蛋白激酶CK2与转录因子Pdx-1的相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质的磷酸化修饰是生物体内最重要翻译后修饰(post-translational modification)方式之一,在哺乳动物细胞中,至少有1/3的蛋白质发生过磷酸化,因而其作用几乎涵盖了所有的生理及病理过程,尤其在细胞的信号传递过程中占有及其重要的地位。蛋白质的磷酸化过程是在蛋白激酶的催化下,由ATP或GTP提供磷酸基及能量而完成的。人类基因组约2%的基因编码了518种蛋白激酶5,作为最早被鉴定出的且最为重要的蛋白激酶之一,酪蛋白激酶2(casein kinase 2, CK2)是一种高度保守的、在各种真核生物中都广泛存在,并且具有多种生理功能的丝氨酸/苏氨酸激酶。CK2是由两个催化亚基(α和α')和两个调节亚基(β)组成的异四聚体(α2β2,α'2β2或αα'β2);其广泛的参与了细胞正常功能的调控,如基因表达,蛋白合成,细胞周期调控等,同时还参与如癌症发生,抗凋亡等病理过程。2003年已报道CK2有多达307种作用底物,其中约五分之一的底物为调节基因表达的转录因子。
     胰十二指肠同源盒-1(Pancreatic duodenal homeobox-1, Pdx-1)是由Hox样同源盒基因编码的转录因子。Pdx-1是参与包括胰岛素基因在内的多个β细胞特异性基因转录的主控转录因子。生理方面,Pdx-1参与了胰腺的发育和分化,促进胰岛β细胞增殖、成熟和功能的维持;病理方面,除了Pdx-1的基因变异与糖尿病的发生、发展密切相关外,还发现Pdx-1在包括胰腺癌、结肠癌、肺癌和乳腺癌在内的多种肿瘤细胞中呈现过表达,且认为Pdx-1在肿瘤细胞中有促增殖效应,可能与肿瘤的发生、发展、转移及对化疗的耐药有关。鉴于Pdx-1的功能如此关键,阐明其在细胞内表达和激活的分子调控机制已成为多个研究领域内的一个热点问题。
     近几年越来越多的研究表明,Pdx-1为细胞内可磷酸化蛋白,且翻译后磷酸化修饰是调节Pdx-1活性的一个重要方式。本研究通过体内、外磷酸化实验证明,CK2激酶可磷酸化Pdx-1蛋白以及通过体外定点突变技术寻找到了Pdx-1蛋白的磷酸化位点即位于其羧基末端的thr231和ser232。并进一步通过荧光素酶活性分析实验及蛋白合成抑制剂放线菌酮(CHX)和蛋白酶体抑制剂MG132实验发现,CK2激酶磷酸化Pdx-1后不仅可抑制其对胰岛素基因的转录活性;而且可影响其自身蛋白的稳定性,使其更易于受蛋白酶体依赖性(proteasome-dependent)蛋白降解途径的降解;且该作用可能是导致抑制其转录活性的原因之一。另一方面,采用免疫荧光实验,通过激光共聚焦显微镜我们发现,虽然CK2激酶的磷酸化作用并未影响Pdx-1蛋白的亚细胞定位;但是Pdx-1与CK2激酶各亚基(α,α',β)荧光图片在细胞核内的重叠表明他们在核内共定位,因而提示Pdx-1与CK2激酶可能存在分子间相互作用。体外利用GST Pull-down、Far-western实验和在体内用免疫共沉淀实验分别进一步证明了Pdx-1蛋白可与CK2激酶各亚基和全酶发生特异性结合。综上所述,本研究从分子、细胞水平上提供了CK2激酶和Pdx-1蛋白磷酸化和相互作用的实验依据,并进一步探讨了该作用的重要生物学意义,有助于我们理解Pdx-1在参与细胞事件中的空间和时间调控机制。
Phosphorylation is one of the most important mechanisms for the post-translational modification of proteins. Studies of mammalian cells metabolically labeled with [32P] orthophosphate suggest that as many as one-third of all cellular proteins are covalently modified by protein phosphorylation.Phosphorylation can regulate almost every property of a protein and is involved in all fundamental cellular processes, of particular importance is its involvement in signal transduction. The process of phosphorylation is under the control of protein kinases by transfering a phosphate group from ATP/GTP to the specific substrate protein.The human genome contains 518 protein kinase genes and they constitute about 2% of all human genes. As one of the first identified protein kinases, Casein kinase 2 is a highly conserved, ubiquitously expressed, serine/threonine protein kinase that is a heterotetramer (α2β2,α'2β2orαα'β2)composed of two catalytic subunits(αorα')and two regulatory subunits(β).CK2 has been implicated in various physiological and pathological cellular processes, such as gene expression, protein sythesis, cell cycle regulation as well as anti-apopotosis, carcinogenesis and etc. Until the year 2003, there are up to 307 proteins identified as CK2 substrates and more than one-fifth of these are implicated in gene expression as transcriptional factors.
