水稻抗虫相关基因OsICS和OsHPL3的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当植物受到病原菌及植食性昆虫危害后,会产生一系列的诱导防御反应。在一些双子叶植物如拟南芥和烟草等中的研究表明,水杨酸和绿叶性气味分别可作为信号分子及防御化合物在植物的诱导防御反应过程中发挥着重要作用。然而,作为单子叶模式植物的水稻,在这方面的研究还很少。为此,我们想通过实验进一步明确在单子叶模式植物水稻中是否也存在着一条异分支酸途径来合成水杨酸,以及该途径在抗虫防御反应中究竟发挥着什么作用?同时,与作为防御反应相关的重要物质茉莉酸竞争相同底物的绿叶性气味在水稻对白背飞虱的抗性防御反应也未见报道。因此,本文选择受褐飞虱取食诱导的水稻异分支酸合成酶基因OsICS和合成水稻绿叶性气味的脂氢过氧化物裂解酶基因OsHPL3为研究对象,结合利用反向遗传学、化学分析、分子生物学以及生物测定等研究方法,对OsICS的抗虫相关功能及OsHPL3调控的绿叶性气味在水稻对白背飞虱抗性防御反应中的作用进行了研究,获得的主要结果如下:
     克隆了异分支酸合成酶基因OsICS,该基因的开放阅读框为2445bp,编码一个由814个氨基酸组成的蛋白质,预测分子量为88.024KD,pI值为5.92。OsICS编码的蛋白定位于叶绿体。组织表达谱分析发现OsICS的转录水平在水稻叶内要明显高于水稻中的其它部位;诱导表达谱分析发现褐飞虱(Nilaparvata lugens, rice brown planthopper, BPH)、白背飞虱(white back planthopper, WBPH)和二化螟(Chilo suppressalis, rice striped stem borer, SSB)取食、机械损伤处理均能诱导OsICS基因的表达,而外源激素茉莉酸(Jasmonic acid, JA)和水杨酸(Salicylic acid, SA)不诱导其表达,甚至后期有一定的抑制作用。我们利用农杆菌转化法,获得了水稻OsICS反义抑制突变体植株,经检测,该反义纯合品系中OsICS的转录水平比野生型水稻中分别降低了46.23%-50.86%。各品系表型研究结果表明,OsICS反义突变体植株在水稻萌发期及温室内种植时均显著矮于野生型水稻。同时,温室内种植的水稻反义品系本底SA含量明显低于野生型,且室内各品系受褐飞虱和二化螟取食诱导后,OsICS反义品系中SA含量也显著低于野生型水稻。我们接下来利用该突变体中SA含量的降低,对不同害虫进行了生测实验。结果表明,反义品系能明显增加水稻对BPH和WBPH的选择性,但产卵量并无明显差异,当外源SA处理后则可恢复BPH和WBPH对突变体的取食选择性;OsICS反义品系并不影响虫害诱导的水稻JA、胰蛋白酶抑制剂(trypsin protease inhibitors, TrypPIs)和乙烯(ethylene, ET)的合成,同时对BPH、WBPH的若虫发育历期和二化螟的生长均无明显影响。
     水稻OsHPL3表达谱分析表明,机械损伤、SSB、BPH和WBPH为害均能够诱导OsHPL3的表达,而外源激素JA和SA处理对其无明显影响。我们利用相同方法获得了反义抑制OsHPL3单拷贝纯合品系。实验发现,OsHPL3表达水平的下调会引起突变体受机械损伤和白背飞虱取食诱导的GLV (Z)-3-hexenal、(E)-2-hexenal和1(Z)-3-hexen-1-ol的含量显著下降,该反义突变体明显提高了水稻对刺吸式口器害虫WBPH的抗性,可导致WBPH成虫对转基因水稻的选择性、产卵量及取食量均明显下降。同时,取食反义品系水稻的WBPH雌雄若虫发育历期均显著延长,存活率比野生型明显下降,以反义品系为食的若虫孵化后继续在该品系上产卵,其产卵量也显著低于以野生型植株为食的对照植株。当分别回补不同浓度的GLV后,发现(Z)-3-hexenal处理能恢复OsHPL3反义品系对WBPH的抗性影响。挥发物测定结果表明,反义品系能明显增加WBPH为害诱导的(+)-limonene,2-heptanol, sesquisabinene和β-sesquiphellandrene的释放量,其释放总量也有一定程度增加,但未达到显著差异水平,其他挥发性物质的释放量并无明显差异。对WBPH天敌稻虱缨小蜂的寄主选择性实验表明,小蜂更多地选择能合成释放较多GLV的野生型水稻植株,当外源回补3种不同浓度的GLV(Z)-3-hexenal、(E)-2-hexenal和(Z)-3-hexen-1-ol处理可以恢复反义品系对稻虱缨小蜂选择性的影响。综合以上结果表明,OsHPL3通过影响GLV的合成来调控水稻对WBPH的直接和间接防御反应。
Herbivore induced plant defense response, a complex physiological and biochemical processes, can produce when exposed to pathogen and phytophagous insects. Salicylic acid and green leaf volatiles, as signal molecules, play an important role in the process of herbivore induced plant defense responses in dicotyledonous plants such as Arabidopsis and tobacco. However, little to nothing is known in this aspect in rice, a model monocot species. So further research was made on whether isochorismate synthase was also involved in the synthesis of salicylic acid, and whether this pathway played an important role in rice defense responses. Also, little is known about functional analysis of OsHPL3, whose product competing the same substrate with jasmonic acid, against WBPH resistance. Therefore, we isolated two genes as the research object, one is isochorismate synthase gene OsICS, induced by brown planthopper feeding, and the other is hydroperoxide lyase gene OsHPL3, whose production green leaves volatile, combining with the methods of reverse genetics, molecular biology, chemical analysis and bioassay, in order to clarify OsICS function in rice herbivore induced resistance and OsHPL3against WBPH resistance defense responses. The main results are as follows:
     A2445bp open reading frame of an herbivore specifically induced isochorismate synthase gene OsICS, which encodes a protein of814amino acids with a calculated molecular weight of88.024KDa and pI5.92, was cloned. OsICS coding protein is located in the chloroplasts. Tissue specific expression analysis revealed OsICS transcript levels in rice leaves was higher than that of other parts. Induced expression analysis showed that the feeding of Nilaparvata lugens (brown planthopper, BPH), Sogatella furrifera (white back planthopper, WBPH), Chilo suppressalis (rice striped stem borer, SSB) and mechanical wounding treatment can induce OsICS gene expression, and exogenous jasmonic acid (JA) and salicylic acid (SA) can not induce the expression, but have an opposite effect. Through agrobacterium-mediated transgenic method, we obtained the OsICS mutant plants. The OsICS expression levels in transgenic lines were decreased by46.23%-50.86%than the wild type. Phenotypic results of different lines revealed OsICS transgenic mutants are significantly shorter than the wild type during germination and grown in the field. Besides, the level of SA in transgenic mutants are significantly lower than the wild type both grown in the field and green house induced by the feeding of brown planthopper and rice stem borer. The bioassay of different pests results show that, the OsICS transgenic lines could obviously increase the feeding choice of BPH and WBPH, and the treatment of exogenous SA can restore BPH and WBPH feeding choice. However, the OsICS transgenic lines can not affect herbivore induced rice JA, trypsin inhibitor (TrypPIs) and ethylene (ET). And the transgenic lines has no significant effect on the nymph developmental duration and population growth of BPH and WBPH.
     OsHPL3is a hydroperoxide lyase gene. Expression levels of OsHPL3could be significantly enhanced by mechanical wounding, SSB, BPH and WBPH infestation, whereas exogenous hormones JA and SA treatment had no significant effect. We use the same method to aquire the OsHPL3transgenic lines. The emission of GLV levels (Z)-3-hexenal,(Z)-3-Hexen-l-ol and (E)-2-hexenal were significantly lower in transgenic lines than in wild type rice plants after WBPH infestation and mechanical wounding treatment. At the same time, the transgenic lines can increase the resistance to WBPH. Bioassay results show that adult WBPH preferred to feed and oviposite on the transgenic lines. The nymph developmental duration in the transgenic lines were significantly longer, the survival rate was significantly decreased, and the number of eggs per day were significantly lower than in the wild type. While the treatment of exogenous (Z)-3-hexenal can restore the0sHPL3transgenic lines to the resistance of WBPH. The result of Chromatograms of volatiles obtained from various lines show that transgenic strains can increase the release of limonene after WBPH damage, while the decrease expression of OsHPL3in transgenic lines had no effect on other WBPH-induced plant volatiles. Compared with transgenic plants, Anagrus nilaparvatae, which is an egg parasitoid of WBPH, preferred the odors from wild type plants, releasing more GLV after WBPH infestation. However, exogenous different concentrations of GLV,(Z)-3-hexenal,(Z)-3-Hexen-l-ol and (E)-2-hexenal treatment can restore the Anagrus nilaparvatae selectively behavior between different lines.So GLV, the product of OsHPL3, play an important role in the rice resistance to WBPH.
