胃肠道重组对非肥胖2型糖尿病治疗作用及机制的动物实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     随着生活水平的提高,糖尿病成为严重危害人类健康的慢性疾病之一,其中2型糖尿病占90%以上,而且患病率不断上升,发病年龄趋于年轻化。目前糖尿病患者全球逾1.7亿,到2030年患者数将达到3.66亿,新增患者主要集中在中国、印度等发展中国家。糖尿病引起的神经、心血管并发症造成人体严重损害,社会医疗负担巨大。患者致残和早亡的重要原因为其血糖控制不佳所致的各种并发症,而目前用于控制血糖的主要措施包括控制饮食、加强运动、口服降糖药和使用胰岛素等,由于需要长期实施甚至终生维持,治疗费用高昂,不良反应等原因,患者的生活质量下降,以致患者的依从性差,很难将血糖控制在理想水平并获得长期疗效,因而最终不能避免糖尿病各种并发症的出现及进一步加重。胰腺移植和胰岛细胞移植的方法因移植排异、免疫抑制剂的副作用及手术难度大、并发症多等诸多因素制约了其临床应用及效果。胚胎干细胞和胰腺干细胞,又分别受到伦理学争论及取材不便的影响。因此,寻找长效、安全、依从性高的糖尿病治疗新方法并验证其临床可行性,是目前值得深入探讨的问题。
     上世纪80年代初,人们偶然发现胃旁路术(GBP)、胆胰转流术(BPD)治疗肥胖症患者术后,其中合并有2型糖尿病的患者不仅体质量显著下降,而且血糖得到良好控制,血浆胰岛素、糖化血红蛋白及胰岛素敏感性恢复正常,甚至可以完全脱离糖尿病药物。而且,这些患者血糖恢复到正常范围始于术后早期(<10天),远远早于体质量明显下降时间,表明外科手术控制血糖的作用是直接、独立的。此后,对袖状胃切除术、回肠转位术等其它术式进行了回顾性分析及前瞻性研究,同样发现这些外科手术对糖尿病有良好的治疗效果,2型糖尿病患者得到显著改善甚至治愈,而且治疗效果持久稳定。但有相当数量的2型糖尿病患者是非肥胖的或不伴肥胖症的,肥胖症治疗手术对此类患者是否有效?如果手术治疗有效,其机理如何?国内外学者进行了相关研究,并提出了多种理论假说,但大部分的研究侧重于糖尿病的手术效果及治疗机制的初步研究,没有形成完整的、系统的理论体系,而且在关键因素的探讨上,没有形成定论。目前,对于何种术式治疗效果更佳及手术作用机理的明确阐述,尚未见相关的文献报道。
     为了进一步研究胃肠道重组对非肥胖2型糖尿病的近远期治疗效果,本研究选择非肥胖的2型糖尿病动物模型进行手术干预,研究不同的胃肠道手术方式对2型糖尿病的治疗效果,阐明其可能的作用机制,并对不同胃肠道重组术式进行分析比较,评估不同术式的治疗效价,以期寻找安全有效的最佳术式,为手术治疗2型糖尿病提供理论和实践依据。
     第一部分非肥胖2型糖尿病大鼠胃肠道重组模型的建立
     目的
     本研究对随机分组的手术组及假手术组2型糖尿病大鼠进行手术干预,建立胃肠道重组的2型糖尿病动物模型。观察胃肠道重组术式对糖尿病大鼠肝功、肾功、血脂等机体生理功能的影响。
     方法
     (1)2型糖尿病动物的选择
     术前检测8-10周龄GK雄性大鼠血糖、血清总蛋白(TP)、白蛋白(ALB)、肌酐(Cr)、尿素氮(BUN)、血清胆固醇(CH)、甘油三酯(TG)、游离脂肪酸(FFA)等指标,评估2型糖尿病动物模型的稳定性及是否符合实验要求。将达到2型糖尿病标准的GK大鼠以区组随机化分组法随机分组,每组GK大鼠20只,分别行三种胃肠道重组手术及相应假手术。
     (2)手术分组及模型的建立
     各手术组如下:A组:袖状胃切除术(sleeve gastrectomy, SG)组。手术方式:游离胃大弯侧至胃底,自幽门稍上方切除胃大弯侧胃体至胃底,将胃底完整切除,切除胃容积占全部胃容量的70%—80%,胃残端间断缝合。B组:Roux-en-Y胃旁路术(Roux-en-Y gastric bypass, RYGBP)组。手术方式:切除远端胃后,距Treitz韧带30cm切断空肠,远端空肠与残胃端端吻合,近端空肠距胃肠吻合口远端50cm处行肠肠侧侧吻合。C组:毕(Billroth)Ⅱ式胃空场吻合术(BⅡ)组。手术方式:切除远端胃后,缝闭十二指肠残端,距Treitz韧带20cm处上提空肠,于结肠前行胃空肠吻合。完成吻合后,排列肠道,以大网膜覆盖。
     袖状胃切除术、Roux-en-Y胃旁路术、毕(Billroth)Ⅱ式胃空场吻合术的假手术组分别为:Sham-A、Sham-B及Sham-C组,其手术方式为:于各手术组相应的解剖位点做原位胃肠切开及吻合术。必要时,延长手术时间,以产生与手术组同等程度的麻醉及手术影响。
     记录各组手术时间及手术成功率,观察术后恢复情况及术后并发症情况,评估2型糖尿病动物模型对各术式的耐受性。
     结果
     (1)A组(袖状胃切除术组)手术完成20例,手术成功率100%,平均手术时间47.6±7.5min,平均术后恢复时间22.4±4.8h,术后无动物死亡
     (2)B组手术完成20例,手术成功率100%,平均手术时间77.8±8.7min,平均术后恢复时间49.9±4.9h,术后死亡率15%,死亡原因为肠梗阻及代谢并发症。
     (3)C组手术完成20例,手术成功率100%,平均手术时间53.0±5.1min,平均术后恢复时间29.3±4.2h,术后死亡率5%,死亡原因为吻合口漏。
     (4)总计60例假手术组大鼠手术均获成功,存活率100%。
     (5)A、B、C三组大鼠术后肝功、肾功降低,术后第5天逐渐恢复,但尚未完全恢复至术前水平,术后2周各手术组大鼠肝功和肾功基本恢复至术前水平。此后上述指标进一步改善并维持至36周观察期结束。
     (6)A组手术时间、术后恢复时间、术后并发症发生率明显少于B、C组,差异有统计学意义(P<0.05);B组手术时间、术后恢复时间、术后并发症发生率及死亡率明显高于A、C组(P<0.01)。
     结论
     (1)非肥胖2型糖尿病GK大鼠胃肠道重组模型稳定可靠。
     (2)不同术式对糖尿病大鼠机体的影响不同,差异有统计学意义。
     第二部分胃肠道重组对非肥胖2型糖尿病大鼠的治疗效果
     目的
     对胃肠道重组2型糖尿病动物模型及其相应假手术组动物进行糖尿病治疗效果的监测;分析比较不同手术方式的治疗效果。
     方法
     (1)测定术前及术后多个时间点各手术组及假手术组大鼠体质量、空腹血糖水平、胰岛素水平及游离脂肪酸等指标,并进行糖耐量试验(OGTT)和胰岛素敏感性试验(ITT),比较不同手术方式对2型糖尿病的治疗效果。
     (2)总观察期(术后36周)结束后,处死大鼠并取重要脏器进行病理组织学检测,以探讨手术对糖尿病所致重要脏器损伤的远期保护效果。
     结果
     (1)A、B、C三组大鼠术后体质量较术前及假手术组明显降低(P<0.05),体质量均值的大小顺序为B组0.05)。
     (2)A、B、C三组大鼠术后空腹血糖较术前及假手术组得到控制和改善(P<0.05)。血糖均值的大小顺序为B组0.05)。
     (3)A、B、C三组大鼠术后糖耐量和胰岛素敏感性均较术前及假手术组得到控制和改善(P<0.05)。A组大鼠糖耐量改善程度明显高于B、C组大鼠,差异有统计学意义(P<0.05);B组大鼠胰岛素敏感性改善程度高于A、C两组,但三组间差异无统计学意义(P>0.05)。
     (4)A、B、C三组大鼠术后胰岛素水平较术前及假手术组增加(P<0.01),但三组间比较差异无统计学意义(P>0.05)
     (5)观察期结束后病理组织学检测显示:A、B、C三组大鼠的心脏、肝脏、肾脏和大动脉(胸主动脉)均未见明显糖尿病相关的病理学异常表现。
     结论
     (1)胃肠道重组手术对非肥胖2型糖尿病有治疗效果,能够显著改善糖代谢,获得稳定持久的血糖控制。
     (2)术后血糖获得持久稳定的改善,而体重量短期内即恢复并超过术前,因此,手术对2型糖尿病的治疗作用是直接的、独立的,不依赖于手术后的体质量减轻。
     (3)不同术式对2型糖尿病的治疗效果不同。
     第三部分胃肠道重组对非肥胖2型糖尿病治疗机制的研究
     目的
     检测术前、术后各组大鼠血清中与2型糖尿病发病主要相关的胃肠道激素、细胞因子水平的变化,研究手术对2型糖尿病可能的治疗机制;评价各术式疗效并选择2型糖尿病的最佳手术方式,为手术治疗2型糖尿病应用于临床提供实验支持并奠定理论基础。
     方法
     (1)检测指标:肠-胰岛轴相关激素,脂肪-胰岛轴相关因子,生长激素释放肽(Ghrelin)等,进而研究手术对2型糖尿病治疗的可能机制。
     (2)检测各组大鼠术后胃和小肠代偿增生情况。
     (3)统计方法:以上三部分数据以均数±标准差(x±s)表示,均数间采用t检验。葡萄糖曲线下面积(AUC)以梯形积分法计算。以SPSS17.0软件进行统计学分析,重复测量数据以重复测量数据的方差分析法检验,P<0.05认为差异有统计学意义。
     结果
     (1)A、B、C三组大鼠GLP-1的分泌显著高于术前及假手术组,差异有统计学意义(P<0.01)。其中B组及C组大鼠GLP-1水平高于A组,差异有统计学意义(P<0.01)
     (2)A、B、C三组大鼠GIP水平显著低于术前及假手术组,差异有统计学意义(P<0.05)。A组大鼠生长激素释放肽(Ghrelin)显著低于术前及假手术组(P<0.01),而B、C两组无明显改变(P>0.05)。
     (3)A、B、C三组大鼠游离脂肪酸(FFA)及瘦素(Leptin)显著低于术前及假手术组,差异有统计学意义(P<0.05);脂联素(Adiponectin)显著高于术前及假手术组,差异有统计学意义(P<0.01)。
     (4)术后A组大鼠残胃代偿性增大;B、C组大鼠小肠粘膜重量增加。
     结论
     (1)胃肠道重组手术通过肠-胰岛轴、脂肪-胰岛轴等多种途径参与对2型糖尿病的调控。其中,多种胃肠道激素和细胞因子协同作用实现对血糖的控制。
     (2)胃肠道激素GLP-1及GIP通过调节肠-胰岛轴改善糖代谢,控制血糖水平,并对血糖的稳定维持起重要作用。
     (3) Leptin、FFA水平的降低与Adiponectin水平的升高通过脂肪-胰岛轴参与维持血糖正常和增加胰岛素敏感性,从而达到长期缓解2型糖尿病的作用。
     (4) Ghrelin水平的降低解除了对胰岛素分泌的抑制,并且提高了胰岛素敏感性,降低了胰岛素抵抗,改善了糖耐量,从而起到治疗糖尿病的作用。
     (5)2型糖尿病患者胃肠道重组术后早期血糖的快速降低及胰岛素抵抗的快速减退与肠-胰岛轴分泌激素的改变有关,而糖尿病的长期改善则与脂肪-胰岛轴中脂肪细胞因子水平的变化相关。
     (6)在血糖水平和胰岛素敏感性改善方面,RYGBP术式优于SG和毕Ⅱ两种术式,在手术时间、术后恢复时间、手术并发症发生率及糖耐量改善方面,SG术式优于其它两种术式。
Background