     Pdx-1 (Pancreatic and duodenal homeobox-1) is a homeodomain transcription factor and functions as a masterfactor in the transcription of a large amount ofβ-cell specific genes including the insulin gene. Physiologically, Pdx-1 is necessary for pancreatic development and differentiation. In addition, it is also involved in the maintainance of adultβ-cell function. Pathologically, Pdx-1 gene mutations were closely related to the onset and development of diabetes.Furthermore, recent findings also revealed that Pdx-1 was overexpressed in various cancers including pancreatic cancer, colorectal cancer, lung cancer, breast cancer and etc.It was stated also in these findings that Pdx-1 was related to the survival of some of these cancer cells and thus supposed to be implicated in the carcinogenesis, development, metastasis and drug resistanse of cancers. It is thus crucial and a hot topic to determine the molecular mechanisms involved in the regulation of Pdx-1 expression and activation.
     There is increasing evidence showing that Pdx-1 is a phosphoprotein and that post-translational phosphorylation plays important roles in the regulation of some of its functions.In the present study we identified Pdx-1 as a bona fide substrate for CK2 by both in vitro phosphorylation assays and in vivo labelling of cells with phosphate, additional site-directed mutation analysis of Pdx-1 enabled us to find out the specific phosphorylation sites for CK2, namely Ser232 and Thr231,on the C-terminal region of Pdx-1 protein.Most interestingly, by employing luciferase reporter assay, cycloheximide(protein sythesis inhibitor) treatment and MG132(proteasome inhibitor) treatment experiments, we demonstrated that the phosphorylation of Pdx-1 by CK2 decreased its transcriptional activity on the insulin promoter, and on the other hand, CK2 phosphorylation also drived Pdx-1 to degradation which is probably in a proteasome dependent manner.Further immnofluroscence studies revealed that CK2 phosphorylation was not implicated in the regulation of the subcellular localization of Pdx-1. In contrast, overlay images showed a colocalization of Pdx-1 and individual CK2 subunits (α,α',β) in the nucleous, suggesting that there might be inter-molecular interactions between these proteins. Therefore, GST-pull down and Far-western blot assays as well as immunoprecipitation experiments were performed to identify the protein protein binding between Pdx-1 and CK2. We demonstrated that Pdx-1 directly interacted with both the CK2 holoenzyme and the individual subunits in vitro and were associated with all the three subunits of CK2 in vivo.In conclusion, we have shown in the present study the results of the existence of phosphorylation and interaction between CK2 and Pdx-1.Further functional analysis relating to the phosphorylation and interaction also provided a mechanism for temporal and spatial regulation of Pdx-1.
引文
1 Hill C. S, Treisman R.Transcriptional regulation by extracellular signals:mechanisms and specificity.Cell,1995,80(2):199-211.
    2 Hunter T, Karin M.The regulation of transcription by phosphorylation. Cell,1992,70(3): 375-387.
    3 Whitmarsh AJ, Davis RJ.Regulation of transcription factor function by phosphorylation. Cell Mol Life Sci,2000,57(8-9):1172-83.
    4 Sefton BM, Shenolikar S. Overview of protein phosphorylation.Curr Protoc Protein Sci, 2001, Chapter 13:Unit13.1.
    5 Johnson SA, Hunter T. Kinomics:methods for deciphering the kinome.Nat.Methods, 2005,2(1):17-25.
    6 Pinna LA, Meggio F. Protein kinase CK2 ("casein kinase 2") and its implication in cell division and proliferation. Prog Cell Cycle Res,1997,3:77-97.
