掺杂型量子点在生物医学检测和疾病诊断方面的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新型的荧光纳米材料,量子点在生物医学领域的应用受到了国内外学者的广泛关注。量子点的应用范围广是由于它独特的化学性质和光学性质决定的,如发射光谱窄且对称、激发光谱宽且连续、光稳定性强、荧光寿命长等优点。目前,量子点的应用涵盖从生物检测到疾病诊断和治疗等许多方面。
     尽管量子点在实际应用中得到了广泛的关注,但同时也出现了很多亟待解决的问题:如何降低量子点中重金属泄露带来的生物毒性,提高量子点在活体成像中的组织穿透能力和降低生物自发荧光的干扰等。本论文将水相合成的两种新型掺杂型量子点应用于生物医学检测、细胞成像及疾病的诊断中。主要内容包括:
     论文的第一章中,主要介绍了量子点的性质、合成方法、应用研究及掺杂型量子点的研究进展等,阐明了本论文的研究意义及主要内容。
     论文的第二章中,我们首次利用了无镉的Mn:ZnSe量子点制备的靶向光学探针对前列腺癌细胞进行了荧光标记与成像。该光学探针中采用的AMACR是一种高度敏感性和特异性的前列腺癌阳性标记物,与PSA相比具有更高的敏感性和特异性,可作为PSA的补充。Mn:ZnSe量子点可与AMACR抗体结合形成量子点-抗体生物复合物,从而可以对前列腺癌细胞LNCaP进行特异性的长时间的免疫荧光成像。MTT实验结果表明Mn:ZnSe量子点具有良好的生物相容性,对LNCaP细胞的生物毒性非常低。Mn:ZnSe量子点无重金属离子镉,因此具有非常低的生物毒性、优越的光稳定性和非常好的生物适应性,这将使它在生物检测、细胞组织成像甚至是活体研究方面表现出巨大的潜力。
     论文的第三章中,我们利用Mn:ZnSe量子点和六个精氨酸的肽链(Arg6)构建的纳米探针,建立了一种能定量检测胰蛋白酶及其抑制剂的新方法。带正电的Arg6通过静电作用可与巯基丙酸修饰的Mn:ZnSe量子点结合,使量子点发生聚集引起其荧光猝灭。胰蛋白酶可以水解Arg6成为小的碎片,抑制量子点的聚集,使量子点荧光恢复,这样就可以通过Mn:ZnSe量子点荧光强度变化来定量检测胰蛋白酶。该纳米探针可用于检测胰蛋白酶的浓度低至40ng mL-1,我们将其用于人体液样品中胰蛋白酶含量的检测,得到满意的结果。该方法可以进行高通量胰蛋白酶及其抑制剂的检测,也可应用于胰腺炎的诊断和治疗。
     论文的第四章中,主要利用水相合成法制备的Mn:ZnSe量子点来定量检测对氧磷。我们基于量子点的荧光猝灭和酶的抑制作用建立了一种高灵敏的双酶催化传感器。乙酰胆碱脂酶水解乙酰胆碱生成胆碱,胆碱被胆碱氧化酶氧化生成的过氧化氢可以猝灭Mn:ZnSe量子点的荧光。对氧磷可以和乙酰胆碱脂酶的活性中心体反应来抑制酶催化产生的过氧化氢对量子点的荧光猝灭效应,这样就可以通过Mn:ZnSe量子点荧光强度的变化来定量检测对氧磷。
     论文的第五章中,我们利用纤维蛋白原和近红外CuInS_2量子点的复合体系进行高选择性和高灵敏度的凝血酶检测。近红外CuInS_2量子点具有低毒性、组织穿透能力强和无生物自发荧光干扰等优势,非常适用于生物医学检测和组织及活体成像。巯基丙酸修饰的CuInS_2量子点可以与纤维蛋白原表面的氨基通过静电作用形成Fib-CuInS_2复合物,这将导致CuInS_2量子点的荧光强度增强。当凝血酶加入到Fib-CuInS_2复合体系中时,就会催化游离的和结合的纤维蛋白原发生聚合,形成不溶性的纤维状纤维蛋白fibrin-CuInS_2QDs凝集物。离心后上层溶液的荧光强度会随着凝血酶浓度的增加而逐渐降低,通过上层溶液的荧光强度的变化即可实现对凝血酶的检测。这种方法能够检测皮摩尔浓度的凝血酶,在与凝血功能异常有关的疾病和癌症的诊断中具有巨大的潜力。
     论文的第六章中,我们开发了一种新型的抗癌药物传输体系(CuInS_2QDs/PGA-DOX复合纳米粒子),该体系是基于L-半胱氨酸修饰的CuInS_2量子点与聚谷氨酸(PGA)的静电相互作用,以及PGA与抗癌药物阿霉素(DOX)之间的共价作用而建立的。DOX可以通过光诱导电子转移过程来猝灭量子点的荧光,当CuInS_2QDs/PGA-DOX复合纳米粒子与羧肽酶作用,或进入肿瘤细胞后,PGA会被水解释放出DOX,这样CuInS_2量子点的荧光就会恢复。此多功能复合纳米粒子不仅可以释放抗癌药物,对癌细胞有靶向性的治疗作用,还可以利用量子点的荧光信号对药物的传输过程进行实时监测,同时可对癌细胞进行荧光成像。
As novel fluorescence nanoparticles, quantum dots (QDs) have been extensiveattention from domestic and foreign scholars in the field of biomedical applications.QDs have some unique spectral properties, such as narrow and symmetricphotoluminescence, broad and intense absorption band, and tunable emission peakpositions. QDs of different sizes with the variable PL can be simultaneously excitedwith a single excitation light source, which endows them with considerableapplications in biomedical labeling, cellular effectors and reporters, light