochemical and Biophysical Research Communications 2007,362: 793-798.
    [21]Qi, L., Yu, Q., Li, P., et al. Quality evaluation of Radix Astragali through a simultaneous determination of six major active isoflavovoids and four main saponins by high-performance liquid chromatography coupled with diode array and evaporative light scattering detectors. Journal of Chromatography A 2006,1134:162-169.
    [22]Yin, X., Zhang, Y., Yu, J., et al. The antioxidative effects of Astragalus saponin I protect against development of early diabetic nephropathy. Journal of Pharmacological Sciences 2006,101:166-173.
    [23]Coskun, O., Kanter, M., Korkmaz, A., et al. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacological Research 2005,51:117-123.
    [24]Quine, S., Raghu, P. Effects of (-)-epicatechin, a flavonoid on lipid peroxidation and antioxidants in streptozotocin-induced diabetic liver, kidney and heart. Pharmacological Reports 2005,57:610-615.
    [25]Kamalakkannan, N., Stanely Mainzen Prince, P. Rutin improves the antioxidant status in streptozotocin-induced diabetic rat tissues. Molecular and Cellular Biochemistry 2006,293:211-219.
    [26]Estrada. O., Hasegawa, M., Gonzalez-Mujica, F., et al. Evaluation of flavonoids from Bauhinia megalandra leaves as inhibitors of glucose-6-phosphatase system. Phytotherapy Research 2005,19:859-863.
    [27]Jang, D., Kim, J., Lee, Y., et al. Puerariafuran, a new inhibitor of advanced glycation end products (AGEs) isolated from the roots of Pueraria lobata. Chemical & Pharmaceutical Bulletin 2006,54:1315-1317.
    [28]Yoo, N., Jang, D., Yoo, J., et al. Erigeroflavanone, a flavanone derivative from the flowers of Erigeron annuus with protein glycation and aldose reductase inhibitory activity. Journal of Natural Products 2008,71:713-715.
    [29]Lee, E., Song, D., Lee, J., et al. Inhibitory effect of the compounds isolated from Rhus verniciflua on aldose reductase and advanced glycation endproducts. Biological & Pharmaceutical Bulletin 2008,31:1626-1630.
    [30]Wirasathien, L., Pengsuparp, T., Suttisri, R., et al. Inhibitors of aldose reductase and advanced glycation end-products formation from the leaves of Stelechocarpus cauliflorus R. E. Fr. Phytomedicine 2007,14:546-550.
    [31]Enoki, T., Ohnogi, H., Nagamine, K., et al. Anti-diabetic activities of chalcones isolated from a Japanese Herb, Angelica keiskei. Journal of Agricultural and Food Chemistry 2007,55:6013-6017.
    [32]Liu, I., Tzeng, T., Liou, S., et al. Improvement of insulin sensitivity in obese Zucker rats by myricetin extracted from Abelmoschus moschatus. Planta Medica 2007,73: 1054-1060.
    [33]Tian, L., Bai, X., Chen, X., et al. Anti-diabetic effect of methylswertianin and bellidifolin from Swertia punicea Hemsl. and its potential mechanism. Phytomedicine 2010,17:533-539.
    [34]Baluchnejadmojarad, T., Roghani, M. Chronic administration of genistein improves aortic reactivity of streptozotocin-diabetic rats:mode of action. Vascular Pharmacology 2008,49:1-5.
    [35]Jung, U., Lee, M., Jeong, K., et al. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. The Journal of Nutrition 2004,134:2499-2503.
    [36]Luo, P., Tan, Z., Zhang, Z., et al. Scutellarin isolated from Erigeron multiradiatus inhibits high glucose-mediated vascular inflammation. Yakugaku Zasshi 2008,128: 1293-1299.
    [37]Kang, Y., Jung, U., Lee, M., et al. Eupatilin, isolated from Artemisia princeps Pampanini, enhances hepatic glucose metabolism and pancreatic beta-cell function in type 2 diabetic mice. Diabetes Research and Clinical Practice 2008,82:25-32.
    [38]Liu, G., Grifman, M., Macdonald, J., et al. Isoginkgetin enhances adiponectin secretion from differentiated adiposarcoma cells via a novel pathway involving AMP-activated protein kinase. Journal of End ocrinology 2007,194:569-578.
    [39]Sengupta, S., Mukherjee, A., Goswami, R., et al. Hypoglycemic activity of the antioxidant saponarin, characterized as alpha-glucosidase inhibitor present in Tinospora cordifolia. Journal of Enzyme Inhibition and Medicinal Chemistry 2009,24: 684-690.
    [40]Lee, Y., Kim, W., Kim, K., et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistance states. Diabetes 2006,55:2256-2264.