    7 Litchfield DW. Protein kinase CK2:structure, regulation and rolein cellular decisions of life and death. Biochem J,2003,369(Ptl):1-15.
    8 Litchfield DW, Luscher B.Casein kinase Ⅱ in signal transduction and cell cycle regulation. Mol Cell Biochem,1993,127-128:187-99.
    9 Bodenbach L, Fauss J, Robitzki A, et al.Recombinant casein kinase II. A study with the complete set of subunits (alpha, alpha' and beta), site-directed autophosphorylation mutants and a bicistronically expressed holoenzyme.Eur. J. Biochem,1994,220(1):263-273.
    10 Boldyreff B., James P., Staudenmann W, et al.Ser2 is the autophosphorylation site in the beta subunit from bicistronically expressed human casein kinase-2 and from native rat liver casein kinase-2 beta. Eur. J. Biochem,1993,218(2),515-521.
    11 Litcheld D. W., Bosc D. G, Slominski, E. The protein kinase from mitotic human cells that phosphorylates Ser209 on the casein kinase II b subunit is p34cdc2. Biochim. Biophys. Acta,1995,1269:69-78.
    12 Faust M, Montenarh M. Subcellular localization of protein kinase CK2. A key to its function? Cell Tissue Res,2000,301(3):329-40.
    13 Perales M, Portoles S, Mas P. The proteasome-dependent degradation of CKB4 is regulated by the Arabidopsis biological clock.Plant J,2006,46(5):849-860.
    14 Burnett G, Kennedy EP. The enzymatic phosphorylation of proteins. J Biol Chem,1954, 211(2):969-80.
    15 Pinna LA,Baggio B,Moret V,et al.Isolation and properties of a protein kinase from rat liver micmsomes.Biochim Biophys Acta,1969,178 (1):199-201.
    16 Meggio F, Pinna LA.One-thousand-and-one substrates of protein kinase CK2? FASEB J,2003,17(3):349-68.
    17 Sarno S, Vaglio P, Marin O, et al.Mutational analysis of residues implicated in the interaction between protein kinase CK2 and peptide substrates. Biochemistry,1997, 36(39):11717-24.
    18 Pinna LA. Protein kinasc CK2:a challenge to gallons.J Cell Sci,2002,115(Pt20): 3873-3878.
    19 OlstenM E, Litchfield DW. Order or chaos? An evaluation of the regulation of p rotein kinase CK2. Biochem Cell Biol,2004,82(6):681-93.
    20 Seldin D C, Landesman-Bollag E, FaragoM, et al. CK2 as a positive regulator of Wnt signalling and tumourigenesis. Mol Cell Biochem,2005,274 (1-2):63-7.
    21 Guerra B. Protein kinase CK2 subunits are positive regulators of AKT kinase. Int J Oncol,2006,28 (3):685-93.
    22 Ahmad KA, Wang Q Unger G, et al. Protein kinase CK2--a key suppressor of apoptosis. Adv Enzyme Regul,2008,48:179-87.
    23 Krippner-Heidenreich A, Talanian RV, Sekul R, et al. Targeting of the transcription factor Max during apoptosis:phosphorylation-regulated cleavage by caspase-5 at an unusual glutamic acid residue in position P1.Biochem J,2001,358(Pt 3):705-15.
    24 Ruzzene M, Brunati AM, Sarno S,et al. Ser/Thr phosphorylation of hematopoietic specific protein 1 (HS1):implication of protein kinase CK2.Eur J Biochem,2000, 267(10):3065-72.
    25 Izeradjene K, Douglas L, Delaney A, et al. Casein kinase II (CK2) enhances death-inducing signaling comp lex (DISC) activity in TRAIL-induced apoptosis in human colon carcinoma cell lines. Oncogene,2005,24 (12):2050-8.
    26 Wang G, Ahmad KA, Harris NH, et al.Impact of protein kinase CK2 on inhibitor of apoptosis proteins in prostate cancer cells.Mol Cell Biochem,2008,316(1-2):91-7.