     Type 2 diabetes mellitus presently afflicts more than 170 million people worldwide and is expected to affect about 366 million persons by 2030. The complications of diabetes have rendered the disease a major cause of morbidity and mortality that strains public health care funding. Diet contrrol, exercise, behavior modification, oral hypoglycemic agents and insulin therapy have little efficacy with respect to the return of euglycemia. Because of graft rejection, the side effect of immunosuppression, higher complication rate and other factors, it has restricted the clinical application of the pancreatic gland transplant and the islet cells transplant. Therefore, seeking for a safe, satisfying compliance and long-term effective method of improving the diabetes is a key problem at present which is worth discussing intensively.
     Early in 1980s, a wide array of investigations has shown bariatric surgery to be an effective means of not only resolving obesity and its co-morbidities, but also well improving the blood sugar, insulin, glycosylated hemoglobin and insulin sensibility, even people can be completely far away from any drug. Because euglycemia often occurs long before significant weight loss after bariatric surgery, the control of diabetes likely stems from direct effects of the operations rather than amelioration of obesity. Moreover, a great amount of retrospective analysis and prospective study were made on the efficacy of other bariatric surgeries, such as gastric bypass (GBP), biliopancreatic diversion (BPD), sleeve gastrectomy (SG), and ileal transposition (IT), it also showed better control of diabetes what most patients in the study were cured or well improved and no recurrence after 10 years. It is put forward if it is possible that the bariatric surgery is effective for non-morbidly obese individuals? And then what are the mechanisms? Researchers have conducted related research and proposed kinds of theory hypotheses, but no comprehensive or systematic theories formed.
     It supposed that the alteration of gastrointestinal hormone and some endocrine factors plays an important role in the progress of type 2 diabetes. Hormones such as GLP-1 and GIP are related to enteroinsular axis, leptin, resistin and adiponectin are related to adipoinsular axis, insulin-like growth factor-1 (IGF-1) and inflammation mediators also changed and have a synergistic effect.
     In order to study the effect and mechanism involved in the associations between gastrointestinal intervention and type 2 diabete, and provide the most effective procedure for the treatment of type 2 diabetes, nonobese type 2 diabetic animals were chosen and with respect to the purpose:Firstly, compare and evaluate the efficacy of different kinds of operations to further confirm the resolution of gastrointestinal surgery. Secondly, provide the optimal choice for controlling type 2 diabetes. Finally, study certain factors related to the pathogenesis of diabetes, explore and bring forward the possible mechanisms of gastrointestinal intervention for type 2 diabetes for the purpose of providing supports for the transition of gastrointestinal interventios to clinical application.
     PartⅠConstruction of animal models of nonobese type 2 diabetes
     Objectiv
     GK rats, the nonobese spontaneously diabetes rats were randomly divided into the operation groups and the sham operation groups, and all rats underwent different kinds of gastrointestinal operations. The live function and renal function of the GK rats were detected after operations.
     Methods
     (1) Selection of type 2 diabetes animal
     First, the 8-10 weeks old GK rats were selected and fasting glycemia, plasma lipid (cholesterol, triglycercide and free fatty acid), liver function (serum total protein and albumin), and renal function (creatinine and blood urea nitrogen) were measured before the intervention in order to evaluated the stability of type 2 diabetes animal models. Then,120 male GK rats were randomly divided into three gastrointestinal operation groups and the corresponding sham operation groups (n=20 in each) that all rats underwent different kinds of gastrointestinal operations.
     (2) Surgical groups of gastrointestinal operations
     Group A:Sleeve gastrectomy (SG) surgery was conducted in this group. The SG operation was performed as described by de Bona Castelan J, et al. First, define the the line of incision for the longitudinal sleeve gastrectomy which covered the entire gastric fundus and much of the lumen. Then 70% to 80% of total stomach was dissected and removed.
     Group B:Roux-en-Y gastric bypass (RYGBP) surgery was performed in this group. The RYGBP operation involved (1) a midline abdominal incision was made, (2) distal gastrectomy, (3) the jejunal was divided 30 cm distal to the ligament of Treitz and the distal limb connected to the stomach, (4) small bowel continuity was maintained by an entero-enterostomy between the previously divided proximal jejunum and the distal limb which was so-called Roux limb and at least 50 cm long.
     Group C:BillrothⅡsurgery was taken in this group. The BillrothⅡoperation was performed as follows:(1) the duodenum was separated from the stomach, (2) distal gastrectomy, (3) an gastrojejunostomy was made with vestige stomach and proximal jejunum.