emittingdiodes, lasers and sensors. QDs have some disadvantages, such as the intrinsictoxicity from any leakage of cadmium, strong self-quenching caused by their smallensemble Stokes shift and sensitivity to thermal, chemical, and photochemicaldisturbances. In this paper, we focus on the application of QDs in a wide range ofbiological assays, imaging of cells and tissues, and even in vivo investigations,summarized as follows:
     In the chapter1, we described the optical properties of QDs, the biomedicalapplication, the toxicity of QDs and research progress of doped QDs. Finally, weprovided the significance and contents of this dissertation.
     In chapter2, we report the successful use of non-cadmium-based Mn-dopedZnSe d-dots (Mn:ZnSe) as highly efficient and nontoxic optical probes for humanprostate cancer cells imaging. Mn:ZnSe d-dots are directly prepared in aqueoussolution. The α-methylacyl-CoA racemase (AMACR) is overexpressed in prostatecancers; the presence of antibodies specific for AMACR is more sensitive andspecific than serum PSA levels in distinguishing patients with prostate cancers.Mn:ZnSe d-dots were linked to anti-AMACR to form Mn:ZnSe d-dots-anti-AMACRbioconjugates for the direct prostate cancer cells imaging. Mn:ZnSe d-dots exhibitedfavorable cytocompatibility to LNCaP cells with high concentration and long-timeincubation. Furthermore, cellular imaging results demonstrated that Mn:ZnSe d-dotswere remarkably efficacious for high-specificity cell imaging. Mn:ZnSe d-dots as non-cadmium-based safe and efficient optical imaging nanoprobes could therefore beused for targeting imaging and treatment of cancers in the early stage.
     In the chapter3, a novel optical nanoprobe (Mn:ZnSe d-dots-Arg6) for trypsindetection and its inhibitor screening has been constructed successfully based on thefluorescence quenching and recovery of Mn:ZnSe d-dots. Mn:ZnSe d-dots wouldaggregate in the presence of positively charged Arg6(six arginine residues) due toelectrostatic interactions that result in the fluorescence quenching. Arg6can behydrolyzed into small fragments in the presence of trypsin, and accordingly, theaggregation of Mn:ZnSe d-dots can be prohibited, which lead to the fluorescencerecovery. Additionally, the optical nanoprobe can be employed for screening theinhibitors of trypsin. The optical nanoprobe was successfully applied for thedetermination of trypsin in human serum and urine samples with good accuracy andsatisfactory recovery.