    27 Saur D, Fritsch R, Reichert M,et al.Casein kinase Ⅱ inhibition induces apoptosis in pancreatic cancer cells.Oncol Rep,2007,18(3):695-701.
    28 Kaminska B, Ellert-Miklaszewska A, Oberbek A, et al.Efficacy and mechanism of anti-tumor action of new potential CK2 inhibitors toward glioblastoma cells.Int J Oncol, 2009,35(5):1091-100.
    29 Kim HR, Kim K, Lee KH,et al.Inhibition of casein kinase 2 enhances the death ligand-and natural kiler cell-induced hepatocellular carcinoma cell death.Clin Exp Immunol, 2008,152(2):336-44.
    30 Guerra B, Boldyreff B, Sarno S,et al. CK2:a protein kinase in need of control. Pharmacol Ther,1999,82(2-3):303-313.
    31 Sarno S,Marin O,Ghisellini P,et al. Biochemical evidence that the N-terminal segments of the alpha subunit and the beta subunit play interchangeable roles in the activation of protein kinase CK2. FEBSLett,1998,441 (1):29-33.
    32 Sarno S, Reddy H, Meggio F, et al. Selectivity of 4,5,6,7-tetrabromo-benzotriazole, an ATP site-directed inhibitor of protein kinase CK2 ('casein kinase-2'). FEBS Lett,2001, 496 (1):44-48.
    33 Yim H, Lee YH, Lee CH, et al. Emodin, an anthraquinone derivative isolated from the rhizomes of Rheum palmatum, selectively inhibits theactivity of casein kinase II as a competitive inhibitor. Planta Med,1999,65 (1):9-13.
    34 Pagano MA, Meggio F, Ruzzene M,et al.2-Dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole:a novel powerful and selective inhibitor of protein kinase CK2. Biochem Biophys Res Commun,2004,321(4):1040-4.
    35 Cozza G, Mazzorana M, Papinutto E, et al. Quinalizarin as a potent, selective and cell-permeable inhibitor of protein kinase CK2. Biochem J,2009,421(3):387-95.
    36 Ashizawa S, Brunicardi FC, Wang XP. PDX-1 and the pancreas. Pancreas,2004, 28(2):109-20.
    37 Hui H, Perfetti R. Pancreas duodenum homeobox-1 regulates pancreas development during embryogenesis and islet cell function in adulthood. Eur J Endocrinol,2002, 46(2):129-141.
    38 Moede T, Leibiger B, Pour HG, et al.Identification of a nuclear localization signal, RRMKWKK, in the homeodomain transcription factor PDX-1. FEBS Lett,1999, 461:229-234.
    39 Lu M, Miller C, Habener JF. Functional regions of the homeodomain protein IDX-1 required for transactivation of the rat somatostatin gene. Endocrinology,1996, 137:2959-2967.
    40 McKinnon CM, Docherty K. Pancreatic duodenal homeobox-1, PDX-1, a major regulator of beta cell identity and function.Diabetologia,2001,44(10):1203-14.
    41 Al-Quobaili F, Montenarh M.Pancreatic duodenal homeobox factor-1 and diabetes mellitus type 2 (review).Int J Mol Med,2008,21(4):399-404.
    42 Liu A, Desai BM, Stoffers DA.Identification of PCIF1, a POZ domain protein that inhibits PDX-1 (MODY4) transcriptional activity.Mol Cell Biol,2004,24(10):4372-83.
    43 Humphrey RK, Yu SM, Flores LE,et al. Glucose regulates steady-state levels of PDX1 via the reciprocal actions of GSK3 and AKT kinases. J Biol Chem,2010,285(5):3406-16.
    44 Inoue H, Riggs AC, Tanizawa Y, et al. Isolation, characterization, and chromosomal mapping of the human insulin promoter factor 1 (IPF-1) gene.Diabetes,1996,45(6): 789-94.
    45 Fiedorek FT Jr, Kay ES. Mapping of the insulin promoter factor 1 gene (Ipf1) to distal mouse chromosome 5. Genomics,1995,28(3):581-4.