     Sham-A、Sham-B and Sham-C group:Sham surgeries involved the same abdominal incisions, transections and re-anastomosis of the gastrointestinal tract at corresponding sites where performed in the SG, RYGBP and BillrothⅡgroups. If necessary, sham operations were prolonged to achieve similar operative times and anesthetic effect as those observed for SG, RYGBP and BillrothⅡ.
     The surgery time of different groups was strictly recorded, the first defaecation time, serving as an indication of postoperative recovery time, and the occurrence of postoperative complications were observed and recorded carefully.
     Results
     (1) Group A:Rate of operative success was 100% of 20 cases and no death occurred in sleeve gastrectomy group. Mean operative time was 47.6±7.5 min, and mean postoperative recovery time (defined to begin at the end of the operation and to end with the first defecation) was 22.4±4.8h.
     (2) Group B:Rate of operative success was 100% of 20 cases. Mean operative time was 77.8±8.7 min, and mean postoperative recovery time was 49.9±4.9h. Two rats died of intestinal obstruction and one metabolic complication at postoperative 5 day,34 day and 92 day respectively. The postoperative mortality was 15%.
     (3) Group C:Rate of operative success was 100% of 20 cases. Mean operative time was 53.0±5.1 min, and mean postoperative recovery time was 29.3±4.2h. One rats died of anastomotic leakage on the fourth day. The postoperative mortality was 5%.
     (4) All the 60 rats of sham surgery groups were performed successfully with no death, and the postoperative survival rate was 100%.
     (5) Liver function and renal function were gradually recovered during the first week postoperatively and returned to the preoperative level two weeks later. Afterwards, liver function and renal function resumed to normal level and maintained until the end of the 36-week observation period.
     (6) The operative time, postoperative recovery time and postoperative morbidity were much shorter or lower in group A and there were statistically significant differences between group A and group B or C (P<0.05). The indexes above-mentioned were much longer and higher in group B and there were statistically significant differences between group B and group A or C (P<0.01)
     Conclusions
     (1) GK rats exhibit stable as the type 2 diabetes animal models and can meet the requirement for gastrointestinal interventions.
     (2) Different surgical operations resulted in different effects on the GK rats, and statistically significant differences were observed between groups.
     PartⅡThe treatment effect of gastrointestinal intervention on nonobese type 2 diabetes
     Objectiv
     On the one hand, different kinds of indexes related to type 2 diabetes were measured before and after operation in order to evaluate the efficacy of gastrointestinal surgery, on the other hand, comparisons of the therapeutic effect of different gastrointestinal interventions were made.
     Methods
     (1) Weight, fasting glycemia and serum insulin were measured and well documented. In addtion, oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were also performed before and at several time points after operation.
     (2) After the full 36-week observation period ended, all the animals were sacrificed and specific organs were studied by means of pathologic examinations in order to clear the protection of gastrointestinal operation for type 2 diabetes.
     Results
     (1) There were statistically significant differences in weight loss of GK rats underwent A, B, and C gastrointestinal surgeries, compared with sham surgery groups and preoperation (P<0.05)
     (2) It resulted in statistically significant improvement in fasting glucose level, insulin sensibility and serum insulin in GK rats underwent A, B, and C gastrointestinal surgery, compared with sham surgery groups and preoperation (P<0.05). However, there were no statistically significant differences among the three groups (P>0.05).
     (3) It leaded to significant amelioration on oral glucose tolerance test (OGTT) in GK rats underwent A, B, and C gastrointestinal surgery, compared with sham surgery groups and preoperation (P<0.05).The improvement of OGTT in group A was much better than that in other two groups (P<0.05)
     (4) The gastrointestinal surgical intervention significantly prevented the aggravation of diabetes in heart, aorta, liver and kidney compared with sham groups by means of pathological examination.
     Conclusions
     (1) Remarkably therapeutic effect was observed on type 2 diabetes and sustainable control on glucose metabolism was obtained as a result of gastrointestinal intervention.
     (2) The surgical procedure played an important and direct role in the improvement of type 2 diabetes which was independent on the weight loss.
     (3) Different surgical procedure leads to dissimilar effect.
     PartⅢThe mechanism of gastrointestinal intervention as a treatment for type 2 diabetes
     Objectiv
     To further explore the therapeutic mechanism of gastrointestinal intervention as a treatment for type 2 diabetes, gastrointestinal hormones, endocrine factors and inflammation mediators which related to the pathogenesis of type 2 diabetes are selected and measured periodically before and postoperation. Apart from the key goal mentioned above, an optimal surgical procedure should be described and confirmed not only to elucidate the correlation between surgical intervention and type 2 diabetes but to establish and enforce the theoretical basis for the transition to clinical application.
     Methods
     (1) Hormones or cytokines related to enteroinsular axis and adipoinsular axis and plasma Ghrelin (growth hormone releasing peptide) were put into study and further to clarify the therapeutic mechanism.
     (2) The stomach and small intestine were studied in order to explore the compensatory hyperplasia in response to surgical intervention.
     (3) Data are expressed as mean±SD and trapezoidal integration was applied to calculating areas under curves for OGTT and ITT. Statistical analysis was performed using repeated-measures ANOVA for repeated measures and the Student's t-test as appropriate. All statistical procedures were performed using SPSS version 17.0, P values<0.05 were considered to be statistically significant.
     Results
     (1) The result displayed that gastrointestinal intervention significantly increased insulin, GLP-1 and adiponectin (P<0.01), while dramaticlly reduced GIP, FFA and leptin (P<0.05)
     (2) Ghrelin levels in group A decreased dramatically after surgery and there were statistically significant differences compared with other groups (P<0.01). GLP-1 levels for group B and group C were statistically significant higher compared with other groups (P<0.01).
     (3) The stomach was hyperplastic and hypertrophic after the intervention, and the weight of mucosal in group B and group C was significant higher compared with the sham groups.
     Conclusions
     (1) Gastrointestinal intervention is an effective method in the treatment for type 2 diabetes that result in significant and durable glycemic control, and lead to improvement or resolution of diabetes related co-morbidities.
     (2) The enteroinsular axis performs an important function in the mechanism of diabetes pathogenesis which is related to the short-term effect of gastrointestinal intervention.
     (3) GLP-1 and GIP play an important role in the improvement of glycometabolism and treatment of diabetes after gastrointestinal intervention via the regulation of enteroinsular axis.
     (4) Leptin、FFA and adiponectin contribute to the management of diabetes by means of adipoinsular axis which is responsible for the long-term resolution of type 2 diabetes.
     (5) Due to the decrease of plasma Ghrelin, the inhibition of insulin secretion is released, as a result, the glucose levels, insulin sensitivity and insulin resistance were improved. Therefore the lower level of Ghrelin is considered playing a therapeutic role in type 2 diabetes.
     (6) SG surgery is the optimal procedure with advantages of acceptably low morbidity and mortality, reliable and durable therapeutic effect on type 2 diabetes.
引文
1. Zimmet P, Shaw J, Alberti KG Preventing Type 2 diabetes and the dysmetabolic syndrome in the real world:a realistic view. Diabet Med 2003; 20(9):693-702.
    2. King H, Aubert RE, Herman WH. Global burden of diabetes,1995-2025: prevalence, numerical estimates, and projections. Diabetes Care 1998; 21(9):1414-31.
    3.杨进刚.中国糖尿病流行步入10.0时代[J].中国社区医师,2009,9(3):3-4.
    4. Detournay B, Cros S, Charbonnel B, Grimaldi A, Liard F, Cogneau J, Fagnani F, Eschwege E. Managing type 2 diabetes in France:the ECODIA survey. Diabetes Metab 2000; 26(5):363-9.
    5. Rubino F, Gagner M. Potential of surgery for curing type 2 diabetes mellitus. Ann Surg 2002; 236(5):554-559.
    6. Pories WJ, MacDonald KG Jr, Flickinger EG, Dohm GL, Sinha MK, Barakat HA, May HJ, Khazanie P, Swanson MS, Morgan E, et al. Is type II diabetes mellitus (NIDDM) a surgical disease? Ann Surg 1992; 215(6):633-42.
    7. Levy P, Fried M, Santini F, Finer N. The comparative effects of bariatric surgery on weight and type 2 diabetes. Obes Surg 2007; 17(9):1248-56.