引文
Agrawal, A.A. (1998) Induced responses to herbivory and increased plant performance. Science, 279,1201-1202.
    Akbar, S.M., Sharma, J. (2012) Interaction of plant cell signaling molecules, salicylic acid and jasmonic acid, with the mitochondria of Helicomerpa armigera. Journal of Biomembr,44, 233-241.
    Allmann, S., Baldwin, I.T. (2010) Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science,329,1075-1078.
    Ament, K., Kant, M.R., Sabelis, M.W., Haring, M.A., Schuurink, R.C. (2004) Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiology,135,2025-2037.
    Ament, K., Krasikov, V., Allmann, S., Rep, M., Takken, F.L. and Schuurink, R.C. (2010) Methyl salicylate production in tomato affects biotic interactions. Plant Journal,62,124-134.
    Andreas S., Annick S. (2009) Enzymes in jasmonate biosynthesis-Structure, function, regulation. Phytochemistry,70,1532-1538.
    Anthon, G.E., Barret, D.M. (2003) Thermal inactivation of lipoxygenase and hydroperoxytrienoic acid lyase in tomatoes. Food Chemistry,81,275-279.
    Arimura, G., Kopke, S., Kunert, M., Volpe, V., David, A., Brand, P., Dabrowska, P., Maffei, M.E. and Boland, W. (2008) Effects of feeding Spodoptera littoralis on lima bean leaves:IV. Diurnal and nocturnal damage differentially initiate plant volatile emission. Plant Physiology, 146,965-973.
    Arimura, G., Kost, C., Boland, W. (2005) Herbivore-induced indirect plant defences. Biochimica Et Biophysica Acta,1734,91-111.
    Arimura, G., Matsui, K., Takabayashi, J. (2009) Chemical and molecular ecology of herbivore-induced plant volatiles:proximate factors and their ultimate functions. Plant Cell Physiology,50,911-923.
    Arimura, G., Ozawa, R., Nishioka, T., Boland, W., Koch, T., Kuhnemann, F. and Takabayashi, J. (2002) Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant Journal,29,87-98.
    Arimura, G., Ozawa, R., Shimoda, T., Nishioka, T., Boland, W., Takabayashi, J. (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature,406,512-515.
    Arimura, G.I., Garms, S., Maffei, M., Bossi, S., Schulze, B., Leitner. M., Mithoefer, A, Boland, W. (2008) Herbivore-induced terpenoid emission in Medicago truncatula:concerted action of jasmonate, ethylene and calcium signaling. Planta,227,453-464.
    Attaran, E., Zeier, T.E., Griebel, T., Zeier, J. (2009) Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell,21, 954-971.
    Baek, D., Pathange, P., Chung, J.S., Jiang, J., Gao, L., Oikawa, A., Hirai, M.Y., Saito, K., Pare, P.W., Shi, H. (2010) A stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in Arabidopsis. Plant Cell Environment,33,1383-1392.
    Baldwin, I.T., Halitschke, R., Paschold, A., von Dahl, C.C., Preston, C.A. (2006) Volatile signaling in plant-plant interactions:"talking trees" in the genomics era. Science,311,812-815.
    Bartsch, M., Bednarek, P., Vivancos, P.D., Schneider, B., von Roepenack-Lahaye, E., Foyer, C.H., Kombrink, E., Scheel, D., Parker, J.E. (2010) Accumulation of isochorismate-derived 2,3-dihydroxybenzoic 3-O-β-D-xyloside in Arabidopsis resistance to pathogens and ageing of leaves. Biological Chemistry,285,25654-25665.
    Bate, N.J., Rothstein, S.J. (1998) C-6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant Journal,16,561-569.
    Bell, E., Creelman, R.A., Mullet, J.E. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America,1995,92(19),8675-8679.
    Botrytis, c., Kyutaro, K., Kenji, M., Rika, O., Junji, T. (2006) Components of C6-aldehyde-induced resistance in Arabidopsis thaliana against a necrotrophic fungal pathogen. Plant Science,170,715-723.
    Browse, J. (2005) Jasmonate:An oxylipin signal with many roles in plants. Plant Hormones,72, 431-456.
    Browse, J. (2009). Jasmonate Passes Muster: A Receptor and Targets for the Defense Hormone. Annual Review of Plant Biology,60,183-205.
    Bruce, T.J., Pickett, J.A. (2007). Plant defence signalling induced by biotic attacks. Current Opinion in Plant Biology,10,387-392.
    Buchala, A.J., Metraux, J.P., Brown, R., Kazan, K., Van Loon, L.C., Dong, X.N., Pieterse, C.M.J. (2003) NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell,15,760-770.
    Buchhaupt, M., Guder J.C. (2012) Synthesis of green note aroma compounds by biotransformation of fatty acids using yeast cells coexpressing lipoxygenase and hydroperoxide lyase. Applied Microbiology and Biotechnology,93(1),159-168.
    Bunnelle, E.M., Wildermuth, M.C. (2010) Neonicotinoid insecticides induce salicylate-associated plant defense responses. Proceedings of the National Academy of Sciences of the United States of America,107,17527-17532.
    Carroll, M.J., Schmelz, E.A., Meagher, R.L., Teal, P.E.A. (2006) Attraction of Spodoptera frugiperda larvae to volatiles from herbivore-damaged maize seedlings. Journal of Chemical Ecology,32,1911-1924.
    Carroll, M.J., Schmelz, E.A., Teal, P.E.A. (2008) The attraction of Spodoptera frugiperda neonates to cowpea seedlings is mediated by volatiles induced by conspecific herbivory and the elicitor inceptin. Journal of Chemical Ecology,34,291-300.
    Catinot, J., Buchala, A., Abou-Mansour, E., Metraux, J.P. (2008) Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Letters,582,473-478.
    Chang, C.Y., Hsieh, Y.H., Cheng, K.Y., Hsieh, L.L., Cheng, T.C., Yao, K.S. (2008) Effect of pH on Fenton process using estimation of hydroxyl radical with salicylic acid as trapping reagent. Water Science Technology,58,873-879.
    Chehab E.W., Raman G., Walley J.W., Perea J.V., Banu G., Theg S., Dehesh K. (2006) Rice HYDROPEROXIDE LYASES with Unique Expression Patterns Generate Distinct Aldehyde Signatures in Arabidopsis. Plant Physiology,141,121-134.
    Chehab, E.W., Perea, J. V., Banu, G., Steve, T., Katayoon, D. (2007) Oxylipin Pathway in Rice and Arabidopsis. Journal of Integrative Plant Biology.49(1),43-51.
    Chehab, E.W., Roy, K., Tatyana, S., Heather, R., Florence, N.Z., Dan, K., Katayoon, D. (2008) Distinct Roles of Jasmonates and Aldehydes in Plant-Defense Responses. Plos one,3(4), 1904-1909.
    Chen, H., Xue, L., Chintamanani, S., Germain, H., Lin, H., Cui, H., Cai, R., Zuo, J., Tang, X., Li, X., Guo, H., Zhou, J.M. (2009) ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis. Plant Cell,21,2527-2540.
    Chen, H.M., Stout, J. (2012) Genetic Molecular and Genomic Basis of Rice Defense against Insects. Critical Reviews in Plant Sciences,31(1),74-91.
    Chen, Z., Zheng, Z., Huang, J., Lai, Z., Fan, B. (2009) Biosynthesis of salicylic acid in plants. Plant Signaling and Behavior,4,493-496.
    Chico, J.M., Chini, A., Fonseca, S. (2008) JAZ repressors set the rhythm in jasmonate signaling. Current Opinion in Plant Biology,11(5),486-494.
    Chini, A., Fonseca, S., Fernandez, G. (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature,448(7154),666-671.
    Choh, Y., Takabayashi, J. (2006) Herbivore-induced extrafloral nectar production in lima bean plants enhanced by previous exposure to volatiles from infested conspecifics. Journal of Chemical Ecology,32,2073-2077.