     In the chapter4, we report a sensitive and selective method for detection oforganophosphorus compounds (OPs) based on Mn:ZnSe d-dots-enzyme-hydrogenperoxide (H_2O_2) fluorescence quenching system. Acetylcholine esterase (AChE) canhydrolyze acetylcholine (ACh) to choline. Subsequently, choline oxidase (ChOx)oxidizes choline to generate H2O2. The enzyme-generated H2O2can quench thefluorescence of Mn:ZnSe d-dots. When paraoxon are introduced in solution, it caninteract with the active centers of AChE and decrease the enzyme activity. This leadsto the decrease of the H2O2production and then the fluorescence quenching rate ofMn:ZnSe d-dots. The proposed biosensor has been employed for quick determinationof paraoxon in tap water and milk samples with satisfactory reproducibility andaccuracy. This nano-biosensor was proved to be sensitive, rapid, simple and toleranceof most interfering substances.
     In the chapter5, we describes a novel, simple method for the highly sensitive andselective detection of thrombin using fibrinogen (Fib) and CuInS_2quantum dots (QDs)as biosensing probes. Water-soluble near-infrared CuInS_2QDs capped bymercaptopropionic acid (MPA) was directly synthesized by hydrothermal method.Addition of fibrinogen to CuInS_2QDs solution led to the formation of Fib-CuInS_2
     QDs complex, and resulting in the enhancement of photoluminescence intensity. Oncethrombin was introduced into the Fib-CuInS_2QDs system, it catalyzed thepolymerization of the free and conjugated fibrinogen species to form insolublefibrillar fibrin-CuInS_2QDs agglutinates. After centrifugation, the PL intensity of thesupernatants decreased upon increasing the concentration of thrombin. The proposedapproach provides a simple and fast-responding procedure, which might hold apromising potential for application in the diagnosis of diseases associated withcoagulation abnormalities and cancers.
     In the chapter6, we reported a new anticancer drug release system based on cationic CuInS_2quantum dots (QDs) and anionic poly(L-glutamic acid) conjugated with anticancer drugdoxorubicin (QDs/PGA-DOX). Water-soluble near-infrared (NIR) CuInS_2QDs capped byL-cysteine was directly synthesized by hydrothermal method. DOX can quench thephotoluminescence (PL) of CuInS_2QDs through photoinduced electron transfer process. AfterQDs/PGA-Dox nanoparticles are exposed to carboxypeptidase or are taken up by cancer cells, thePGA is hydrolysed to release the Dox, inducing the activation of QDs fluorescence to “turn-on”state. The multifunctional nanoparticles can deliver Dox to targeted cancer cells and monitor theDox release, which concurrently images the cancer cells. Thus, these tumor-targetingmultifunctional QDs/PGA-DOX nanoparticles will hold great potential in terms ofclinical application to cancer therapy.
引文
WELLER H. Colloidal semiconductor Q-particles: chemistry in the transitionregion between solid state and nolecules [J]. Angewandte Chemie InternationalEdition,1993,32:41-53.
    JA ISWAL J K, SIMON S M. Potentials and pitfalls of fluorescent quantum dotsfor biological imaging [J]. Trends in Cell Biology,2004,14:497-504.
    CHAN W C W, MAXWELL D J, GAO X H, et al. Luminescent quantum dotsfor multiplexed biological detection and imaging [J]. Current Opinion inBiotechnology,2002,13:40-46.
    EYCHMULLER A. Structure and photophysics of semiconductor nanocrystals [J].Journal of Physical Chemistry B,2000,104:6514-6528.BALL P, GARWIN L. Science at the atomic scale [J]. Nature,1992,355:761-763.
    DEB P, BHATTACHARYYA A, GHOSH SK, RAY R, LAHIRI A. Excellentbiocompatibility of semiconductor quantum dots encased in multifunctionalpoly(N-isopropylacrylamide) nanoreservoirs and nuclear specific labeling ofgrowing neurons [J]. Applied Physics Letter,2011,98:103702-103703.
    FISCHER B F, EISLER H J, STOTT N E, BAWENDI M G. Emission intensitydependence and single-exponential behavior in single colloidal quantum dotfluorescence lifetimes [J]. Journal of Physical Chemistry B,2006,108:143-148.
    CORREDOR E, TESTILLANO P S, CORONADO M J, GONZALEZ-MELENDI P, FERNANDEZ-PACHECO R, MARQUINA C. Nanoparticlepenetration and transport in living pumpkin plants: in situ subcellularidentification [J]. BMC Plant Biology,2009,9:45-56.