    [41]Ko, B., Choi, S., Park, S., et al. Insulin sensitizing and insulinotropic action of berberine from Cortidis rhizoma. Biological & Pharmaceutical Bulletin 2005,28: 1431-1437.
    [42]Pan, G., Huang, Z., Wang, G., et al. The antihyperglycaemic activity of berberine arises from a decrease of glucose absorption. Planta Medica 2003,69:632-636.
    [43]Zhou. L., Yang, Y., Wang, X., et al. Berberine stimulates glucose transport through a mechanism distinct from insulin. Metabolism 2007,56:405-412.
    [44]Cheng, Z., Pang T., Gu, M., et al. Berberine-stimulated glucose uptake in L6 myotubes involves both AMPK and p38 MAPK. Biochimica et Biophysica Acta 2006, 1760:1682-1689.
    [45]Zhang, Y., Li, X., Zou D., et al. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. The Journal of Clinical Endocrinology and Metabolism 2008,93:2559-2565.
    [46]Jung, H., Yoon, N., Bae, H., et al. Inhibitory activities of the alkaloids from Coptidis Rhizoma against aldose. Archives of Pharmacal Research 2008,31:1405-1412.
    [47]Garcia Lopez, P., et al. Quinolizidine alkaloids isolated from Lupinus species enhance insulin secretion. European Journal of Pharmacology 2004,504:139-142.
    [48]Bobkiewicz, K., Dela Mora, P., Wysocka, W., et al. Hypoglycaemic effect of quinolizidine alkaloids-lupanine and 2-thionosparteine on non-diabetic and streptozotocin-induced diabetic rats. European Journal of Pharmacology 2007,565: 240-244.
    [49]Kang, Y., Hu, M., Zhu, Y., et al. Antioxidative effect of the herbal remedy Qin Huo Yi Hao and its active component tetramethylpyrazine on high glucose-treated endothelial cells. Life Science 2009,84:428-436.
    [50]Kato, A., Yasuko, H., Goto, H., et al. Inhibitory effect of rhetsinine isolated from Evodia rutaecarpa on aldose reductase activity. Phytomedicine 2009,16:258-261.
    [51]Choi, S., Lee, S., Jang, K., et al. Anti-diabetic stilbene and anthraquinone derivatives from Rheum undulatum. Archives of Pharmacol Research 2005,28:1027-1030.
    [52]Jang, D., Lee, G., Kim, Y., et al. Anthraquinones from the seeds of Cassia tora with inhibitory activity on protein glycation and aldose reductase. Biological & Pharmaceutical Bulletin 2007,30:2207-2210.
    [53]Kamiya, K., Hamabe, W., Harada, S., et al. Chemical constituents of Morinda citrifolia roots exhibit hypoglycemic effects in xtreptozotocin-Induced diabetic mice. Biological & Pharmaceutical Bulletin 2008,31:935-938.
    [54]Chen, J., Li, W., Wu, J., et al. Hypoglycemic effects of a sesquiterpene glycoside isolated from leaves of loquat (Eriobotrya japonica (Thunb.) Lindl.). Phytomedicine 2008,15:98-102.
    [55]Eliza, J., Daisy, P., Ignacimuthu, S., et al. Normoglycemic, hypolipidemic effect of costunolide isolated from Costus speciosus (Koen ex.Retz.)Sm. in Streptozotocin induced diabetic rats. Chemico-Biological Interactions 2009,179:329-334.
    [56]Yokozawa, T., Yamabe, N., Kim, H., et al. Protective effects of morroniside isolated from Corni Fructus against renal damage in streptozotocin-induced diabetic rats. Biological & Pharmaceutical Bulletin 2008,31:1422-1428
    [57]Lee, S., Choi, S., Lee, J., et al. Anti-diabetic coumarin and cyclitol compounds from Peucedanum japonicum. Archives of Pharmacol Research 2004,27:1207-1210.
    [58]Ogawa, H., Nakamura, R., Baba, K. Beneficial effect of laserpitin, a coumarin compound from Angelica keiskei, on lipid metabolism in stroke-prone spontaneously hypertensive rats. Clinical and Experimental Pharmacology & Physiology 2005,32: 1104-1109.
    [59]Ramesh, B., Viswanathan, P. Pugalendi, K. Protective effect of Umbelliferone on membranous fatty acid composition in streptozotocin-induced diabetic rats. European Journal of Pharmacology 2007,566:231-239.
    [60]Ramesh, B., Pugalendi, K. Antioxidant role of Umbelliferone in STZ-diabetic rats. Life Science 2006,79:306-310.
    [61]Banskota, A., Nguyen, N., Tezuka, Y., et al. Hypoglycemic effects of the wood of Taxus yunnanensis on streptozotocin-induced diabetic rats and its active components. Phytomedicine 2006,13:109-114.
    [62]Schmatz, R., Mazzanti, C., Spanevello, R., et al. Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. European Journal of Pharmacology 2009,61:42-48.