    Christopher, J.F., Mark, C.M., Christopher D., John M.D., John E.C., Consuelo M.D.M. (2008) Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. New Phytologist,180,722-734.
    Cipollini, D., Enright, S., Traw, M. B. (2004) Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Molecular Ecology,13(6), 1643-1653.
    Croft, K.P.C., Juttner, F., Slusarenko, A.J. Volatile product of the lipoxygenase pathway evolved from phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv phaseolicol. Plant Physiology,101,13-24.
    D'Alessandro, M., Held, M., Triponez, Y., Turlings, T.C. (2006) The role of indole and other shikimic acid derived maize volatiles in the attraction of two parasitic wasps. Journal of Chemical Ecology,32,2733-2748.
    D'Alessandro, M., Turlings, T.C. (2005) In situ modification of herbivore-induced plant odors:a novel approach to study the attractiveness of volatile organic compounds to parasitic wasps. Chemical Senses,30,739-753.
    D'Auria, J.C., Pichersky, E., Schaub, A., Hansel, A., Gershenzon, J. (2007) Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. Plant Journal,49,194-207.
    De, M.C.M., Mescher, M.C., Tumlinson, J.H. (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature,410,577-580.
    De Vos, M., Kim, J.H., Jander, G. (2007) Biochemistry and molecular biology of Arabidopsis-aphid interactions. Bioessays,29,871-883.
    De, M.C.M., Lewis, W.J., Pare, P.W., Alborn, H.T., Tumlinson, J.H. (1998) Herbivore-infested plants selectively attract parasitoids. Nature,393,570-573.
    Dean, J.V., Delaney, S.P. (2008) Metabolism of salicylic acid in wildtype, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Plant Physiology,132,417-425.
    Dean, J.V., Mohammed, L.A., Fitzpatrick, T. (2005) The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Planta,221,287-296.
    Degenhardt, D.C., Refi-Hind, S., Stratmann, J.W. (2010) Systemin and jasmonic acid regulate constitutive and herbivore-induced systemic volatile emissions in tomato, Solanum lycopersicum. Phytochemistry,71(17),2024-2037.
    Degenhardt, J., Gershenzon, J., Baldwin, I.T., Kessler, A. (2003) Attracting friends to feast on foes:engineering terpene emission to make crop plants more attractive to herbivore enemies. Current Opinion in Biotechnology,14,169-176.
    Degenhardt, J., Hiltpold, I., Kollner, T.G., Frey, M., Gierl, A., Gershenzon, J., Hibbard, B.E., Ellersieck, M.R., Turlings, T.C.J. (2009) Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proceedings of the National Academy of Sciences of the United States of America,106,17606-17606.
    Delaney, T.P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E., Ryals, J. (1994) A Central role of salicylic acid in plant disease resistance. Science,266,1247-1250.
    Delker, C., Stenzel, I., Hause, B., Miersch, O., Feussner, I., and Wasternack, C. (2006). Jasmonate biosynthesis in Arabidopsis thaliana-Enzymes, products, regulation. Plant Biology,8, 297-306.
    Dempsey, D. A., Vlot, A. C., Wildermuth, M. C., Klessig, D. F. (2011) Salicylic Acid Biosynthesis and Metabolism. The Arabidopsis Book, e0156,1-24.
    Dewdney, J., Reuber, T.L., Wildermuth, M.C., Devoto, A., Cui, J., Stutius, L.M., Drummond, E.P., and Ausubel, F.M. (2000) Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen. Plant Journal,24,205-218.
    Dolores, R., Ruben, J. (2007) Thermal and high pressure stability of tomato lipoxygenase and hydroperoxide lyase. Food Engineer,79,423-429.
    Domenico, S.D., Tsesmetzis, N., Sansebastiano, G.P. (2007) Subcellular localisation of Medicago truncatula 9/13-hydroperoxide lyase reveals a new localisation pattern and activation mechanism for CYP74C enzymes. BMC Plant Biology,58(7),1-13.
    Duan, H., Huang, M.Y., Palacio, K., Schuler M.A. (2005) Variations in CYP74B2 (Hydroperoxide Lyase) Gene Expression Differentially Affect Hexenal Signaling in the Columbia and Landsberg erecta Ecotypes of Arabidopsis. Plant Physiology,139,1529-1544.
    Durrant, W.E., Dong, X. (2004) Systemic acquired resistance. Annual Review Phytopathology,42, 185-209.
    Ellis, C., Turner, J. G. (2001) The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell,13(5), 1025-1033.
    Engelberth, J., Alborn, H.T., Schmelz, E.A. and Tumlinson, J.H. (2004) Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences of the United States of America,101,1781-1785.
    Engelberth, J., Seidl-Adams,I., Schultz, J. C., Tumlinson, J.H. (2007) Insect elicitors and exposure to green leafy volatiles (GLV) differentially up-regulate major octadecanoids and transcripts of 12-oxo phytodienoic acid reductases in Zea mays. Mol Plant Microbe Interact,20, 707-716.
    Eulgem, T., Somssich, I.E. (2007) Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology,10,366-371.
    Farag, M.A., Fokar, M., Abd, H., Zhang, H., Allen, R.D., Pare, P.W. (2005) (Z)-3-Hexenol induces defense genes and downstream metabolitesin maize. Planta,220,900-909.
    Farmer, E.E., Ryan, C.A. (1990) Interplant communication:airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proceedings of the National Academy of Sciences,87(19),7713-7716.
    Fauconner, M.L., Perez, A.G., Sanz, C. (1997) Purification and characterization of tomato leaf (Lycopersicon eseulentum) hydroperoxide lyase. Agricutral Food Chemistry,1997,45, 4232-4236.
    Felton, G.W., Korth, K.L., Bil, J.L., Wesley S.V., Huhman, D.V., Mathews, M.C., Murphy, J.B., Lamb, C., Dixon, R.A. (1999) Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory.Current Biology,9(6),317-320.
    Fonseca, S., Chico, J.M., Solano, R. (2009) The jasmonate pathway:the ligand, the receptor and the core signalling molecule. Current Opinion Plant Biology,12,539-547.
    Fragniere, C., Serrano, M., Abou-Mansour, E., Metraux, J.P., L'Haridon, F. (2011) Salicylic acid and its location in response to biotic and abiotic stress, FEBS Letters,585,1847-1852.
    Froehlich, J.E., Itoh, A., Howe, G.A. (2001) Tomato allene oxide synthaseand fatty acid hydroperoxide lyase, two cytochrome P450s involved in oxylipin metabolism, are targeted to different membranes of chloroplast envelope. Plant Physiology,125,306-317.
    Frost, C.J., Appel, M., Carlson, J.E., De Moraes, C.M., Mescher, M.C., Schultz, J.C. (2007) Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecology Letters,10,490-498.
    Frost, C.J., Mescher, M.C., Dervinis, C., Davis, J.M., Carlson, J.E. and De Moraes, C.M. (2008) Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. New Phytologist,180,722-734.
    Fujii, T., Hori, M., Matsuda, K. (2010) Attractants for rice leaf bug, Trigonotylus caelestialium (Kirkaldy), are emitted from flowering rice panicles. Chemical Ecology,36,999-1005.
    Fujita, M., Hossain, M.Z. (2003) Modulation of pumpkin glutathione S-transferases by aldehydes and related compounds. Plant Cell and Physiology,44,481-490.
    Fukushige, H., Hildebrand, D.F. (2005) A Simple and Efficient System for Green Note Compound Biogenesis by Use of Certain Lipoxygenase and Hydroperoxide Lyase Sources. Agricultrual Food Chemistry,53,6877-6882.
    Gao, X.Q., Stumpe, M., Feussner, I., Kolomiets, M. (2008) A novel plastidial lipoxygenase of maize (Zea mays) ZmLOX6 encodes for a fatty acid hydroperoxide lyase and is uniquely regulated by phytohormones and pathogen infection. Planta,227,491-503.
    Gaquerel, E., Weinhold, A. and Baldwin, I.T. (2009) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphigidae) and its natural host Nicotiana attenuata. Ⅷ. An unbiased GCxGC-ToFMS analysis of the plant's elicited volatile emissions. Plant Physiology,149,1408-1423.
    Garcia, A.V., Blanvillain-Baufume, S., Huibers, R.P., Wiermer, M., Li, G., Gobbato, E., Rietz, S., Parker, J.E. (2010) Balanced nuclear and cytoplasmic activities of EDS 1 are required for a complete plant innate immune response. Plos Pathogens,6, e1000970.