    8. Pories, WJ, Albrecht RJ. Etiology of type Ⅱ diabetes mellitus:role of the foregut. World J Surg 2001; 25(4):527-31.
    9. Scopinaro, N., Biliopancreatic diversion:mechanisms of action and long-term results. Obes Surg2006.16(6):p.683-9.
    10. Ferchak, CV, Meneghini LF. Obesity, bariatric surgery and type 2 diabetes—a systematic review. Diabetes Metab Res Rev 2004; 20(6):438-45.
    11. Alexandrides TK, Skroubis G, Kalfarentzos F. Resolution of diabetes mellitus and metabolic syndrome following Roux-en-Y gastric bypass and a variant of biliopancreatic diversion in patients with morbid obesity. Obes Surg 2007; 17(2):176-84.
    12. Buchwald H, Mercado C, Yermilov I, Parikh JA, Dutson E, Mehran A, Ko CY, Gibbons MM. Bariatric surgery:a systematic review and meta-analysis. JAMA 2004; 292(14):1724-37.
    13.国家科委,实验动物管理条例[M].1988.
    14. Wang TT, Hu SY, Gao HD, Zhang GY, Liu CZ, Feng JB, Frezza EE. Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1. Ann Surg 2008; 247(6):968-75.
    15. de Bona Castelan J, Bettiol J, d'Acampora AJ, Castelan JV, de Souza JC, Bressiani V, Giroldi SB. Sleeve gastrectomy model in Wistar rats. Obes Surg 2007; 17(7):957-61.
    16. Pereferrer FS, Gonzalez MH, Rovira AF, Blasco SB, Rivas AM, del Castillo Dejardin D. Influence of sleeve gastrectomy on several experimental models of obesity:metabolic and hormonal implications. Obes Surg 2008; 18(1):97-108.
    17. Vidal J, Ibarzabal A, Romero F, Delgado S, Momblan D, Flores L, Lacy A. Type 2 diabetes mellitus and the metabolic syndrome following sleeve gastrectomy in severely obese subjects. Obes Surg 2008; 18(9):1077-82.
    18. Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes:a new perspective for an old disease. Ann Surg 2004.239(1):1-11.
    19. Johansson HE, Ohrvall M, Haenni A, Sundbom M, Eden Engstrom B, Karlsson FA, Zethelius B. Gastric bypass alters the dynamics and metabolic effects of insulin and proinsulin secretion. Diabet Med 2007; 24(11):1213-20.
    20. Kobayasi S, Rodrigues M, de Camargo J, Imai T, Yuasa H, Ogawa K, Tatematsu M. Gastric and small intestinal lesions after partial stomach resection with Billroth Ⅱ or Roux-en-Y reconstruction in the rat. Cancer Lett 1994; 85(1):73-82.
    21. Kourti, Maria, Tragiannidis, Athanassios, Areti MD, Papageorgiou, Theodotis, Rousso, Israel, Athanassiadou, Fani. Metabolic syndrome in children and adolescents with acute lymphoblastic leukemia after the completion of chemotherapy. J Pediatr Hematol Oncol 2005; 27(9):499-501.
    22. Brown JB, Nichols GA, Glauber HS, Bakst AW, Schaeffer M, Kelleher CC. Health care costs associated with escalation of drug treatment in type 2 diabetes mellitus. Am J Health Syst Pharm 2001; 58(2):151-7.
    23. Wagner EH, Sandhu N, Newton KM, McCulloch DK, Ramsey SD, Grothaus LC.Effect of improved glycemic control on health care costs and utilization. JAMA 2001; 285(2):182.
    24. Pories, WJ, Dohm GL. Full and durable remission of type 2 diabetes? Through surgery? Surg Obes Relat Dis 2009; 5(2):285-8.
    25. Scopinaro N, Papadia F, Camerini G, Marinari G, Civalleri D, Gian Franco A. A comparison of a personal series of biliopancreatic diversion and literature data on gastric bypass help to explain the mechanisms of resolution of type 2 diabetes by the two operations. Obes Surg 2008; 18(8):1035-8.
    26. Greenway SE, Greenway FL 3rd, Klein S. Effects of obesity surgery on non-insulin-dependent diabetes mellitus. Arch Surg 2002; 137(10):1109-17.
    27. Schauer PR, Ikramuddin S, Gourash W, Ramanathan R, Luketich J. Outcomes after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Ann Surg 2000; 232(4):515-29.
    28. Brolin RE, Kenler HA, Gorman JH, Cody RP. Long-limb gastric bypass in the superobese. A prospective randomized study. Ann Surg 1992; 215(4):387-95.
    29. DeMaria EJ, Sugerman HJ, Kellum JM, Meador JG, Wolfe LG Results of 281 consecutive total laparoscopic Roux-en-Y gastric bypasses to treat morbid obesity. Ann Surg 2002; 235(5):640-5; discussion 645-7.
    30. Fobi MA. Surgical treatment of obesity:a review. J Natl Med Assoc 2004; 96(1):61-75.
    31. Baltasar A, Serra C, Perez N, Bou R, Bengochea M, Ferri L. Laparoscopic sleeve gastrectomy:a multi-purpose bariatric operation. Obes Surg 2005; 15(8):1124-8.
    32 Frezza EE. Laparoscopic vertical sleeve gastrectomy for morbid obesity. The future procedure of choice? Surg Today 2007; 37(4):275-81.
    33 Bernante P, Foletto M, Busetto L, Pomerri F, Pesenti FF, Pelizzo MR, Nitti D. Feasibility of laparoscopic sleeve gastrectomy as a revision procedure for prior laparoscopic gastric banding. Obes Surg 2006;16(10):1327-30.
    34. Moon Han S, Kim WW, Oh JH. Results of laparoscopic sleeve gastrectomy (LSG) at 1 year in morbidly obese Korean patients. Obes Surg 2005; 15(10): 1469-75.
    35. Langer FB, Bohdjalian A, Felberbauer FX, Fleischmann E, Reza Hoda MA, Ludvik B, Zacherl J, Jakesz R, Prager G. Does gastric dilatation limit the success of sleeve gastrectomy as a sole operation for morbid obesity? Obes Surg 2006; 16(2):166-71.
    36. Langer FB, Reza Hoda MA, Bohdjalian A, Felberbauer FX, Zacherl J, Wenzl E, Schindler K, Luger A, Ludvik B, Prager G. Sleeve gastrectomy and gastric banding:effects on plasma ghrelin levels. Obes Surg 2005; 15(7):1024-9.
    37. Forgacs S, Halmos T. Improvement of glucose tolerance in diabetics following gastrectomy. Z Gastroenterol 1973; 11(4):293-6.
    38.李磊,李际辉,郑成竹,等.胃癌Billroth Ⅱ式胃切除术对合并2型糖尿病患者的治疗价值[J].中国微创外科杂志,2008,8(10):951-3.
    39.陈伟杰,胡三元,张光永.胃大部切除术对非肥胖2型糖尿病的治疗作用[J].腹腔镜外科杂志,2009,14(3):211-4.
    40. Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabet Med 2005; 22(4):359-70.
    41.王宝金,代解杰.糖尿病动物模型的研究进展[J].上海实验动物科学,2003,23(2):116-8.
    42.李聪然,游雪甫,蒋建东.糖尿病动物模型及研究进展[J].中国比较医学杂志,2005,15(1):59-63.
    43.张均田,现代药理实验方法(下册)[M].北京医科大学,中国协和医科大学联合出版社,1998.
    44. Goto Y, Suzuki K, Ono T, Sasaki M, Toyota T. Development of diabetes in the non-obese NIDDM rat (GK rat). Adv Exp Med Biol 1988; 246:29-31.
    45. Berthelier C, Kergoat M, Portha B. Lack of deterioration of insulin action with aging in the GK rat:a contrasted adaptation as compared with nondiabetic rats. Metabolism 1997; 46(8):890-6.
    46.黄锦鸾,动物外科手术的麻醉固定及采血[J].中华实验外科杂志,1992,9(2):91-92.
    47.王德军,林琳,陈民利,等.不同麻醉方法对大鼠血气电解质及能量代谢的影响[J].中国比较医学杂志,2009,19(8):51-4.
    48.陈新谦,金有豫,汤光.新编药物学[M].北京:人民卫生出版社,2007.