    [9] LIN S, MEYER D E, CURRAN M A, Uptake, translocation, and transmission ofcarbon nanomaterials in rice plants [J]. Small,2009,5:1128-1132.
    [10] MULLER F, HOUBEN A, BARKER P E, XIAO Y, KAS J A, MELZER M.Quantum dots-a versatile tool in plant science [J]? Journal of Nanobiotechnology,2006,4:1-5.
    [11WU Y L, LIM C S, FU S, TOK A I Y, LAU H M, BOEY F Y C. Surfacemodifications of ZnO quantum dots for bio-imaging [J]. Nanotechnology,2007,18:215604-215612.
    MURRAY, C B, NORRIS, D J, BAWENDI, M G. Synthesis andcharacterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium)semiconductor nanocrystallites [J]. Journal of the American Chemical Society,1993,115:8706-8715.
    PENG Z A, PENG X. Formation of high-quality CdTe, CdSe, and CdSnanocrystals using CdO as precursor [J]. Journal of the American ChemicalSociety,2001,123:183-184.
    REISS P, BLEUSE J, PRON A. Highly luminescent CdSe/ZnSe core/shellnanocrystals of low size dispersion [J]. Nano Letters,2002,2:781-784.
    PRADHAN N, BATTAGLIA D M, LIU Y, PENG X G. Efficient, Stable, Small,and Water-Soluble Doped ZnSe Nanocrystal Emitters as Non-CadmiumBiomedical Labels [J]. Nano Letters,2007,7:312-317.
    WU X Y, LIU H J, HALEY K N, et al. Immuno fluorescent labeling of cancermarker Her2and other cellular targets with semiconductor quantum dots [J].Nature Biotechnology,2003,21:41-46.
    HU X G, GAO X H. Silica polymer dual layer-encapsulated quantum dots withremarkable stability [J]. Acs Nano,2010,4:6080-6086.
    GAO M, KIRSTEIN S, ROGACH A L, et al. Strongly photoluminescent CdTenanocrystals by proper surface modification [J]. Journal of Physical ChemistryB,1998,102:8360-8363.
    HE Y, SAI L M, LU H T, HU M. LAI W Y, FAN Q L, WANG L H, HUANG W.Microwave-assisted synthesis of water-dispersed CdTe nanocrystals with highluminescent efficiency and narrow size distribution [J]. Chemistry of Materials,2007,19:359-365.
    ] ZHANG J Q, ZHANG X D, WANG G. Synthesis of water soluble ZnS: Mnnanoparticle by using MPA as capping agent [J]. Journal of Materials Chemistry,2003,13:1853-1857.
    [21]菅文平.微波辅助合成发光可调ZnS:Cu纳米晶[J].高等学校化学学报,2006,27:2340-2343.
    [22JIAN W P, ZHUANG J Q, ZHANG D W. Synthesis of highly luminescent andphotostable ZnS:Ag nanocrystals under microwave irradiation [J]. MaterialChemistry and Physics,2006,99:494-497.
    Wang C, Ma Q, Su X G. Synthesis of CdTe nanocrystals with mercaptosuccinicacid as stabilizer [J]. Journal of Nanoscience and Nanotechnology,2008,8:4408-4414.
    LI L, QIAN H, REN J. Rapid synthesis of highly luminescent CdTenanocrystals in the aqueous phase by microwave irradiation with controllabletemperature [J].Chemical Communication,2005,5:528-530.
    陈启凡,杨冬芝,徐淑坤,曲正.微波辐射法制备水溶性CdTe量子点及其光谱学研究[J].光谱学与光谱分析,2007,27:650-653.
    ] SU X L, LI Y, Quantum dot biolabeling coupled with immunomagneticseparation for detection of Escherichia coli O157:H7[J]. Analytical Chemistry,2004,76:4806-4810.
    [27] SUNDARA RAJAN S, VU T Q. Quantum dots monitor TrkA receptordynamics in the interior of neural PC12cells [J]. Nano Letters,2006,6:2049-2059.