    Garcion, C., Lohmann, A., Lamodiere, E., Catinot, J., Buchala, A., Doermann, P., Metraux, J.P. (2008) Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis. Plant Physiology,147,1279-1287.
    Garcion, C., Metraux, J.P. (2006) Salicylic acid In Plant Hormone Signaling. Annual plant reviews,24,229-255.
    Gargouri, M., Drouet, P., Legoy, M.D. (2004) Hydroperoxide-lyase activity in mint leaves Volatile C6-aldehyde production from hydroperoxy-fatty acids. Biotechnology,111,59-65.
    Gechev, T.S., Hille, J. (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. Journal of Cell Biology,168,17-20.
    Gerald, B., Jean-Marc, N., Bethuel, N. (2004) Fatty acid hydroperoxide lyase of green bell pepper: cloning in Yarrowia lipolytica and biogenesis of volatile aldehydes. Enzyme and Microbial Technology,35,293-299.
    Glazebrook, J. (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology,43(1),205-227.
    Gomi, K., Satoh, M., Ozawa, R., Shinonaga, Y., Sanada, S., Sasaki, K., Matsumura, M., Ohashi, Y., Kanno, H., Akimitsu, K., Takabayashi, J. (2010) Role of hydroperoxide lyase in white-backed planthopper(Sogatella furcifera Horvath)-induced resistance to bacterial blight in rice. Plant Journal,61,46-57.
    Gosset, V., Harmel, N., Gobel, C., Francis, F., Haubruge, E., Wathelet, J.P., du Jardin, P., Feussner, I., Fauconnier, M.L. (2009) Attacks by a piercing-sucking insect (Myzuspersicae Sultzer) or a chewing insect (Leptinotarsa decemlineata Say) on potato plants (Solatium tuberosum L.) induce differential changes in volatile compound release and oxylipin synthesis. Journal of Experimental Botany,60,1231-1240.
    Gou, M.Y., Shi, Z.Y. (2012) The F-box protein CPR1/CPR30 negatively regulates R protein SNC1 accumulation. Plant Journal,69(3),411-420.
    Gregg, A.H., Gyu, I.L., Aya, I., Li, L., Amy E.D. (2000) Cytochrome P450-Dependent Metabolism of Oxylipins in Tomato. Cloning and Expression of Allene Oxide Synthase and Fatty Acid Hydroperoxide Lyase. Plant Physiology,123,711-724.
    Halitschke, R., Baldwin, I.T. (2003) Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuata. Plant Journal,36,794-807.
    Halitschke, R., Schittko, U., Pohnert, G., Boland, W., Baldwin, I.T. (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata.Ⅲ. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiology,125, 711-717.
    Halitschke, R., Stenberg, J.A., Kessler, D., Kessler, A. and Baldwin, I.T. (2008) Shared signals-'alarm calls'from plants increase apparency to herbivores and their enemies in nature. Ecology Letters,11,24-34.
    Harfouche, A.L., Shivaji, R., Stocker, R., Williams, P.W., Luthe, D.S. (2006). Ethylene signaling mediates a maize defense response to insect herbivory. Molecular Plant-Microbe Interactions, 19,189-199.
    Harrower, J., Wildermuth, M.C. (2011) Exogenous salicylic acid treatment of Arabidopsis thaliana Col-0. NCBI Gene Expression Omnibus Acession No. GSE33402.
    He, Z., Stigers L.K.D., Bartlett, P. A., Toney, M.D. (2004) Conservation of mechanism in three chorismate-utilizing enzymes. Journal of the American Chemical Society,126,2378-2385.
    Heil, M., Kost, C. (2006) Priming of indirect defences. Ecology Letters,9(7),813-817.
    Heil, M., Silva Bueno, J.C. (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proceedings of the National Academy of Sciences of the United States of America,104,5467-5472.
    Hirotada, F., David, F.H. (2005) Watermelon(Citrullus lanatus) Hydroperoxide Lyase Greatly Increases C6 Aldehyde Formation in Transgenic Leaves. Agricultural Food Chemistry,53, 2046-2051.
    Hoballah, M.E., Turlings, T.C.J. (2005) The role of fresh versus old leaf damage in the attraction of parasitic wasps to herbivore-induced maize volatiles. Journal of Chemical Ecology,31, 2003-2018.
    Holy, N., Rabetafika, C.G., Marie-Laure, F., Marc, O., Jacqueline, D., Patrick, D.J., Jean-Paul, W., Philippe, T. (2008) Sugar beet leaves as new source of hydroperoxide lyase in a bioprocess producing green-note aldehydes. Biotechnology Letters,30,1115-1119.
    Hornostaj, A.R., Robinson, D.S. (1999) Purification of hydroperoxide lyase from cucumbers. Food Chemistry,66,173-180.
    Hornostaj, A.R., Robinson, D.S. (2000) Purification of hydroperoxide lyase from pea seeds. Food Chemistry,71,241-247.
    Howe, G.A., Jander, G. (2008) Plant immunity to insect herbivores. Annual Review of Plant Biology,59,41-66.
    Huang, J., Gu, M., Lai, Z., Fan, B., Shi, K., Zhou, Y.H., Yu, J.Q., Chen, Z. (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiology,153,1526-1538.
    Huang, M.S., Abel, C., Sohrabi, R., Petri, J., Haupt, I., Cosimano, J., Gershenzon, J., Tholl, D. (2010) Variation of Herbivore-Induced Volatile Terpenes among Arabidopsis Ecotypes Depends on Allelic Differences and Subcellular Targeting of Two Terpene Synthases, TPS02 and TPS03. Plant Physiology,153,1293-1310.
    Hubert, J., Munzbergova, Z., Santino, A. (2008) Plant volatile aldehydes as natural insecticides against stored-product beetles. Pest Management Science,64,57-64.
    Hudgins, J.W., Franceschi, V.R. (2004) Methyl jasmonate-induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation. Plant Physiology,135,2134-2149.
    Hwang, S.H., Hwang, D.J. (2010) Isolation and characterization of the rice NPR1 promoter. Plant Biotechnology Reports,4(1),29-35.
    Itoh, A., Howe, G.A. (2001) Molecular cloning of a divinyl ether synthase. Biological Chemistry, 276,3620-3627.
    Jagadeeswaran, G., Raina, S., Acharya, B.R., Maqbool, S.B., Mosher, S.L., Appel, H.M., Schultz, J.C., Klessig, D.F., Raina, R. (2007) Arabidopsis GH3-like defense gene 1 is required for accumulation of salicylic acid, activation of defense responses and resistance to Pseudomonas syringae. Plant Journal,51,234-246.
    Jin, J.B., Jin, Y.H., Lee, J., Miura, K., Yoo, C.Y., Kim, W.Y., Van Oosten, M., Hyun, Y., Somers, D.E., Lee, I., Yun, D.J., Bressan, R.A., Hasegawa, P.M. (2008) The Sumo E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant Journal,53,530-540.
    John, C., D'Aurial, Eran, P., Andrea, S., Armin, H., Jonathan, G. (2007) Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-l-yl acetate in Arabidopsis thaliana. The Plant Journal,49,194-207.
    Johnson, P, Ecker, J.R. (1998) The ethylene gas signal transduction pathway in plants:A molecular perspective. Annual Review of Genettics,32,227-254.
    Jones, J.D.G., Dangl, J.L. (2006) The plant immune system. Nature,444,323-329.
    Journot-Catalino, N., Somssich, I. E., Roby, D. (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell, 18(11),3289-3302.
    Kallenbach, M., Alagna, F., Baldwin, I. T. (2010) Nicotiana attenuata SIPK, WIPK, NPR1, and fatty acid-amino acid conjugates participate in the induction of jasmonic acid biosynthesis by affecting early enzymatic steps in the pathway. Plant Physiology,152(1),96-106.
    Kallenbach, M., Gilardoni, P.A., Allmann, S., Baldwin, I.T., Bonaventure, G. (2011) C12 derivatives of the hydroperoxide lyase pathway are produced by product recycling through lipoxygenase-2 in Nicotiana attenuata leaves. New Phytologist,191(4),1054-68.
    Kannaste, A., Nordenhem, H., Nordlander, G., Borg-Karlson, A.K. (2009) Volatiles from a Mite-Infested Spruce Clone and Their Effects on Pine Weevil Behavior. Journal of Chemical Ecology,35,1262-1271.
    Kao, C.H., Chao, Y.Y. (2010) Salicylic acid-mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant and Soil,329(1),327-337.