    49. MacLean LD, Rhode BM, Nohr CW. Late outcome of isolated gastric bypass. Ann Surg 2000; 231(4):524-8.
    50. Picot J, Jones J, Colquitt JL, Gospodarevskaya E, Loveman E, Baxter L, Clegg AJ. The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity:a systematic review and economic evaluation. Health Technol Assess 2009;13(41):1-190,215-357, ⅲ-ⅳ.
    51. Sugerman HJ, Wolfe LG, Sica DA, Clore JN. Diabetes and hypertension in severe obesity and effects of gastric bypass-induced weight loss. Ann Surg 2003; 237(6):751-6; discussion 757-8.
    52. Scheen AJ, De Flines J, De Roover A, Paquot N. Bariatric surgery in patients with Type 2 diabetes:benefits, risks, indications and perspectives. Diabetes Metab 2009; 35(6 Pt 2):537-43.
    53. Clements RH, Gonzalez QH, Long CI, Wittert G, Laws HL. Hormonal changes after Roux-en Y gastric bypass for morbid obesity and the control of type-Ⅱ diabetes mellitus. Am Surg 2004; 70(1):1-4; discussion 4-5.
    54.张士虎,苗毅.胃旁路术对糖尿病大鼠的降糖作用及其机制[J].中华实验外科杂志,2006,23(8):997-9.
    55.张新国,杨学军,徐红,等.胃转流手术治疗2型糖尿病胰岛素抵抗改变的临床研究[J].武警医学,2007,18(4):309-10.
    56. Regan JP, Inabnet WB, Gagner M, Pomp A. Early experience with two-stage laparoscopic Roux-en-Y gastric bypass as an alternative in the super-super obese patient. Obes Surg 2003; 13(6):861-4.
    57. Bohdjalian A, Langer FB, Shakeri-Leidenmuhler S, Gfrerer L, Ludvik B, Zacherl J, Prager G Sleeve Gastrectomy as Sole and Definitive Bariatric Procedure:5-Year Results for Weight Loss and Ghrelin. Obes Surg 2010; 20(5):535-40.
    58. Baltasar A, Serra C, Perez N, Bou R, Bengochea M, Ferri L. Laparoscopic sleeve gastrectomy:a multi-purpose bariatric operation. Obes Surg 2005; 15(8):1124-8.
    59. DeMaria EJ, Schauer P, Patterson E, Nguyen NT, Jacob BP, Inabnet WB, Buchwald H. The optimal surgical management of the super-obese patient:the debate. Presented at the annual meeting of the Society of American Gastrointestinal and Endoscopic Surgeons, Hollywood, Florida, USA, April 13-16,2005. Surg Innov 2005.;12(2):107-21.
    60. Himpens J, Dapri G, Cadiere GB. A prospective randomized study between laparoscopic gastric banding and laparoscopic isolated sleeve gastrectomy: results after 1 and 3 years. Obes Surg 2006;16(11):1450-6.
    61. Montesani C, D'Amato A, Santella S, Pronio A, Giovannini C, Cristaldi M, Ribotta G Billroth I versus Billroth II versus Roux-en-Y after subtotal gastrectomy. Prospective [correction of prespective] randomized study. Hepatogastroenterology 2002; 49(47):1469-73.
    62. Chareton B, Landen S, Manganas D, Meunier B, Launois B. Prospective randomized trial comparing Billroth I and Billroth II procedures for carcinoma of the gastric antrum. J Am Coll Surg 1996; 183(3):190-4.
    63. Forgacs, S. and T. Halmos, [Improvement of glucose tolerance in diabetics following gastrectomy]. Z Gastroenterol 1973; 11(4):293-6.
    64.梁玉河,杨维桢,杨晓军,等.胃大部切除毕2式胃空肠吻合术对Ⅱ型糖尿病的治疗作用[J].齐齐哈尔医学院学报,2009,30(16):1969-70.
    65.李守淼,李保中,管建云,等.远端胃癌患者不同吻合术对糖尿病的影响[J].医学信息:手术学分册,2008,21(4):298-9.
    66.邬云红,李秀钧,李宏亮,等.高脂饮食肥胖大鼠胰岛细胞胰岛素抵抗机理的探讨[J].中华医学杂志,2005,85(27):1907-10.
    67.高珉之,柴玮杰,王玉燕,等.Wistar大鼠血液,生化指标及ICR小鼠免疫学指标正常参考值的研究[J].医学动物防制,2008,24(9):675-7.
    68. Wang L, Tang Y, Rubin DC, Levin MS. Chronically administered retinoic acid has trophic effects in the rat small intestine and promotes adaptation in a resection model of short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2007; 292(6):G1559-69.
    69 Shyntum Y, Iyer SS, Tian J, Hao L, Mannery YO, Jones DP, Ziegler TR. Dietary sulfur amino acid supplementation reduces small bowel thiol/disulfide redox state and stimulates ileal mucosal growth after massive small bowel resection in rats. J Nutr 2009; 139(12):2272-8.
    70. Iskit SH, Tugtepe H, Ayyildiz SH, Kotiloglu E, Dagli TE, Yegen BC. Epidermal growth factor and bombesin act synergistically to support intestinal adaptation in rats with massive small bowel resection. Pediatr Surg Int 2005; 21(6):436-40.
    71. Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab 2004; 89(6):2608.
    72. Aylwin S. Gastrointestinal surgery and gut hormones. Current Opinion in Endocrinology, Diabetes and Obesity 2005; 12(1):89-98.
    73. Rubino F, Forgione A, Cummings DE, Vix M, Gnuli D, Mingrone G, Castagneto M, Marescaux J. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg 2006; 244(5):741-9.
    74. Rubino F, Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care 2008; 31 Suppl 2:S290-6.
    75. Mason EE. Ileal [correction of ilial] transposition and enteroglucagon/GLP-1 in obesity (and diabetic?) surgery. Obes Surg 1999; 9(3):223-8.
    76. le Roux CW, Welbourn R, Werling M, Osborne A, Kokkinos A, Laurenius A, Lonroth H, Fandriks L, Ghatei MA, Bloom SR, Olbers T. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg 2007; 246(5):780.
    77. Patriti, A., Facchiano E, Donini A. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes:a new perspective for an old disease. Ann Surg 2004; 240(2):388-9; author reply 389-91.
    78 Arner P. Insulin resistance in type 2 diabetes — role of the adipokines. Curr Mol Med 2005; 5(3):333-9.
    79. Vitoratos N, Salamalekis E, Kassanos D, Loghis C, Panayotopoulos N, Kouskouni E, Creatsas G. Maternal plasma leptin levels and their relationship to insulin and glucose in gestational-onset diabetes. Gynecol Obstet Invest 2001; 51(1):17-21.
    80. Leyva F, Godsland IF, Ghatei M, Proudler AJ, Aldis S, Walton C, Bloom S, Stevenson JC. Hyperleptinemia as a component of a metabolic syndrome of cardiovascular risk. Arterioscler Thromb Vasc Biol 1998; 18(6):928-33.
    81. Vickers MH, Reddy S, Ikenasio BA, Breier BH. Dysregulation of the adipoinsular axis-a mechanism for the pathogenesis of hyperleptinemia and adipogenic diabetes induced by fetal programming. J Endocrinol 2001; 170(2): 323-32.
    82. Knobler H, Benderly M, Boyko V, Behar S, Matas Z, Rubinstein A, Raz I, Wainstein J. Adiponectin and the development of diabetes in patients with coronary artery disease and impaired fasting glucose. Eur J Endocrinol 2006; 154(1):87-92.
    83. Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, Matsuzawa Y. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 2001; 50(5): 1126-33.
    84. Inoue M, Maehata E, Yano M, Taniyama M, Suzuki S. Correlation between the adiponectin-leptin ratio and parameters of insulin resistance in patients with type 2 diabetes. Metabolism 2005; 54(3):281-6.
    85. Barnard RJ, Roberts CK, Varon SM, Berger JJ. Diet-induced insulin resistance precedes other aspects of the metabolic syndrome. J Appl Physiol 1998; 84(4): 1311-5.
    86. Boden G. Free fatty acids as target for therapy. Curr Opin Endocrinol Diabetes Obes 2004; 11(5):258-63.
    87. Pankow JS, Duncan BB, Schmidt MI, Ballantyne CM, Couper DJ, Hoogeveen RC, Golden SH. Fasting plasma free fatty acids and risk of type 2 diabetes:the atherosclerosis risk in communities study. Diabetes Care 2004; 27(1):77-82
    88. Kashyap S, Belfort R, Gastaldelli A, Pratipanawatr T, Berria R, Pratipanawatr W, Bajaj M, Mandarino L, DeFronzo R, Cusi K. A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes 2003; 52(10): 2461-74.