    [28] HOWARTH M, TAKAO K, HAYASHI Y, TING A Y. Targeting quantum dotsto surface proteins in living cells with biotin ligase [J]. Proceedings of theNational Academy of Sciences,2005,102:7583-7588.
    [29] PRASAD B R, NIKOLSKAYA N, CONNOLLY D, SMITH T J, BYRNE S J,GERARD V A, GUNKO YK, ROCHEV Y. Long-term exposure of CdTequantum dots on PC12cellular activity and the determination of optimumnon-toxic concentrations for biological use [J]. Journal of Nanobiotechnology,2010,8:1-16.
    [30LIU J, LAU S K, VARMA V A, KAIRDOLF B A, NIE S M. Multiplexeddetection and characterization of rare tumor cells in Hodgkin's lymphoma withmulticolor quantum dots [J]. Analytical Chemistry,2010,82:6237-6243.
    HAN M Y,GAO X H,NIE S M, et al. Quantum-dot-tagged microbeads formultiplexed optical coding of biomolecules [J]. Nature Biotechnology,2001,19:631-635.
    LEVYY M, CATER S F, ELLINGTON A D. Quantum-dot-aptamer beaconsfor the detection of protein [J]. ChemBiochem,2005,6:1-4.
    凌霞,邓大伟,钟文英,于俊生.水溶性量子点荧光探针用于帕珠沙星的含量测定[J].光谱学与光谱分析,2008,6:l317-1321.
    LIAO Q, LI Y F, HUANG C Z. Application of quantum dots as fluoresentprobes in quantitative analysis [J]. Chemical Research in Chinese Universities,2007,23:138-142.
    LAKOWICZ, J R. Principles of fluorescence spectroscopy [M], KluwerAcademic/Plenum Publishers: New York,1999.
    ] MEDINTZ I L, CLAPP A R, MATTOUSSI H, GOLDMAN E R, FISHER B,MAURO J M. Self-assembled nanoscale biosensors based on quantum dot FRETdonors [J]. Nature Materials,2003,2:630-638.
    [37] ROGACH A L, KLAR T A, LUPTON J M, MEIJERINK A, FELDMANN J.Energy transfer with Semiconductor nanocrystals [J]. Journal of MaterialsChemistry,2009,19:1208-1221.
    [38ALGAR W R, MASSEY M, KRULL U J. The application of quantum dots, goldnanoparticles and molecular switches to optical nucleic-acid diagnostics [J].Trends in Analytical Chemistry,2009,28:292-306.
    HOPPE K, GEIDEL E, WELLER H, EYCHMULLER A. Covalently boundCdTe nanocrystals [J]. Physical Chemistry Chemical Physics,2002,4:1704-1706.
    ] CLAPP AR, GOLDMAN ER, MATTOUSSI H. Capping of CdSe-ZnS quantumdots with DHLA and subsequent conjugation with proteins [J]. Nature Protocols,2006,1:1258-1266.
    [42] GOLDMAN, E R, ANDERSO G P, TRAN P T, MATTOUSSI H, CHARLES PT, MAURO J M. Conjugation of luminescent quantum dots with antibodiesusing an engineered adaptor protein to provide new reagents forfluoroimmunoassays [J]. Analytical Chemistry,2002,74:841-847.
    MEDINTZ I L, UYEDA H T, GOLDMAN E R, MATTOUSSI H. Quantum dotbioconjugates for imaging, labelling and sensing [J]. Nature Materials,2005,4:435-446.
    CHEN X C, DENG Y L, LIN Y, PANG D W, QING H, QU F, XIE H Y.Quantum dot-labeled aptamer nanoprobes specifically targeting glioma cells [J].Nanotechnology,2008,19:235105-235111.
    BRUCHEZ M J, MORONNER M, PETER G, WEISS S, ALIVISATOS A P.Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science,1998,281:2013-2016.
    WU X, LIU H, LIU J, HALEY K N, TREADWAY J A, LARSON J P, GE N,PEALE F, BRUCHEZ P. Molecular profiling of single cells and tissuespecimens with quantum dots [J]. Nature Biotechnology,2003,21:41-46.