    46 Yokoi N, Serikawa T, Walther R. Pdxl, a homeodomain transcription factor required for pancreas development, maps to rat chromosome 12.Exp Anim,1997,46(4):323-4.
    47 Stoffers DA, Heller RS,Miller CP, et al. Developmental expression of the homeodomain protein PDX-1 mice transgenic for a PDX-1 promoter/lacZ transcription reporter. Endocrinol,1999,140(11):5374-5381.
    48 Guz Y,Montminy MR,Stein R,et al.Expression ofroutine STF-l,a putative insulin gene transcription factor,in beta cells of pancreas,duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny.Development,1995,121(1):11-18.
    49 Sander M,German MS.The beta cell transcription factors and development of the pancrease. J Mol Med,1997,75(5):327-340.
    50 Wang XP, Li ZJ, Magnusson J,et al. Tissue MicroArray analyses of pancreatic duodenal homeobox-1 in human cancers. World J Surg,2005,29(3):334-8.
    51 Sakai H, Eishi Y, Li XL,et al. PDX1 homeobox protein expression in pseudopyloric glands and gastric carcinomas. Gut,2004,53(3):323-30.
    52 Ballian N, Liu SH, Brunicardi FC. Transcription factor PDX-1 in human colorectal adenocarcinoma:a potential tumor marker?World J Gastroenterol,2008,14(38):5823-6.
    53 Rafiq I, Kennedy HJ, Rutter GA. Glucose-dependent translocation of insulin promoter factor-1 (IPF-1) between the nuclear periphery and the nucleoplasm of single MIN6 beta-cells. J Biol Chem,1998,273(36):23241-7.
    54 Macfarlane WM, McKinnon CM, Felton-Edkins ZA,et al. Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic beta-cells. J Biol Chem,1999,274(2):1011-6.
    55 Elrick LJ, Docherty K.Phosphorylation-dependent nucleocytoplasmic shuttling of pancreatic duodenal homeobox-1.Diabetes,2001,50(10):2244-52.
    56 Kishi A, Nakamura T, Nishio Y, et al. Sumoylation of Pdxl is associated with its nuclear localization and insulin gene activation.Am J Physiol Endocrinol Metab,2003, 284(4):E830-40.
    57 Hessabi B, Ziegler P, Schmidt I, et al.The nuclear localization signal (NLS) of PDX-1 is part of the homeodomain and represents a novel type of NLS.Eur J Biochem,1999, 263(1):170-7.
    58 Guillemain G,Da Silva XQRafig I,et al.Importin betal mediates the glucose stimuhted nuclear import of pancreatic and duodenalhomeobox-I in pancreatic islet beta cells(MIN6). Biochem J,2004,378(Pt 1):219-227.
    59 Edlund H. Developmental biology of the pancreas. Diabetes,2001,50(suppl):5-9.
    60 Melloul D. Transcription factors in islet development and physiology:role of PDX-1 in beta-cell function. Ann N Y Acad Sci,2004,1014(1):28-37.
    61 Moates JM, Nanda S, Cissell MA,et al. BETA2 activates transcription from the upstream glucokinase gene promoter in islet beta-cells and gut endocrine cells.Diabetes, 2003,52(2):403-8.
    62 Waeber G, Thompson N, Nicod P, et al. Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor.Mol Endocrinol,1996,10(11):1327-34.
    63 Sun Y,Chen L,Hou XGDifferentiation of bone marrow-derived mesenehymal stem cells from diabetic patients into insulin-preducing cells in vitro.Chin Med J,2007,120(9): 771-776.
    64 Yeshida S,Kajimoto Y,Yasuda T,et al.PDX-1 induces differentialion of intestinal epithelioid IEC-6 into insulin-producing cells.Diabetes,2002,51(8):2505-13.
    65 Gerrish K, Gannon M, Shih D, et al.Pancreatic beta cell-specific transcription of the pdx-1 gene. The role of conserved upstream control regions and their hepatic nuclear factor 3beta sites. J Biol Chem,2000,275(5):3485-92.
    66 Marshak S, Benshushan E, Shoshkes M, et al.Functional conservation of regulatory elements in the pdx-1 gene:PDX-1 and hepatocyte nuclear factor 3 beta transcription factors mediate beta-cell-specific expression.Mol Cell Biol,2000,20(20):7583-90.