    Karban, R., Baldwin, I.T., Baxter, K.J., Laue, G., Felton, G.W. (2000) Communication between plants:induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia,125,66-71.
    Karban, R., Shiojiri, K., Huntzinger, M., McCall, A.C. (2006) Damage-induced resistance in sagebrush:volatiles are key to intra-and interplant communication. Ecology,87,922-930.
    Kempema L.A., Walling, L.L. (2007). Silverleaf whitefly induces salicylic acid Defenses and suppresses effectual jasmonic acid defenses. Plant Physiology,143,866-875.
    Kenji Gomi, Yumiko Yamasaki, Hiroyuki Yamamoto, Kazuya Akimitsu (2003) Characterization of a hydroperoxide lyase gene and effect of C6-volatiles on expression of genes of the oxylipin metabolism in Citrus. Plant Physiology,160,1219-1231.
    Kenji Matsui, Rika Ozawa, Junji Takabayashi (2005) Volatile C6-aldehydes and Allo-ocimene Activate Defense Genes and Induce Resistance against Botrytis cinerea in Arabidopsis thaliana Kyutaro Kishimoto. Plant Cell and Physiology,46(7),1093-1102.
    Kessler, A. (2004) Silencing the jasmonate cascade:Induced plant defenses and insect populations. Science,306,2042-2042.
    Kessler, A., Halitschke, R. (2007) Specificity and complexity:the impact of herbivore-induced plant responses on arthropod community structure. Current Opinion in Plant Biology,10, 409-414.
    Kim, T.W., Michniewicz, M. (2012) Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature,482,419-421.
    Kishimoto, K., Matsui, K.,-Ozawa, R., Takabayashi, J. (2008) Direct fungicidal activities of C6-aldehydes are important constituents for defense responses in Arabidopsis against Botrytis cinerea. Phytochemistry,69,2127-2132.
    Knepper, C., Day, B. (2010) From perception to activation:the molecular-genetic and biochemical landscape of disease resistance signaling in plants. The Arabidopsis Book,8, e0124.
    Koeduka, T., Stumpe, M., Matsui, K. (2003) Kinetics of Barley FA Hydroperoxide Lyase Are Modulated by Salts and Detergents. Lipids,38,1167-1172.
    Kolappan, S., Zwahlen, J., Zhou, R., Truglio, J.J., Tonge, P.J., Kisker, C. (2007) Lysine 190 is the catalytic base in MenF, the menaquinone-specific isochorismate synthase from Escherichia coli:Implications for an enzyme family. Biochemistry,46,946-953.
    Kosonh Xayphakatsa, Takuji Tsukiyama, Kuniyo Inouye, Yutaka Okumoto, Testuya Nakazaki, Takatoshi Tanisaka (2008) Gene cloning, expression, purification and characterization of rice (Oryza sativa L.) class Ⅱ chitinase CHT11. Enzyme and Microbial Technology,43(1),19-24.
    Kunkel, B.N., Brooks, D.M. (2002) Cross talk between signaling pathways in pathogendefense, Current Opinion in Plant Biology,5,325-331.
    Kuroda Hisao, Oshima Toshiyuki, Kaneda Hirotaka, Takashio Masachica (2005) Identification and functional analyses of two cDNAs that encode fatty acid 9-/13-hydroperoxide lyase (CYP74C) in rice. Bioscience biotechnology biochemistry,69 (8),1545-1554.
    Kyutaro, K., Kenji, M., Rika, O., Junji, T. (2006) ETR1-, JAR1-and PAD2-dependent signaling pathways are involved in C6-aldehyde-induced defense responses of Arabidopsis. Plant Science,171,415-423.
    Lanciotti, R., Gianotti, A., Patrignani, F., Belletti, N., Guerzoni, M.E.,Gardini, F. (2004) Use of natural aroma compounds to improve shelflife and safety of minimally processed fruits. Trends Food Sci Technology,15,201-208.
    Leitner, M., Boland, W., Mithofer, A. (2005) Direct and indirect defences induced by piercing-sucking and chewing herbivores in Medicago truncatula. New Phytologist,167, 597-606.
    Li, C.Y., Liu, G.H., Xu, C.C. (2003) The tomato Suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell,,15(7), 1646-1661.
    Li, L., Zhao, Y.F., McCaig, B.C., Wingerd, B.A., Wang, J.H., Whalon, M.E., Pichersky, E. and Howe, G.A. (2004) The tomato homolog of CORONATINE-INSENSITIVEI is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell,16,783-783.
    Liu, P.P., von Dahl, C.C., Klessig, D.F. (2011a) The extent to which methyl salicylate is required for signaling systemic acquired resistance is dependent on exposure to light after infection. Plant Physiology,157(4):2216-2225.
    Liu, P.P., von Dahl, C.C., Park, S.W., Klessig, D.F. (2011b) Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and tobacco. Plant Physiology,155,1762-1768.
    Liu, P.P., Yang, Y., Pichersky, E., Klessig, D.F. (2010) Altering expression of Benzoic acid/Salicylic acid carboxyl Methyltransferase 1 compromises systemic acquired resistance and PAMP-triggered immunity in Arabidopsis. Mol. Plant-Microbe Interact,23,82-90.
    Loake, G., Grant, M. (2007) Salicylic acid in plant defence-the players and protagonists. Current Opinion in Plant Biology,10,466-472.
    Lou, Y.G., Du, M.H., Turlings, T.C., Cheng, J.A., Shan, W.F. (2005) Exogenous application of jasmonic acid induces volatile emissions in rice and enhances parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae. Journal of Chemical Ecology,31,1985-2002.
    Lou, Y.G., Hua, X.Y., Turlings, T.C.J., Cheng, J.A., Chen, X.X., Ye, G.Y. (2006) Differences in induced volatile emissions among rice varieties result in differential attraction and parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae in the field. Journal of Chemical Ecology,32,2375-2387.
    Lou, Y.G., Ma, B., Cheng, J.A. (2005) Attraction of the parasitoid Anagrus nilaparyatae to rice volatiles induced by the rice brown planthopper Nilaparvata lugens. Journal of Chemical Ecology,31,2357-2372.
    Lu, H. (2009) Dissection of salicylic acid-mediated defense signaling networks. Plant Signaling and Behavior,4,713-717.
    Lu, J., Ju, H.P., Zhou, G.X., Zhu, C.S., Matthias Erb, Wang, X.P., Wang, P., Lou Y.G. (2011) An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice. The Plant Journal,68,583-596.
    Lu, Y.J., Wang, Wang, X., Lou, Y.G., Cheng, J.A. (2006) Role of ethylene signaling in the production of rice volatiles induced by the rice brown planthopper Nilaparvata lugens. Chinese Science Bulletin,51,2457-2465.
    Lucia, S., Mukhtarova, Mukhitova, F.K., Yuri V.G., Alexander N.G. (2011) Hydroperoxide lyase cascade in pea seedlings:Non-volatile oxylipins and their age and stress dependent alterations. Phytochemistry,72,356-364.
    Maffei, M.E., Mithofer, A., Boland, W. (2007a) Before gene expression:early events in plant-insect interaction. Trends in Plant Science,12,310-316.
    Maffei, M.E., Mithofer, A., Boland, W. (2007b) Insects feeding on plants:Rapid signals and responses preceding the induction of phytochemical release. Phytochemistry,68,2946-2959.
    Matsui, K. (2006) Green leaf volatiles:hydroperoxide lyase pathway of oxylipin metabolism. Curr Opinion in Plant Biology,9,274-280.
    Matsui, K., Miyahara, C., Wilkinson, J. (2000) Fatty acid hydroperoxide lyase in tomato fruits: cloning and properties of a recombinant enzyme expression in Escherichia coli. Biosci. Biotechnol. Biochemistry,64(6),1189-1196.
    Matsui, K., Toyota, H., Kajiwara, T. (1991) A fatty acid hydroperoxide cleaving enzyme. Phytochemistry,30,2109-2113.
    McConn, M., Creelman, R.A., Bell, E. (1997) Jasmonate is essential for insect defense Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America,94(10),5473-5477.
    Mei, C.F., Qi, M., Sheng, G.Y., Yang, Y.N. (2006) Inducible Overexpression of a Rice Allene Oxide Synthase Gene Increases the Endogenous Jasmonic Acid Level, PR Gene Expression, and Host Resistance to Fungal Infection. The American Phytopathological Society,19(10), 1127-1137.
    Meiners, T., Hilker, M. (1997) Host location in Oomyzus gallerucae (Hymenoptera:Eulophidae), an egg parasitoid of the elm leaf beetle Xanthogaleruca luteola (Coleoptera:Chrysomelidae). Oecologia,112,87-93.