    89. Ballantyne GH, Gumbs A, Modlin IM. Changes in insulin resistance following bariatric surgery and the adipoinsular axis:role of the adipocytokines, leptin, adiponectin and resistin. Obes Surg2005; 15(5):692-9.
    90. Murphy KG, Bloom SR. Gut hormones and the regulation of energy homeostasis. Nature 2006; 444(7121):854-9.
    91. Drucker DJ. The role of gut hormones in glucose homeostasis. J Clin Invest 2007; 117(1):24-32.
    92. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001;50(8):1714-9.
    93. Masuda Y, Tanaka T, Inomata N, Ohnuma N, Tanaka S, Itoh Z, Hosoda H, Kojima M, Kangawa K. Ghrelin stimulates gastric acid secretion and motility in rats. Biochem Biophys Res Commun 2000; 276(3):905-8.
    94. Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, Kennedy AR, Roberts GH, Morgan DG, Ghatei MA, Bloom SR. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 2000;141(11):4325-8.
    95. Chen HY, Trumbauer ME, Chen AS, Weingarth DT, Adams JR, Frazier EG, Shen Z, Marsh DJ, Feighner SD, Guan XM, Ye Z, Nargund RP, Smith RG, Van der Ploeg LH, Howard AD, MacNeil DJ, Qian S. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology 2004; 145(6):2607-12.
    96. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S. A role for ghrelin in the central regulation of feeding. Nature 2001; 409(6817):194-8.
    97. Dixon JB. Obesity and diabetes:the impact of bariatric surgery on type-2 diabetes. World J Surg 2009; 33(10):2014-21.
    98. Meneghini LF. Impact of bariatric surgery on type 2 diabetes. Cell Biochem Biophys 2007; 48(2-3):97-102.
    99. Schauer PR, Burguera B, Ikramuddin S, Cottam D, Gourash W, Hamad G, Eid GM, Mattar S, Ramanathan R, Barinas-Mitchel E, Rao RH, Kuller L, Kelley D. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg 2003; 238(4):467-84; discussion 84-5.
    100. Gelling RW, Overduin J, Morrison CD, Morton GJ, Frayo RS, Cummings DE, Schwartz MW. Effect of uncontrolled diabetes on plasma ghrelin concentrations and ghrelin-induced feeding. Endocrinology 2004; 145(10): 4575-82.
    101. Reimer MK, Pacini G, Ahren B., Dose-dependent inhibition by ghrelin of insulin secretion in the mouse. Endocrinology 2003; 144(3):916-21.
    102. Broglio F, Arvat E, Benso A, Gottero C, Muccioli G, Papotti M, van der Lely AJ, Deghenghi R, Ghigo E. Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. J Clin Endocrinol Metab 2001; 86(10):5083-6.
    103. Takaya K, Ariyasu H, Kanamoto N, Iwakura H, Yoshimoto A, Harada M, Mori K, Komatsu Y, Usui T, Shimatsu A, Ogawa Y, Hosoda K, Akamizu T, Kojima M, Kangawa K, Nakao K. Ghrelin strongly stimulates growth hormone release in humans. J Clin Endocrinol Metab 2000; 85(12):4908-11.
    104. Depoortere I, Thijs T, Thielemans L, Robberecht P, Peeters TL. Interaction of the growth hormone-releasing peptides ghrelin and growth hormone-releasing peptide-6 with the motilin receptor in the rabbit gastric antrum. J Pharmacol Exp Ther 2003; 305(2):660-7.
    105.姚辉.瘦素与交感神经系统[J].国外医学:儿科学分册,2002.29(4):205-7.
    106. Lee JW, Romsos DR. Leptin Administration Normalizes Insulin Secretion from Islets of Lepob/Lepob Mice by Food Intake-Dependent and-Independent Mechanisms. Exp Biol Med (Maywood) 2003; 228(2):183.
    107. Pories WJ, MacDonald KG Jr, Morgan EJ, Sinha MK, Dohm GL, Swanson MS, Barakat HA, Khazanie PG, Leggett-Frazier N, Long SD, et al. Surgical treatment of obesity and its effect on diabetes:10-y follow-up. Am J Clin Nutr 1992; 55(2 Suppl):582S-585S.
    108. Scopinaro N, Adami GF, Marinari GM, Gianetta E, Traverso E, Friedman D, Camerini G, Baschieri G, Simonelli A, et al. Biliopancreatic diversion. World J Surg 1998; 22(9):936-46.
    109.郑树森.胰腺移植的适应症和展望[J].胰腺病学,2002,2(3):131-2.
    110. Monroy-Cuadros M, Salazar A, Yilmaz S, McLaughlin K. Bladder vs enteric drainage in simultaneous pancreas-kidney transplantation. Nephrol Dial Transplant 2006; 21(2):483-7.
    111. Philosophe B. Portal versus systemic delivery of insulin:immunologic benefits for pancreas transplantation. Curr Opin Organ Transplant 2002; 7(2): 180-4.
    112. Fernandez LA, Tsuchida M, Manthei E, Fechner JH Jr, Oberley TD, Leverson GE, Knechtle SJ, Hamawy MM. Immune status assay (ISA):a noninvasive procedure for studying allograft rejection. Transpl Immunol 2004; 13(2): 147-54.
    113. Xiaoguang N, Zhong L, Hailong C, Ping Z, Xiaofeng B, Fenglin G. The relation between apoptosis of acinar cells and nitric oxide during acute rejection of pancreas transplantation in rats. Transpl Immunol 2003; 11(1): 15-21.
    114. Pavlakis M, Khwaja K. Pancreas and islet cell transplantation in diabetes. Curr Opin Endocrinol Diabetes Obes 2007; 14(2):146-50.
    115. Shapiro A, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343(4):230-8.
    116.谭建明,蔡锦全,杨顺良,等.肾移植联合成人胰岛细胞移植治疗糖尿病肾病七例报告[J].中华泌尿外科杂志,2009,30(3):168-71.
    117.卫国红,蔡德鸿,翁建平.埃德蒙顿方案后的同种异体人胰岛移植进展[J].中华糖尿病杂志,2005;13(6):475-7.
    118.效梅,安立龙,窦忠英.诱导胰腺干细胞再生胰岛治疗糖尿病的研究[J].自然科学进展,2007,17(5):573-9.
    119. Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Miiller B, Vallejo M, Thomas MK, Habener JF. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 2001; 50(3):521-33.
    120. Kim S, Lee SH, Kim BM, Kim EH, Min BH, Bendayan M, Park IS. Activation of nestin-positive duct stem (NPDS) cells in pancreas upon neogenic motivation and possible cytodifferentiation into insulin-secreting cells from NPDS cells. Dev Dyn 2004; 230(1):1-11.
    121. Wang R, Li J, Yashpal N, Gao N. Nestin expression and clonal analysis of islet-derived epithelial monolayers:insight into nestin-expressing cell heterogeneity and differentiation potential. J Endocrinol 2005; 184(2):329-39.
    122. Lin HT, Kao CL, Lee KH, Chang YL, Chiou SH, Tsai FT, Tsai TH, Sheu DC, Ho LL, Ku HH. Enhancement of insulin-producing cell differentiation from embryonic stem cells using pax4-nucleofection method. World J Gastroenterol 2007; 13(11):1672-9.
    123. Phinney, D. Biochemical heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy. Cell Cycle 2007; 6(23):2884-9.
    124. Avery S, Inniss K, Moore H. The regulation of self-renewal in human embryonic stem cells. Stem Cells Dev 2006; 15(5):729-40.
    125. Xu C, Police S, Hassanipour M, Gold JD. Cardiac bodies:a novel culture method for enrichment of cardiomyocytes derived from human embryonic stem cells. Stem Cells Dev 2006; 15(5):631-9.
    126. Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 2000; 49(2):157-62.
    127. Segeva H, Fishman B, Ziskind A, Shulman M, Itskovitz-Eldor J. Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells 2004; 22(3):265-74.
    128. Consten E, Gagner M, Pomp A, Inabnet WB. Decreased bleeding after laparoscopic sleeve gastrectomy with or without duodenal switch for morbid obesity using a stapled buttressed absorbable polymer membrane. Obes Surg 2004; 14(10):1360-6.