    67 Sharma S, Jhala US, Johnson T, et al.Hormonal regulation of an islet-specific enhancer in the pancreatic homeobox gene STF-1.Mol Cell Biol,1997,17(5):2598-604.
    68 Gerrish K, Cissell MA, Stein R.The role of hepatic nuclear factor 1 alpha and PDX-1 in transcriptional regulation of the pdx-1 gene.J Biol Chem,2001,276(51):47775-84.
    69 Wang X, Zhou J, Doyle ME,et al.Glucagon-like peptide-1 causes pancreatic duodenal homeobox-1 protein translocation from the cytoplasm to the nucleus of pancreatic beta-cells by a cyclic adenosine monophosphate/protein kinase A-dependent mechanism. Endocrinology,2001,142(5):1820-7.
    70 Wang X, Cahill CM, Pineyro MA,et al. Glucagon-like peptide-1 regulates the beta cell transcription factor, PDX-1, in insulinoma cells.Endocrinology,1999,140(10):4904-7.
    71 Shi Y, Brown ED, Walsh CT..Expression of recombinant human casein kinase II and recombinant heat shock protein 90 in Escherichia coli and characterization of their interactions. Proc Natl Acad Sci U S A,1994,91(7):2767-71.
    72 Boucher MJ, Selander L, Carlsson L,et al.Phosphorylation marks IPF1/PDX1 protein for degradation by glycogen synthase kinase 3-dependent mechanisms. Edlund H.J Biol Chem,2006,281(10):6395-403.
    73 Grankowski N, Boldyreff B, Issinger OG Isolation and characterization of recombinant human casein kinase Ⅱ subunits alpha and beta from bacteria. Eur J Biochem, 1991,198(1):25-30.
    74 Wu Y, Li Q, Chen XZ. Detecting protein-protein interactions by Far western blotting. Nat Protoc,2007,2(12):3278-84.
    75 Kuenzel EA, Krebs EG A synthetic peptide substrate specific for casein kinase Ⅱ.Proc Natl Acad Sci U S A,1985,82(3):737-41.
    76 Gao Y, Miyazaki J, Hart GW.The transcription factor PDX-1 is post-translationally modified by O-linked N-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in min6 beta-cells.Arch Biochem Biophys, 2003,415(2):155-63.
    77 Kishi A, Nakamura T, Nishio Y, et al. Sumoylation of Pdx1 is associated with its nuclear localization and insulin gene activation.Am J Physiol Endocrinol Metab,2003, 284(4):E830-40.
    78 Lebrun P, Montminy MR, Van Obberghen E. Regulation of the pancreatic duodenal homeobox-1 protein by DNA-dependent protein kinase. J Biol Chem,2005,280(46): 38203-10.
    79 An R, da Silva Xavier G, Hao HX, et al.Regulation by Per-Arnt-Sim (PAS) kinase of pancreatic duodenal homeobox-1 nuclear import in pancreatic beta-cells.Biochem Soc Trans,2006,34(Pt 5):791-3.
    80 Boucher MJ, Simoneau M, Edlund H. The homeodomain-interacting protein kinase 2 regulates insulin promoter factor-1/pancreatic duodenal homeobox-1 transcriptional activity.Endocrinology,2009,150(1):87-97.
    81 Humphrey RK, Yu SM, Flores LE, et al.Glucose regulates steady-state levels of PDX1 via the reciprocal actions of GSK3 and AKT kinases.J Biol Chem,2010,285(5):3406-16.
    82 Khoo S, Griffen SC, Xia Y, et al. Regulation of insulin gene transcription by ERK1 and ERK2 in pancreatic beta cells.J Biol Chem,2003,278(35):32969-77.
    83 Shen J, Channavajhala P, Seldin DC, et al. Phosphorylation by the protein kinase CK2 promotes calpain-mediated degradation of IkappaBalpha.J Immunol,2001,167(9): 4919-25.
    84 Mueller T, Breuer P, Schmitt I, et al. CK2-dependent phosphorylation determines cellular localization and stability of ataxin-3.Hum Mol Genet,2009,18(17):3334-43.