    LIU J, LAU S K, VARMA V A, MOFFITT R A, CALDWELL M, LIU T,YOUNG A N, PETROS J A, OSUNKOYA A, KROGSTAD T, LEYLAND-JONES B, WANG M D, NIE S. Molecular mapping of tumor heterogeneities onclinical tissue specimens with multiplexed quantum dots [J]. ACS Nano,2010,4:2755-2765.
    AKERMAN M E, CHAN W C W, LAAKKONEN P, BHATIA S N,RUOSLAHTI E. Nanocrystal targeting in vivo [J]. Proceedings of the NationalAcademy of Sciences,2002,99:12617-12621.
    CAI W, SHIN D W, CHEN K, GHEYSENS O, CAO Q, WANG S X,GAMBHIR S S, CHEN X. Peptide-labeled near-infrared quantum dots forimaging tumor vasculature in living subjects [J]. Nano Letters,2006,6:669-676.
    TRIPP R A, ALVAREZ R, ANDERSON B, JONES L, WEEKS C, CHEN W.Bioconjugated nanoparticle detection of respiratory syncytial virus infection [J].International Journal of Nanomedicine,2007,2:117-124.
    BENTZEN E L, HOUSE F, UTLEY T J, CROWE J E, WRIGHT D W.Progression of respiratory syncytial virus infection monitored by fluorescentquantum dot probes [J]. Nano Letters,2005,5:591-595.
    DWARAKANATH S, BRUNO J G, SHASTRY A, PHILLIPS T, JOHN A A,KUMAR A, STEPHENSON L D. Quantum dot-antibody and aptamerconjugates shift fluorescence upon binding bacteria [J]. Biochem Biophys ResCommun,2004,325:739-743.
    GOLDMAN E R, CLAPP A R, ANDERSON G P, UYEDA H T, MAURO J M,MEDINTZ I L, MATTOUSSI H. Multiplexed toxin analysis using four colors ofquantum dot fluororeagents [J]. Analytical Chemistry,2003,76:684-688.
    ZHAO Y,, YE M, CHAO Q, JIA N, GE Y, SHEN H. Simultaneous detection ofmultifood-borne pathogenic bacteria based on functionalized quantum dotscoupled with immunomagnetic separation in food samples [J]. Journal ofAgricultural and Food Chemistry,2008,57:517-524.
    HAHN M A, TABB J S, KRAUSS T D. Detection of single bacterial pathogenswith semiconductor quantum dots [J]. Analytical Chemistry,2005,77:4861-4869.
    MUKHOPADHYAY B, MARTINS M B, KARAMANSKA R, RUSSELL D A,FIELD R A. Bacterial detection using carbohydrate-functionalised CdS quantumdots: a model study exploiting E. coli recognition of mannosides [J]. TetrahedronLetters,2009,50:886-889.
    ZHU L, ANG S, LIU W T. Quantum dots as a novel immunofluorescentdetection system for Cryptosporidium parvum and Giardia lamblia [J]. Appliedand Environmental Microbiology,2004,70:597-598.
    GAZOULI M, LIANDRIS E, ANDREADOU M, SECHI L A, MASALA S,PACCAGNINI D, IKONOMOPOULOS J. Specific detection of unamplifiedmycobacterial DNA by use of fluorescent semiconductor quantum dots andmagnetic beads [J]. Journal of Clinical Microbiology,2010,48:2830-2835.
    ] GRIFFITH D E. An official ATS/IDSA statement: diagnosis, treatment, andprevention of nontuberculous mycobacterial diseases [J]. American Journal ofRespiratory and Critical Care Medicine,2007,175:367-416.[60VEIGAS B, DORIA G, BAPTISTA P V. Nanodiagnostics for tuberculosis. InUnderstanding Tuberculosis-Global Experiences and Innovative Approaches tothe Diagnosis [M]. Edited by Cardona PJ. Rijeka: InTech;2012.
    SU X L, LI Y. Quantum dot biolabeling coupled with immunomagneticseparation for detection of Escherichia coli O157:H7[J]. Analytical Chemistry,2004,76:4806-4810.CHAN W H, SHIAO N H,LU P Z. CdSe quantum dots induce apoptosis inhuman neuroblastoma cells via mitochondrial-dependent pathways andinhibition of survival signals [J].Toxicol Letters,2006,167:191-200.