    129. Silecchia G, Boru C, Pecchia A, Rizzello M, Casella G, Leonetti F, Basso N. Effectiveness of laparoscopic sleeve gastrectomy (first stage of biliopancreatic diversion with duodenal switch) on co-morbidities in super-obese high-risk patients. Obes Surg 2006; 16(9):1138-44.
    130. Cottam D, Qureshi FG, Mattar SG, Sharma S, Holover S, Bonanomi G, Ramanathan R, Schauer P. Laparoscopic sleeve gastrectomy as an initial weight-loss procedure for high-risk patients with morbid obesity. Surg Endosc 2006; 20(6):859-63.
    131. Mognol P, Chosidow D, Marmuse JP. Laparoscopic sleeve gastrectomy as an initial bariatric operation for high-risk patients:initial results in 10 patients. Obes Surg 2005; 15(7):1030-33.
    132. Marceau P, Hould FS, Simard S, Lebel S, Bourque RA, Potvin M, Biron S. Biliopancreatic diversion with duodenal switch. World J Surg 1998; 22(9): 947-54.
    133. Lagace M, Marceau P, Marceau S, Hould FS, Potvin M, Bourque RA, Biron S. Biliopancreatic Diversion with a New Type of Gastrectomy:Some Previous Conclusions Revisited. Obes Surg 1995; 5(4):411-8.
    134. Hess DS, Hess DW, Oakley RS. The biliopancreatic diversion with the duodenal switch:results beyond 10 years. Obes Surg 2005; 15(3):408-16.
    135. Strader AD, Vahl TP, Jandacek RJ, Woods SC, D'Alessio DA, Seeley RJ. Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am J Physiol Endocrinol Metab 2005; 288(2):E447-53.
    136. Patriti A, Aisa MC, Annetti C, Sidoni A, Galli F, Ferri I, Gulla N, Donini A. How the hindgut can cure type 2 diabetes. Ileal transposition improves glucose metabolism and beta-cell function in Goto-kakizaki rats through an enhanced Proglucagon gene expression and L-cell number. Surgery 2007; 142(1):74-85.
    137. Patriti A, Facchiano E, Annetti C, Aisa MC, Galli F, Fanelli C, Donini A. Early improvement of glucose tolerance after ileal transposition in a non-obese type 2 diabetes rat model. Obes Surg 2005; 15(9):1258-64.
    138. Picardi N, Relmi F, Rea T, Di Paolo S, Sigismondi G, Mitri F, Manika C. [Main points of vertical banded gastroplasty technique in open surgery]. Ann Ital Chir 2008; 79(3):179-85.
    139. Rea T, Sigismondi G, Di Paolo S, Mitri F, Manika C, Fiordaliso M, Picardi N. [A possible late complication of Mason's vertical gastroplasty:the erosion of the vertical band]. Ann Ital Chir 2008; 79(5):327-33.
    140. Kuzmak LI, Thelmo W, Abramson DL, Kral JG. Reversible adjustable gastric banding. Surgical technique. Eur J Surg 1994; 160(10):569-71.
    141. DeMaria EJ, Jamal MK. Laparoscopic adjustable gastric banding:evolving clinical experience. Surg Clin North Am 2005; 85(4):773-87, ⅶ.
    142. Davila-Cervantes A, Ganci-Cerrud G, Gamino R, Gallegos-Martinez J, Gonzalez-Barranco J, Herrera MF. Open vs. laparoscopic vertical banded gastroplasty:a case control study with a 1-year follow-up. Obes Surg 2000; 10(5):409-12.
    143. Lee WJ, Lai IR, Huang MT, Wu CC, Wei PL. Laparoscopic versus open vertical banded gastroplasty for the treatment of morbid obesity. Surg Laparosc Endosc Percutan Tech 2001; 11(1):9-13.
    144. Payne H, De Wind L, Commons R. Obesidad morbida del bypass yeyuno-colico a la robotica. Ense anzas de la primera serie de pacientes operados en el mundo por obesidad. Nutr Hosp 2006; 21(2):77-95.
    145. Payne J, DeWind L, Schwab CE, Kern WH. Surgical treatment of morbid obesity:sixteen years of experience. Arch Surg 1973; 106(4):432-7.
    146. Polyzogopoulou E, Kalfarentzos F, Vagenakis AG, Alexandrides TK. Restoration of euglycemia and normal acute insulin response to glucose in obese subjects with type 2 diabetes following bariatric surgery. Diabetes 2003; 52(5):1098-103.
    147. Laferrere B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J, Hart AB, Olivan B. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care 2007; 30(7):1709-16.
    148. le Roux CW, Aylwin SJ, Batterham RL, Borg CM, Coyle F, Prasad V, Shurey S, Ghatei MA, Patel AG, Bloom SR. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg 2006; 243(1):108.
    149. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999; 402(6762):656-60.
    150. Batterham RL, Bloom SR. The gut hormone peptide YY regulates appetite. Ann N Y Acad Sci 2003; 994:162-8.
    151. Small CJ, Bloom SR. Gut hormones and the control of appetite. Trends Endocrinol Metab 2004; 15(6):259-63.
    152. Chan JL, Mun EC, Stoyneva V, Mantzoros CS, Goldfine AB. Peptide YY Levels Are Elevated After Gastric Bypass Surgery. Obesity 2006; 14(2): 194-198.
    153. Kieffer TJ, Habener JF. The adipoinsular axis:effects of leptin on pancreatic beta-cells. Am J Physiol Endocrinol Metab 2000; 278(1):E1-E14.
    154. Seufert J. Leptin effects on pancreatic β-cell gene expression and function. Diabetes 2004; 53(suppl 1):S152-8.
    155. Cases JA, Gabriely I, Ma XH, Yang XM, Michaeli T, Fleischer N, Rossetti L, Barzilai N. Physiological increase in plasma leptin markedly inhibits insulin secretion in vivo. Diabetes 2001; 50(2):348.
    156. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA. The hormone resistin links obesity to diabetes. Nature 2001; 409(6818):307-12.
    157. Zhou L, Li Y, Xia T, Feng S, Chen X, Yang Z. Resistin overexpression impaired glucose tolerance in hepatocytes. Eur Cytokine Netw 2006; 17(3): 189-95.
    158. Axelsson J, Heimburger O, Lindholm B, Stenvinkel P. Adipose tissue and its relation to inflammation:the role of adipokines. J Ren Nutr 2005; 15(1): 131-136.
    159.吴晓燕,汤旭磊,高林.2型糖尿病免疫炎症的初步探讨[J].中国免疫学杂志,2007,23(10):944-6.
    160. Okamoto Y, Higashiyama H, Rong JX, McVey MJ, Kinoshita M, Asano S, Hansen MK. Comparison of mitochondrial and macrophage content between subcutaneous and visceral fat in db/db mice. Exp Mol Pathol 2007; 83(1): 73-83.
    161. Ranke M. Insulin-like growth factor-I treatment of growth disorders, diabetes mellitus and insulin resistance. Trends Endocrinol Metab 2005; 16(4):190-7.
    162. Clemmons D. Role of insulin-like growth factor iin maintaining normal glucose homeostasis. Horm Res 2005; 62(1):77-82.
    163. Rosen C, Pollak M. Circulating IGF-I: new perspectives for a new century. Trends Endocrinol Metab 1999; 10(4):136-41.
    164. Milewicz A, Mikulski E, Bidzinska B. Plasma insulin, cholecystokinin, galanin, neuropeptide Y and leptin levels in obese women with and without type 2 diabetes mellitus. Int J Obes Relat Metab Disord 2000; 24 Suppl 2: S152-3.
    1.Papadopoulos AA, Kontodimopoulos N, Frydas A, Ikonomakis E, Niakas D. Predictors of health-related quality of life in type II diabetic patients in Greece. BMC Public Health 2007; 7:186.
    2.King H, Aubert RE, Herman WH. Global burden of diabetes,1995-2025: prevalence, numerical estimates, and projections. Diabetes Care 1998; 21:1414-1431.
    3.Chan BS, Tsang MW, Lee VW, Lee KK. Cost of Type 2 Diabetes mellitus in Hong Kong Chinese. Int J Clin Pharmacol Ther 2007; 45:455-468.
    4.Klein S, Fontana L, Young VL, Coggan AR, Kilo C, Patterson BW, Mohammed BS. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med 2004; 350:2549-57.