    [63]Schmatz, R., Schetinger, M., Spanevello, R., et al. Effects of resveratrol on nucleotide degrading enzymes in streptozotocin-induced diabetic rats. Life Science 2009,84: 345-350.
    [64]Palsamy, P., Subramanian, S. Modulatory effects of resveratrol on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin nicotinamide induced diabetic rats. Chemico-Biological Interactions 2009,179:356-362.
    [65]Palsamy, P., Subramanian, S. Resveratrol, a natural phytoalexin, normalizes hyperglycemia in streptozotocin-nicotinamide induced experimental diabetic rats. Biomedicine & Pharmacotherapy 2008,62:598-605.
    [66]Yamabe, N., Kang, K., Park, C., et al.7-O-galloyl-D-sedoheptulose is a novel therapeutic agent against oxidative stress and advanced glycation endproducts in the diabetic kidney. Biological & Pharmaceutical Bulletin 2009,32:657-664.
    [67]Heo, S., Jin, Y., Jung, M., et al. Anti-diabetic properties of 2,5-dihydroxy-4,3'-di (β-D-glucopyranosyloxy)-trans-stilbene from mulberry (Morus bombycis Koidzumi) root in streptozotocin-induced diabetic rats. Journal of Medicinal Food 2007,10: 602-607.
    [68]金英善,玄永浩,王明铉.桑根活性成分反式二苯乙烯抗糖尿病作用研究.扬州大学学报(农业与生命科学版)2009,30(1):18-21.
    [69]Zhang, M., Chen, M., Zhang, H., et al. In vivo hypoglycemic effects of phenolics from the root bark of Morus alba. Fitoterapia 2009,80:475-477.
    [70]Yilmaz, H., Uz, E., Yucel, N., et al. Protective effect of caffeic acid phenethyl ester (CAPE) on lipid peroxidation and antioxidant enzymes in diabetic rat liver. Journal of Biochemical and Molecular Toxicology 2004,18:234-238.
    [71]Okutan, H., Ozcelik, N., Yilmaz, H., et al. Effects of caffeic acid phenethyl ester on lipid peroxidation and antioxidant enzymes in diabetic rat heart. Clinical Biochemistry 2005,38:191-196.
    [72]Tousch, D., Lajoix, A., Hosy, E., et al. Chicoric acid, a new compound able to enhance insulin release and glucose uptake. Biochemical and Biophysical Research Communications 2008,377:131-135.
    [73]Tong, H., Liang, Z., Wang, G., et al. Structural characterization and hypoglycemic activity of a polysaccharide isolated from the fruit of Physalis alkekengi L. Carbohydrate Polymers 2008,71:316-323.
    [74]Li, S., Zhang, G., Zeng, Q., et al. Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia. Phytomedicine 2006,13: 428-433.
    [75]Zhao, Y., Son, Y., Kim, S., et al. Antioxidant and anti-hyperglycemic activity of polysaccharide isolated from Dendrobium chrysotoxum Lindl. Journal of Biochemistry and Molecular Biology 2007,40:670-677.
    [76]Chen, X., Bai, X., Liu, Y., et al. Anti-diabetic effects of water extract and crude polysaccharides from tuberous root of Liriope spicata var. prolifera in mice. Journal of Ethnopharmacology 2009,122:205-209.
    [77]Bai, X., Chen, X., Liu, Y., et al. Effects of water extract and crude polysaccharides from Liriope spicata var. prolifera on InsR/IRS-1/PI3K pathway and glucose metabolism in mice. Journal of Ethnopharmacology 2009,125:482-486.
    [78]Chen, X., Liu, Y., Bai, X., et al. Hypoglycemic polysaccharides from the tuberous root of Liriope spicata. Journal of Natural Products 2009,72:1988-1992.
    [79]Zhang, M., Cui, S., Cheung, P., et al. Antitumor polysaccharides from mushrooms:a review on their isolation process, structural characteristics and antitumor activity. Trends in Food Science & Technology 2007,18:4-19.
    [80]Oe, H., Ozaki, S. Hypoglycemic effect of 13-membered ring thiocyclitol, a novel a-glucosidase inhibitor from Kothala-himbutu (Salacia reticulata). Bioscience, Biotechnology, and Biochemistry 2008,72:1962-1964.
    [81]Tanabe, G., Yoshikai, K., Hatanaka, T. et al. Biological evaluation of de-O-sulfonated analogs of salacinol, the role of sulfate anion in the side chain on the a-lucosidase inhibitory activity. Bioorganic & Medicinal Chemistry 2007,15:3926-3937.
    [82]Chang, C., Chang, S. L., Lee, Y., et al. Cytopiloyne, a polyacetylenic glucoside, prevents type 1 diabetes in nonobese diabetic mice. Journal of Immunology 2007,178: 6984-6993.