    Meiners, T., Hilker, M. (2000) Induction of plant synomones by oviposition of a phytophagous insect. Chemical Ecology,26,221-232.
    Metraux, J.P. (2002) Recent breakthroughs in the study of salicylic acid biosynthesis.Trends in plant science,7(8),332-334.
    Mewis, I., Tokuhisa, J.G., Schultz, J.C., Appel, H.M., Ulrichs, C., Gershenzon, J. (2006) Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry,67,2450-2462.
    Michael Stumpe, Cornelia Gobel, Kirill Demchenko, Katharina Pawlowski, Ivo Feussner (2006) Identification of an allene oxide synthase (CYP74C) that leads to formation of α-ketols from 9-hydroperoxides of linoleic and linolenic acid in below ground organs of potato. Plant Journal, 47(6),883-96.
    Mosblech, A., Feussner, I., Heilmann, I. (2009) Oxylipins:Structurally diverse metabolites from fatty acid oxidation. Plant Physiology and Biochemistry.47:511-517.
    Mur, L.A.J., Kenton, P., Atzorn, R., Miersch, O. and Wasternack, C. (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiology,140,249-262.
    Mustafa, N.R., Kim, H.K., Choi, Y.H., Erkelens, C., Lefeber, A.W.M., Spijksma, G., van der Heijden, R., Verpoorte, R. (2009) Biosynthesis of salicylic acid in fungus elicited Catharanthus roseus cells. Phytochemistry,70,532-539.
    Myung K., Hamilton-Kemp T.R., Archbold D.D. (2006) Biosynthesis of trans-2-hexenal in response to wounding in strawberry fruit. Agricultural Food Chemistry,54(4),1442-1448.
    Nakamura, S., Hatanaka, A. (2002) Green-leaf-derived C6-aromacompounds with potent antibacterial action that act on both Gram-negative and Gram-positive bacteria. Agricultural Food Chemistry,50,7639-7644.
    Nathalie, T., Duncan, J.H.G. (2000) Purification, Molecular Cloning and expression of the Gene Encoding Fatty Acid 13-Hydroperoxide Lyase from Guava Fruit (Psidium guajava). Lipids, 35(2),710-720.
    Nawrath, C., Metraux, J.P. (1999) Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell,11,1393-1404.
    Nishimura, M.T., Dangl, J.L. (2010) Arabidopsis and the plant immune system. Plant Jouranl,61, 1053-1066.
    Nobuta, K., Okrent, R.A., Stoutemyer, M., Rodibaugh, N., Kempema, L., Wildermuth, M.C., Innes, R.W. (2007) The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiology,144,1144-1156.
    Noordermeer, M.A., Dijken, A.J.H.V., Smeekens, S.C.M. (2000) Charaeterization of three cloned and expressed 13-hydroperoxide lyase isoenzymes from alfalfa with unusual N-terminal sequences and different enzyme kinetics. FEBS Letters,267,2473-2482.
    Noordermeer, M.A., Gerrit, A., Veldink, Johannes, F.G. (2001) Fatty Acid Hydroperoxide Lyase: A Plant Cytochrome P450 Enzyme Involved in Wound Healing and Pest Resistance. Chembiochemistry,2 (7),494-504.
    O'Donnell, P.J., Calvert, C., Atzon, R. (1996) Ethylene as a signal mediating the wound response of tomato plants. Science,274,1914-1917.
    Ogawa, D., Nakajima, N., Sano, T., Tamaoki, M., Aono, M., Kubo, A., Kanna, M., Ioki, M., Kamada, H., Saji, H. (2005) Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. Plant and Cell Physiology,46,1062-1072.
    Ollerstam, O., Larsson, S. (2003) Salicylic acid mediates resistance in the willow Salix viminalis against the gall midge Dasineura marginemtorquens. Journal of Chemical Ecology,29(1), 163-174.
    Onkokesung, N., Galis, I., von Dahl, C.C., Matsuoka, K., Saluz, H.P., Baldwin, I.T. (2010) Jasmonic Acid and Ethylene Modulate Local Responses to Wounding and Simulated Herbivory in Nicotiana attenuata Leaves. Plant Physiology,153,785-798.
    Ortego, F., Novillo, C., Sanchez-Serrano, J.J. (2001) Physiological response of Colorado potato beetle and beet army worm larvae to depletion of wound-inducible proteinase inhibitors in transgenic potato plants. Journal of Insect Physiology,47(11),1291-1300.
    Ozawa, R., Arimura, G., Takabayashi, J., Shimoda, T., Nishioka, T. (2000) Involvement of jasmonate- and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant and Cell Physiology,41,391-398.
    Padilla, M.N., Hernandez, M.L., Perez, A.G., Sanz, C., Martinez-Rivas, J.M. (2010) Isolation, expression, and characterization of a 13-hydroperoxide lyase gene from olive fruit related to the biosynthesis of the main virgin olive oil aroma compounds. Agricutral Food Chemistry,12, 58(9),5649-5657.
    Padul, M.V., Tak, R.D. (2012) Protease inhibitor (PI) mediated defense in leaves and flowers of pigeonpea (protease inhibitor mediated defense in pigeonpea). Plant Physiology and Biochemistry,52:77-82.
    Pallas, J.A., Paival, N.L., Lamb C., Richard A.D. (1996) Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant Journal,10(2),281-293.
    Park, J.H., Halitschke, R., Kim, H.B. (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant Journal,31(1),1-12.
    Park, S.W. (2008) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science,321,342-342.
    Park, S.W., Kaimoyo, E., Kumar, D., Mosher, S., Klessig, D.F. (2007) Methyl salicylate is acriticalmobile signal for plant systemic acquired resistance. Science.318:113-116.
    Penaflor, M.F.G.V., Erb, M., Miranda, L.A., Werneburg, A.G., Bento J.M.S. (2011) Herbivore-Induced Plant Volatiles Can Serve as Host Location Cues for a Generalist and a Specialist Egg Parasitoid. Journal of Chemical Ecology,37,1304-1313.
    Penninckx, I.A.M.A., Thomma, B.P.H.J., Buchala, A. (1998) Concomitant activation of jasmonte and ethylene response pathways is required for induction of a plant defense gene in Arabidopsis. Plant Cell,10(12),2103-2113.
    Postel, S., Kufner, I., Beuter, C., Mazzotta, S., Schwedt, A., Borlotti, A., Halter, T., Kemmerling, B., Nurnberger, T. (2010) The multifunctional leucine-rich repeat receptor kinase BAK1 is implicated in Arabidopsis development and immunity. European Journal of Cell Biology,89, 169-174.
    Poupard, P., Parisi, L., Campion, C. (2003) A wound- and ethephon-inducible PR-10 gene subclass from apple is differentially expressed during infection with a compatible and an incompatible race of Venturia inaequalis. Physiology Molecular Plant Pathology,62(1),3-12.
    Qi, J. F., Zhou, G. X., Yang, L. J., Matthias Erb, Lu, Y. H., Sun, X. L., Cheng, J. A., Lou, Y. G. (2011) The chloroplast-localized phospholipases D α4 and a5 regulate herbivore-induced direct and indirect defenses in Rice.plant physiology,157(4),1987-1999.
    Raskin, I. (1992) Role of salicylic acid in plants. Annual Review of Plant Physiology,43, 439-463.
    Rayapuram, C., Baldwin, I.T. (2007) Increased SA in NPR1-silenced plants antagonizes JA and JA-dependent direct and indirect defenses in herbivore-attacked Nicotiana attenuate in nature. Plant Journal,52,700-715.
    Rayko Halitschke, Jorg Ziegler, Markku Keinanen, Baldwin I.T. (2004) Silencing of hydroperoxide lyase and allene oxide synthase reveals substrate and defense signaling crosstalk in Nicotiana attenuate. Plant Journal,40,35-46.
    Rehbock, B., Ganber, D., Berger, R.G. (1998) Efficient generation of (E)-2-hexenal by a hydroperoxide lyase from mung bean seedlings. Food Chemistry,63(2),161-165.
    Ren, C.M., Zhu, Q., Gao, B.D. (2008) Transcription factor WRKY70 displays important but no indispensable roles in jasmonate and salicylic acid signaling.Journal of Integrative Plant Biology,50(5),630-637.
    Reymond, P., Bodenhausen, N., Van Poecke, R.M.P., Krishnamurthy, V., Dicke, M., Farmer, E.E. (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell,16,3132-3147.