    5.Kelley DE. Thermodynamics, liposuction, and metabolism. N Engl J Med 2004; 350:2542-44.
    6.Kirchner H, Guijarro A, Meguid MM. Is a model useful in exploring the catabolic mechanisms of weight loss after gastric bypass in humans? Curr Opin Clin Nutr Metab Care 2007; 10:463-74.
    7.Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM, Barakat HA, deRamon RA, Israel G, Dolezal JM. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg 1995; 222:339-352.
    8.Detoumay B, Cros S, Charbonnel B, Grimaldi A, Liard F, Cogneau J, Fagnani F, Eschwege E. Managing type 2 diabetes in France:the ECODIA survey. Diabetes Metab 2000; 26:363-369.
    9.Scopinaro N, Adami GF, Marinari GM, Gianetta E, Traverso E, Friedman D, Camerini G, Baschieri G, Simonelli A. Biliopancreatic diversion. World J Surg 1998; 22:936-946.
    lO.Pereferrer FS, Gonzalez MH, Rovira AF, Blasco SB, Rivas AM, del Castillo Dejardin D. Influence of sleeve gastrectomy on several experimental models of obesity:metabolic and hormonal implications. Obes Surg 2008; 18(1):97-108.
    11.Vidal J, Ibarzabal A, Romero F, Delgado S, Momblan D, Flores L, Lacy A. Type 2 diabetes mellitus and the metabolic syndrome following sleeve gastrectomy in severely obese subjects. Obes Surg 2008; 18(9):1077-82.
    12.Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes:a new perspective for an old disease. Ann Surg 2004; 239:1-11.
    13.Cohen RV, Schiavon CA, Pinheiro JS, Correa JL, Rubino F. Duodenal-jejunal bypass for the treatment of type 2 diabetes in patients with body mass index of 22-34 kg/m2:a report of 2 cases. Surg Obes Relat Dis 2007; 3:195-197.
    14.Rubino F, Gagner M. Potential of surgery for curing type 2 diabetes mellitus. Ann Surg 2002; 236:554-559.
    15.Cowan GS Jr, Buffington CK. Significant changes in blood pressure, glucose, and lipids with gastric bypass surgery. World J Surg 1998; 22:987-992.
    16.Marceau P, Hould FS, Simard S, Lebel S, Bourque RA, Potvin M, Biron S. Biliopancreatic diversion with duodenal switch. World J Surg 1998; 22:947-954.
    17.Schauer PR, Ikramuddin S, Gourash W, Ramanathan R, Luketich J. Outcomes after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Ann Surg 2000; 232:515-529.
    18.Wittgrove AC, Clark GW. Laparoscopic gastric bypass, Roux-en-Y-500 patients: technique and results, with 3-60 month follow-up. Obes Surg 2000; 10:233-239.
    19.Pontiroli AE, Pizzocri P, Librenti MC, Vedani P, Marchi M, Cucchi E, Orena C, Paganelli M, Giacomelli M, Ferla G, Folli F. Laparoscopic adjustable gastric banding for the treatment of morbid (grade 3) obesity and its metabolic complications:a three-year study. J Clin Endocrinol Metab 2002; 87:3555-3561.
    20.Scopinaro N, Gianetta E, Adami GF, Friedman D, Traverso E, Marinari GM, Cuneo S, Vitale B, Ballari F, Colombini M, Baschieri G, Bachi V. Biliopancreatic diversion for obesity at eighteen years. Surgery 1996; 119:261-268.
    21.Dixon JB, O'Brien PE. Health outcomes of severely obese type 2 diabetic subjects 1 year after laparoscopic adjustable gastric banding. Diabetes Care 2002; 25:358-363.
    22.Galli J, Li'LS, Glaser A, Ostenson CG, Jiao H, Fakhrai-Rad H, Jacob HJ, Lander ES, Luthman H. Genetic analysis of non-insulin dependent diabetes mellitus in the GK rat. Nat Genet 1996; 12:31-37.
    23.Inabnet WB 3rd, Milone L, Korner J, Durak E, Ahmed L, Pomrantz J, Harris PE, Bessler M. A rodent model of metabolic surgery for study of type 2 diabetes and positron emission tomography scanning of beta cell mass. Surg Obes Relat Dis 2009; 5(2):212-7.
    24.Public Health Service Policy and Government Principles Regarding the Care and Use of Animals. The National Academies Press-Appendix D. Guide for the Care and Use of Animals 1996, pp 116-118.
    25.de Bona Castelan J, Bettiol J, d'Acampora AJ, Castelan JV, de Souza JC, Bressiani V, Giroldi SB. Sleeve gastrectomy model in Wistar rats. Obes Surg 2007; 17(7):957-61.
    26.Pories WJ, MacDonald KG Jr, Morgan EJ, Sinha MK, Dohm GL, Swanson MS, Barakat HA, Khazanie PG, Leggett-Frazier N, Long SD. Surgical treatment of obesity and its effect on diabetes:10-y follow-up. Am J Clin Nutr 1992; 55:582S-585S.
    27.Patriti A, Aisa MC, Annetti C, Sidoni A, Galli F, Ferri I, Gulla N, Donini A. How the hindgut can cure type 2 diabetes. Ileal transposition improves glucose metabolism and beta-cell function in Goto-kakizaki rats through an enhanced Proglucagon gene expression and L-cell number. Surgery 2007; 142:74-85.
    28.Castagneto M, De Gaetano A, Mingrone G, Tacchino R, Nanni G, Capristo E, Benedetti G, Tataranni PA, Greco AV. Normalization of Insulin Sensitivity in the Obese Patient after Stable Weight Reduction with Biliopancreatic Diversion. Obes Surg 1994; 4:161-168.
    29.MacDonald KG Jr, Long SD, Swanson MS, Brown BM, Morris P, Dohm GL, Pories WJ. The gastric bypass operation reduces the progression and mortality of non-insulin-dependent diabetes mellitus. J Gastrointest Surg 1997; 1:213-220; discussion 220.
    30.Meneghini LF. Impact of bariatric surgery on type 2 diabetes. Cell Biochem Biophys 2007; 48:97-102.
    31.Frezza EE, Wachtel MS, Chiriva-Internati. The multiple faces of glucagons-like peptide 1-obesity, appetite, and stress:what is next? a review. Dig Dis Sci 2007; 52:643-649.
    32.Langer FB, Reza Hoda MA, Bohdjalian A, Felberbauer FX, Zacherl J, Wenzl E, Schindler K, Luger A, Ludvik B, Prager G. Sleeve gastrectomy and gastric banding: effects on plasma Ghrelin levels. Obes Surg 2005; 15:1024-1029.
    33.Naslund E, Backman L, Holst JJ, Theodorsson E, Hellstrom PM. Importance of small bowel peptides for the improved glucose metabolism 20 years after jejunoileal bypass for obesity. Obes Surg 1998; 8:253-260.
    34.Brzozowski T, Konturek PC, Drozdowicz D, Konturek SJ, Pawlik M, Sliwowski Z, Pawlik WW, Hahn EG. Role of central and peripheral ghrelin in the mechanism of gastric mucosal defence. Inflammopharmacology 2005; 13:45-62.
    35.Kotidis EV, Koliakos GG, Baltzopoulos VG, Ioannidis KN, Yovos JG, Papavramidis ST. Serum ghrelin, leptin and adiponectin levels before and after weight loss:comparison of three methods of treatment—a prospective study. Obes Surg 2006; 16:1425-32.
    36.Pusztai P, Sarman B, Ruzicska E, Toke J, Racz K, Somogyi A, Tulassay Z. Ghrelin:a new peptide regulating the neurohormonal system, energy homeostasis and glucose metabolism. Diabetes Metab Res Rev 2008; 24:343-52.
    37.Gentileschi P, Kini S, Catarci M, Gagner M. Evidence-based medicine:open and laparoscopic bariatric surgery. Surg Endosc 2002; 16:736-744.
    38.Schauer PR, Ikramuddin S. Laparoscopic surgery for morbid obesity. Surg Clin North Am 2001; 81:1145-1179.
    39.Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 2002; 23:201-229.
    40.Strader AD, Vahl TP, Jandacek RJ, Woods SC, D'Alessio DA, Seeley RJ. Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am J Physiol Endocrinol Metab 2005; 288:E447-453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700