    85 He H, Tan M, Pamarthy D, et al. CK2 phosphorylation of SAG at Thr10 regulates SAG stability, but not its E3 ligase activity.Mol Cell Biochem,2007,295(1-2):179-88.
    86 Li X, Guan B, Maghami S,et al. NKX3.1 is regulated by protein kinase CK2 in prostate tumor cells. Mol Cell Biol,2006,26(8):3008-17.
    87 Calvert ME, Keck KM, Ptak C,et al. Phosphorylation by casein kinase 2 regulates Napl localization and function. Mol Cell Biol,2008,28(4):1313-25.
    88 Schwindling SL, Noll A, Montenarh M,et al. Mutation of a CK2 phosphorylation site in cdc25C impairs importin alpha/beta binding and results in cytoplasmic retention. Oncogene,2004,23(23):4155-65.
    89 Krick R, Aschrafi A, Hasgun D, et al. CK2-dependent C-terminal phosphorylation at T300 directs the nuclear transport of TSPY protein.Biochem Biophys Res Commun,2006, 341(2):343-50.
    90 Apopa PL, He X, Ma Q. Phosphorylation of Nrf2 in the transcription activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells. J Biochem Mol Toxicol,2008, 22(1):63-76.
    91 Gotz C, Scholtes P, Prowald A, et al. Protein kinase CK2 interacts with a multi-protein binding domain of p53.Mol Cell Biochem,1999,191(1-2):111-20.
    92 Prowald A, Schuster N, Montenarh M.Regulation of the DNA binding of p53 by its interaction with protein kinase CK2.FEBS Lett,1997,408(1):99-104.
    93 Schuster N, Prowald A, Schneider E, et al. Regulation of p53 mediated transactivation by the beta-subunit of protein kinase CK2.FEBS Lett,1999,447(2-3):160-6.
    94 Schuster N, Gotz C, Faust M,et al. Wild-type p53 inhibits protein kinase CK2 activity.J Cell Biochem,2001,81(1):172-83.
    95 Skjerpen CS, Nilsen T, Wesche J,et al. Binding of FGF-1 variants to protein kinase CK2 correlates with mitogenicity.EMBO J,2002,21(15):4058-69.
    96 Pancetti F, Bosser R, Krehan A, et al. Heterogeneous nuclear ribonucleoprotein A2 interacts with protein kinase CK2.Biochem Biophys Res Commun,1999,260(1):17-22.
    97 Park JW, Bae YS. Phosphorylation of ribosomal protein L5 by protein kinase CKII decreases its 5S rRNA binding activity.Biochem Biophys Res Commun,1999, 263(2):475-81.
    98 Gotz C, Wagner P, Issinger OG, et al. p21WAF1/CIP1 interacts with protein kinase CK2.Oncogene,1996,13(2):391-8.
    99 Bonnet H, Filhol O, Truchet I, et al.Fibroblast growth factor-2 binds to the regulatory beta subunit of CK2 and directly stimulates CK2 activity toward nucleolin.J Biol Chem, 1996,271(40):24781-7.
    100 Roher N, Sarno S, Miro F, et al.The carboxy-terminal domain of Grp94 binds to protein kinase CK2 alpha but not to CK2 holoenzyme.FEBS Lett,2001,505(1):42-6.
    101 Li D, Dobrowolska G, Krebs EGThe physical association of casein kinase 2 with nucleolin.J Biol Chem,1996,271(26):15662-8.
    102 Heriche JK, Chambaz EM.Protein kinase CK2alpha is a target for the Abl and Bcr-Abl tyrosine kinases.Oncogene,1998,17(1):13-8.
    103 Bosc DG, Graham KC, Saulnier RB,et al. Identification and characterization of CKIP-1, a novel pleckstrin homology domain-containing protein that interacts with protein kinase CK2.J Biol Chem,2000,275(19):14295-306.
    104 Schafer B, Gotz C, and Dudek J, et al.KIF5C:a new binding partner for protein kinase CK2 with a preference for the CK2alpha' subunit.Cell Mol Life Sci,2009, 66(2):339-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700