    Rietz, S., Stamm, A., Malonek, S., Wagner, S., Becker, D., Medina-Escobar, N., Vlot, A.C., Feys, B.J., Niefind, K., Parker, J.E. (2011) Different roles of Enhanced Disease Susceptibility 1 (EDS 1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity. New Phytologist,191,107-119.
    Robert-Seilaniantz, A., Grant, M., Jones, J.D.G. (2011) Hormone crosstalk in plant disease and defense:more than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 49,317-343.
    Romy Kandzia, Michael Stumpe, Ekkehardt Berndt, Marlena Szalata, Kenji Matsui, Ivo Feussner (2003) On the specificity of lipid hydroperoxide fragmentation by fatty acid hydroperoxide lyase from Arabidopsis thaliana. Plant Physiology,160,803-809.
    Rose, U., Manukian, A., Heath, R.R., Tumlinson, J.H. (1996) Volatilesemiochemicals released from undamaged cotton leaves (asystemic response of living plants to caterpillar damage). Plant Physiology,111,487-495.
    Rossana Mirabellal, Han Rauwerda, Eduard A.S., Cornelis Jakobs, Christian Triantaphylides, Michel A.H., Robert C.S. (2008) The Arabidopsis herl mutant implicates GABA in E-2-hexenal responsiveness. The Plant Journal,53,197-213.
    Royo, J., Leon, J., Vancanneyt, G. (1999) Antisense-mediated depletion of a potato lipoxygenase reduces wound induction of proteinase inhibitors and increases weight gain of insect pests. Proceedings of the National Academy of Sciences of the United States of America,96(3), 1146-1151.
    Ruther, J., Svenkleier. (2005) Plant-plant signaling:ethylene synergizes volatile emission in Zea mays induced by exposure to (z)-3-hexen-l-ol. Journal of Chemical Ecology.31(9), 2217-2222.
    Ryals, J., Lawton, K.A., Delaney, T.P., Friedrich, L., Kessmann, H., Neuenschwander, U., Uknes, S., Vernooij, B., Weymann, K. (1995) Signal transduction in systemic acquired resistance. Proceedings of the National Academy of Sciences of the United States of America,92(10), 4202-4205.
    Salas, J.J., Carolina, S., Diego, L. (2005) Impact of the Suppression of Lipoxygenase and Hydroperoxide Lyase on the Quality of the Green Odor in Green Leaves. Journal of Agricultural Food Chemistry,53,1648-1655.
    Salas, J.J., Diego, L., Garcia-Gonzalez, R.A. (2006) Volatile Compound Biosynthesis by Green Leaves from an Arabidopsis thaliana Hydroperoxide Lyase Knockout Mutant. Journal of Agricultural Food Chemistry,54,8199-8205.
    Schnee, C., Kollner, T.G., Held, M., Turlings, T.C.J., Gershenzon, J., Degenhardt, J. (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proceedings of the National Academy of Sciences of the United States of America,103,1129-1134.
    Schulze, B., Dabrowska, P., Boland, W. (2007) Rapid enzymatic isomerization of 12-oxophytodienoic acid in the gut of lepidopteran larvae. ChemBioChem,8(2),208-216.
    Shah, J. (2003). The salicylic acid loop in plant defense. Current Opinion in Plant Biology,6, 365-371.
    Shah, J. (2009) Plants under attack:systemic signals in defence. Currrent Opinion Plant Biology 12,459-464.
    Shah, J., Takahashi, H. (2008) Overexpression of the Arabidopsis thaliana EDS5 gene enhances resistance to viruses. Plant Biology,10,451-461.
    Shibata, Y., Matsui, K., Kajiwara, T. (1995) Purification and properties of fatty acid hydroperoxide lyase from green bell pepper fruits. Plant and Cell Physiology,36(1),147-156.
    Shiojiri, K., Kishimoto, K., Ozawa, R., Kugimiya, S., Urashimo, S., Arimura, G., Horiuchi, J., Nishioka, T., Matsui, K., Takabayashi, J. (2006) Changing green leaf volatile biosynthesis in plants:An approach for improving plant resistance against both herbivores and pathogens. PNAS,103(45),16672-16676.
    Shiojiri, K., Ozawa, R., Takabayashi, J. (2006) Plant volatiles, rather than light, determine the nocturnal behavior of a caterpillar. Plos Biology,4,1044-1047.
    Spoel, S.H., A. Koornneef, S.M.C. Claessens, J.P. Korzelius, J.A. Van Pelt, M.J.Mueller, A.J. Buchala, J.P.Metraux, R. Brown, K. Kazan, L.C. Van Loon, X.N. Dong.C.M.J. Pieterse (2003) NPR1 modulates cross-talk between salicylate-and jasmonatedependent defense pathways through a novel function in the cytosol. Plant Cell,15,760-770.
    Stintzi, A., Weber, H., Reymond, P. (2001) Plant defense in the absence of jasmonic acid:The role of cyclopentenones. Proceedings of the National Academy of Sciences of the United States of America,98(22),12837-12842.
    Stork, W., Diezel, C., Halitschke, R., Galis, I., Baldwin, I.T. (2009). An Ecological Analysis of the Herbivory-Elicited JA Burst and Its Metabolism:Plant Memory Processes and Predictions of the Moving Target Model. Plos One,4(3),4697-4792.
    Straus, M.R., Rietz, S., Ver Loren van Themaat, E., Bartsch, M., Parker, J.E. (2010) Salicylic acid antagonism of EDS 1-driven cell death is important for immune and oxidative stress responses in Arabidopsis. Plant Journal,62,628-640.
    Strawn, M.A., Marr, S.K., Inoue, K., Inada, N., Zubieta, C., Wildermuth, M.C. (2007) Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. Journal of Biological Chemistry, 282,5919-5933.
    Suurmeller, C.N.S.P, Gilabert, M.P., Unen, D.J. (2000) Purification, stabilization and characterization of tomato fatty acid hydroperoxide lyase. Phytochemistry,53,177-185.
    Syeed, S., Anjum, N.A., Nazar, R., Iqbal, N., Masood, A., Khan, N.A. (2011) Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiol Plant,33, 877-886.
    Takatsuji, H., Jiang, C., Sugano, S. (2010) Salicylic Acid Signaling Pathway in Rice and the Potential Applications of Its Regulators. JARQ,44 (3),217-223.
    Taki, N., Sasaki-Sekimoto, Y., Obayashi, T., Kikuta, A., Kobayashi, K., Ainai, T., Yagi, K., Sakurai, N., Suzuki, H., Masuda, T., Takamiya, K., Shibata, D., Kobayashi, Y. and Ohta, H. (2005) 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiology,139,1268-1283.
    Tang, D., Ade, J., Frye, C.A., Innes, R.W. (2005) Regulation of plantdefense responses in Arabidopsis by EDR2, a PH and START domaincontaining protein. Plant Journal,44, 245-257.
    Thaler, J.S, Fidantsef, A.L., Bostock, R.M. (2002) Antagonism between jasmonate-and salicylate-mediated induced plant resistance:Effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. Journal of Chemical Ecology,28(6),1131-1159.
    Thaler, J.S. (2010) Salicylate-mediated interactions between pathogens and herbivores. Ecology, 91(4),1075-1082.
    Thaler, J.S., Stout, M.J., Karban, R. (2001) Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecological Entomology,26(3),312-324.
    Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G.H., Nomura, K., He, S.Y., Howe, G.A., Browse, J. (2007) JAZ repressor proteins are targets of the SCFCO11 complex during jasmonate signalling. Nature,448,661-662.
    Thomma, B.P.H.J., Tierens, K.F.M., Penninckx, I.A.M.A. (2001) Different microorganisms differentially induce Arabidopsis disease response pathways. Plant Physiology Biochemistry, 39(8),673-680.
    Tijet, N., Schneider, C., Muller, B.L. (2001) Biogenesis of Volatile Aldehydes from Fatty Acid Hydroperoxides:Molecular Cloning of a Hydroperoxide Lyase (CYP74C) with Specificity for both the 9-and 13-Hydroperoxides of Linoleic and Linolenic Acids. Arch. Biochem. Biophys, 386,281-289.
    Toby, J.A. Bruce, Lester, J.W., Christine, M.W. (2005) Insect host location:a volatile situation, Trends in Plant Science,10 (6),1360-1385.
    Tsuda, K., Sato, M., Glazebrook, J., Cohen, J.D., and Katagiri, F. (2008) Interplay between MAMP-triggered and SA-mediated defense responses. Plant Journal,53,763-775.