    [83]Contreras, C., Roman, R., Perez, C., et al. Hypoglycemic activity of a new carbohydrate isolated from the roots of Psacalium peltatum. Chemical & Pharmaceutical Bulletin 2005,53:1408-1410.
    [84]Noorshahida, A., Wong, T., Choo, C., et al. Hypoglycemic effect of quassinoids from Brucea javanica (L.) Merr (Simaroubaceae) seeds. Journal of Ethnopharmacology 2009,124:586-591.
    [85]Chen, J., Li, W., Wu, J., et al. Euscaphic acid, a new hypoglycemic natural product from Folium eriobotryae. Pharmazie 2008,63:765-767.
    [86]Maurya, R., Jayendra, A., Singh, A., et al. Coagulanolide, a withanolide from Withania coagulans fruits and antihyperglycemic activity. Bioorganic & Medicinal Chemistry Letters 2008,18:6534-6537.
    [87]Chandramohan, G., Ignacimuthu, S., Pugalendi, K., et al. A novel compound from Casearia esculenta (Roxb.) root and its effect on carbohydrate metabolism in streptozotocin-diabetic rats. Euroreap Journal of Pharmacology 2008,590:437-443.
    [88]Donati, D., Lampariello, L., Pagani, R. et al. Anti-diabetic oligocyclitols in seeds of Mucuna pruriens. Phytotherapy Research 2005,19:1057-1060.
    [89]Subash Babu, P., Prabuseenivasan, S., Ignacimuthu, S. Cinnamaldehyde-a potential anti-diabetic agent. Phytomedicine 2007,14:15-22.
    [90]Badole, S., Bodhankar, S. Antidiabetic activity of cycloart-23-ene-3β,25-diol (B2) isolated from Pongamia pinnata (L. Pierre) in streptozotocin-nicotinamide induced diabetic mice. European Journal of Pharmacology 2010,632:103-109.
    [91]Yuan, X., Gu, X., Tang, J. Purification and characterisation of a hypoglycemic peptide from Momordica Charantia L. Var. abbreviata Ser. Food Chemistry 2008,111: 415-420.
    [92]Butler, M. The role of natural product chemistry in drug discovery. Journal of Natural Products 2004,67:2141-2153.
    [93]Newman, D., Cragg, G. Natural products as sources of new drugs over the last 25 years. Journal of Natural Products 2007,70:461-477.
    [94]Lam, K. New aspects of natural products in drug discovery. Trends in Microbiology 2007,15:279-289.
    [95]Gurib-Fakim, A. Medicinal plants:Traditions of yesterday and drugs of tomorrow. Molecular Aspects Medicine 2006,27:1-93.
    [96]Clardy, J., Walsh, C. Lessons from natural molecules. Nature 2004,432:829-837.
    [97]Berdy, J. Bioactive microbial metabolites. The Journal of Antibiotics 2005,58:1-26.
    [98]Feher, M., Schmidt, J. Property distributions:differences between drugs, natural products and molecules from combinatorial chemistry. Journal of Chemical Information and Computer Sciences 2003,43:218-227.
    [99]Qi, L., Wen, X., Cao, J., et al. Rapid and sensitive screening andncharacterization of phenolic acids, phthalides, saponins and isoflavonoids in Danggui Buxue Tang by rapid resolution liquid chromatography/diode-array detection coupled with time-of-fligh mass spectrometry. Rapid Communications in Mass Spectrometry 2008, 22:2493-2509.
    [100]Qi, L., Cao, J., Li, P., et al. Qualitative and quantitative analysis of Radix Astragali Products by fast high-performance liquid chromatography-diode array detection coupled with time-of-flight mass spectrometry through dynamic adjustment of fragmentor voltage. Journal of Chromatography. A 2008,1203:27-35.
    [101]Li, H., Jiang, Y., Li, P., et al. Chemistry, bioactivity and geographical diversity of steroidal alkaloids from the Liliaceae family. Natural Product Reports 2006,23: 735-752.
    [102]Li, P., Qi, L., Liu, E., et al. Analysis of Chinese herbal medicines with holistic approaches and integrated evaluation models. Trends in Analytical Chemistry 2008,27: 66-77.
    [103]Su, X., Kong, L., Lei, X., et al. Biological fingerprinting analysis of traditional Chinese medicines with targeting ADME/Tox property for screening of bioactive compounds by chromatographic and MS methods. Mini Reviews in Medicinal Chemistry 2007,7:87-98.
    [104]Chen, J., Zhao, X., Fritsche, J., et al. Practical approach for the identification and isomer elucidation of biomarkers detected in a metabonomic study for the discovery of individuals at risk for diabetes by integrating the chromatographic and mass spectrometric information. Analytical Chemistry 2008,80:1280-1289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700