    Turner, J.G., Ellis, C., Devoto, A. (2002) The jasmonate signal pathway. Plant Cell,14,153-164.
    Umemura K, Satou J, Iwata M, Uozumi N, Koga J, Kawano T, Koshiba T, Anzai H, Mitomi M (2008) Contribution of salicylic acid glucosyltransferase, OsSGT1, to chemically induced disease resistance in rice plants. Plant Journal,57(3),463-472.
    Uppalapati, S.R., Ishiga, Y., Wangdi, T., Kunkel, B.N., Anand, A., Mysore, K.S., Bender, C.L. (2007) The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol. Plant-Microbe Interact,20,955-965.
    Van Tegelen, L.J.P., Bongaerts, R.J.M., Croes, A.F., Verpoorte, R., and Wullems, G.J. (1999a) Isochorismate synthase isoforms from elicited cell cultures of Rubia tinctorum. Phytochemestry,51,263-269.
    Van Tegelen, L.J.P., Moreno, P.R.H., Croes, A.F., Verpoorte, R., and Wullems, G.J. (1999b) Purification and cDNA cloning of isochorismate synthase from elicited cell cultures of Catharanthus roseus. Plant Physiology,119,705-712.
    Van Verk, M.C., Bol, J.F., and Linthorst, H.J.M. (2011) WRKY transcription factors involved in activation of SA biosynthesis genes. BMC Plant Biology,11,89-95.
    Vancanneyt Guy, Sanz Carlos, Farmaki Theodora, Paneque Manuel, Felix Ortego, Pedro Castan, and Jose J. Sa'nchez-Serrano (2001) Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proceedings of the National Academy of Sciences of the United States of America,98(14),39-44.
    Venugopal, S.C., Jeong, R.D., Mandal, M.K., Zhu, S., Chandra-Shekara, A.C., Xia, Y., Hersh, M., Stromberg, A.J., Navarre, D., Kachroo, A., Kachroo, P. (2009) Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling. PLoS Genetics,5, e1000545.
    Verberne, M.C., Verpoorte, R., Bol, J.F., Jesus M.B., Linthorst, H.J.M. (2000) Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nature biotechnology,18,779-783.
    Vlot, A.C., Dempsey, D.A., and Klessig, D.F. (2009) Salicylic acid, a multifaceted hormone to combat disease. Ann. Rev. Phytopathology,47,177-206.
    Vlot, A.C., Klessig, D.F., Park, S. W. (2008) Systemic acquiredresistance:the elusive signal(s). Current Opinion in Plant Biology,11,436-442.
    Von Dahl, C.C., Winz, R.A., Halitschke, R., Kuhnemann, F., Gase, K., Baldwin, I.T. (2007) Tuning the herbivore-induced ethylene burst:the role of transcript accumulation and ethylene perception in Nicotiana attenuate. Plant Journal 51,293-307.
    Walling, L.L. (2000) The myriad plant responses to herbivores. Journal of Plant Growth Regulation,19(2),195-216.
    Wang, H., Ngwenyama, N., Liu, Y. (2007) Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell,19(1), 63-73.
    Wang, L., Tsuda, K., Sato, M., Cohen, J.D., Katagiri, F., Glazebrook, J. (2009) Arabidopsis CaM Binding Protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLos Pathog,5, e 1000301.
    Wang, L., Tsuda, K., Truman, W., Sato, M., Nguyen, L.V., Katagiri, F., and Glazebrook, J. (2011) CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. Plant Journal,67,1029-1041.
    Wang, X., Zhou, G.X., Xiang, C.Y., Du, M.H., Cheng, J.A., Liu, S.S., Lou, Y.G. (2008) beta-Glucosidase treatment and infestation by the rice brown planthopper Nilaparvata lugens elicit similar signaling pathways in rice plants. Chinese Science Bulletin,53,53-57.
    Wasternack, C. (2007) Jasmonates:An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany,100,681-697.
    Wei, J.N., Kang, L. (2011) Roles of (Z)-3-hexenol in plant-insect interactions. Plant Signaling and Behavior,6,369-371.
    Wei, J.N., Wang, L.Z., Zhu, J.W., Zhang, S.F., Nandi, O.I., Kang, L. (2007) Plants Attract Parasitic Wasps to Defend Themselves against Insect Pests by Releasing Hexenol. Plos One, 9,eb52.
    Wildermuth, M.C., Dewdney, J., Wu, G., Ausubel, F.M. (2001) Isochorismate synthaseis required to synthesize salicylic acid for plant defence. Nature,414,562-565.
    Winz, R.A., Baldwin, I.T. (2001) Molecular interaction between the specialist herbivore Manduca Sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attennata, Ⅳ. Insect-induced ethylene reduces jasmonate-induced nicotine accumulation by regulating putrescine N-methyltransferase transcripts. Plant Physiology,125(4),2189-2202.
    Wu, J.Q., Hettenhausen, C., Meldau, S. (2007) Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell, 19(3),1096-1122.
    Wu, J.Q., Baldwin, I.T. (2010) New Insights into Plant Responses to the Attack from Insect Herbivores. Annual Review of Genetics,44(44),1-24.
    Xu, Y., Chang, P.L., Liu, D. (1994) Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell,6(8),1077-1085.
    Yoo, S.D., Cho, Y.H., Tena, G., Xiong, Y., Sheen, J. (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature,451,789-U781.
    Yuan, J.S., Kollner, T.G., Wiggins, G., Grant, J., Degenhardt, J., Chen, F. (2008) Molecular and genomic basis of volatile-mediated indirect defense against insects in rice. Plant Journal,55, 491-503.
    Yuan, J.S., Kollner, T.G., Wiggins, G., Grant, J., Zhao, N., Zhuang, X., Degenhardt, J., Chen, F. (2008) Elucidation of the genomic basis of indirect plant defense against insects. Plant Signal Behavior,3,720-721.
    Yuan, Y., Chung, J.D., Fu, X., Johnson, V.E., Ranjan, P., Booth, S.L., Harding S.A., Tsai, C.J. (2009) Alternative splicing and gene duplication differentially shaped the regulation of isochorismate synthase in Populus and Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America,106,22020-22025.
    Zarate, S.I., Kempema, L.A., Walling, L. (2007). Silverleaf whitefly induces salicylic acid Defenses and suppresses effectual jasmonic acid defenses. Plant Physiology,143,866-875.
    Zhang, P.J.,Zhu, X.Y. (2011) Suppression of Jasmonic Acid-Dependent Defense in Cotton Plant by the Mealybug Phenacoccus solenopsis. Plos One,6(7):e22378.
    Zhang, X., Chen, S., Mou, Z. (2010 a) Nuclear localization of NPR1 is required for regulation of salicylate tolerance, isochorismate synthase 1 expression and salicylate accumulation in Arabidopsis. Plant Physiology,167,144-148.
    Zhang, Y., Xu, S., Ding, P., Wang, D., Cheng, Y.T., He, J., Gao, M., Xu, F., Li, Y., Zhu, Z., Li, X., Zhang, Y. (2010 b) Control of salicylic acid synthesis and systemic acquired resistance by two members of a plantspecific family of transcription factors. Proceedings of the National Academy of Sciences of the United States of America,107,18220-18225.
    Zhou, G.X., Qi, J.F., Ren, N., Cheng, J.A., Erb, M., Mao, B.Z., Lou, Y.G. (2009) Silencing OsLOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant Jouranl,60,638-648.
    Zhu, B.Q., Xu, X.Q., Wu, Y.W., Duan, C.Q., Pan, Q.H. (2012) Isolation and characterization of two hydroperoxide lyase genes from grape berries HPL isogenes in Vitis vinifera grapes. Mol Biol Rep, submitted.
    Zhu, J.W., Park, K.C. (2005) Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. Chemical Ecology,31,1733-1746.
    Zhu-Salzman, K., Salzman, R.A., Ahn, J., Koiwa, H.(2004) Transcriptional Regulation of Sorghum Defense Determinants against a Phloem-Feeding Aphid. Plant Physiology,134(1), 420-431.
    Zhu-Salzman, K., Salzman, R.A., Koiwa, H. (1998) Ethylene negatively regulates local expression of plant defense lectin genes. Plant Physiology,104(3),365-372.
    王霞,杜孟浩,周国鑫,程家安,娄永根.(2007)水杨酸与过氧化氢信号途径在褐飞虱诱导的水稻挥发物释放中的作用.浙江大学学报,33(1),15-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700