    ] LOVRIC J, BAZZI H S, CUIE Y, FORTIN G R A, WINNIK F M,MAYSINGER D. Differences insub cellular Distribution and toxicity of greenand red emitting CdTe quantum dots [J]. Journal of Molecular Medicine,2005,83:377-385.
    GUO G N, LIU W, LIANG J G. Probing the cytotoxicity of CdSe quantum dotswith surface modification [J]. Materials Letters,2007,61:1641-1644.
    DEKA S, QUARTA A, LUPO M G. CdSe/CdS/ZnS double shell nanorods withhigh photoluminescence efficiency and their exploitation as biolabeling probes[J]. Journal of the American Chemical Society,2009,131:2948-2958.
    DERFUS A M, CHAN W C W, BHATIA S N. Intracellular delivery of quantumdots for live cell labeling of organelle tracking [J]. Nano Letters,2004,4:11-18.
    JAISWAL J K, MATTOUSSI H, MAUROJ M. Long-term multiple colorimaging of live cells using quantum dot bioconjugates [J]. Nature Biotechnology,2003,21:47-51.
    DERFUS A M, CHANW C W, BHATIA S N. Probing the cytotoxicity ofsemiconductor quantum dots [J]. Nano Letttters,2004,4:11-18.
    CHANW C W, NIE S M. Quantum dot bioconjugates for ultrasentitivenonisotopic detection [J]. Science,1998,281:2016-2018.
    LOVRIC J, BAZZI H S, CUIE Y. Differences in subcellular distribution andtoxicity of green and red emitting CdTe quantum dots [J]. Journal of MolecularMedicine,2005,83:377-385.
    PARAK W J, BOUDREAU R, LE GROS M. Cell motility and metastaticpotential studies based on quantum dot imaging of phagokinetic tracks [J].Advanced Materials,2002,14:882-885.
    BEERMANN P A G, MCGARVEY B R, SKADTCHEBKO B O. Cationicsubstitution sites in Mn2+-doped ZnS nanoparticles [J]. Journal of NanoparticleResearch,2006,8:235-241.
    ] MIKULEC F V, KUNO M, BENNATI M. Organometallic synthesis andspectroscopic characterization of manganese-doped CdSe nanocrystals [J].Journal of the American Chemical Society,2000,122:2532-2540.
    [74MAGANA D, PERERA S C, HARTER A G. Switching-on superparamagnetismin MnCdSe quantum dots [J]. Journal of the American Chemical Society,2006,128:2931-2939.
    LADIZHANSKY V, HODES G, VEGA S. Surface properties of precipitatedCdS nanoparticles Studied by NMR [J]. The Journal of Physical Chemistry B,1998,102:8505-8509.
    PRADHAN N, GOORSKEY D, THESSING J, PENG X. An alternative of CdSenanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals[J]. Journal of the American Chemical Society,2005,127:17586-17587.
    PRADHAN N, PENG X G. Efficient and color-tunable Mn-doped ZnSenanocrystal emitters: control of optical performance via greener syntheticchemistry [J]. Journal of the American Chemical Society,2007,129:3339-3347.
    PRADHAN N, BATTAGLIA D M, LIU Y, PENG X. Efficient, stable, small,and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedicallabels [J]. Nano Letters,2007,7:312-317.
    SHAILAJA M, AMIT D L, SHASHIKANT P. Photoluminescence properties ofmanganese-doped zinc selenide quantum dots [J]. Journal of Physical ChemistryC,2008,112:2271-2277.
    PATHAK S, CHOI S K, ARNHEIM N, THOMPSON M E. Hydroxylatedquantum dots as luminescent probes for in situ hybridization [J]. Journal of theAmerican Chemical Society,2001,123:4013-4014.
    YUAN J, GUO W, WANG E. Utilizing a CdTe quantum dots-enzyme hybridsystem for the determination of both phenolic compounds and hydrogen peroxide[J]. Analytical Chemistry,2008,80:1141-1145.
    FRANKAMP B L, UZUN O, ILHAN F, BOAL A K, ROTELLO VM.Recognition-mediated assembly of nanoparticles into micellar structures withdiblock copolymers [J]. Journal of the American Chemical Society,2002,124:892-893.
    LIU J, ALVAREZ J, KAIFER A E. Metal manoparticles with a knack formolecular recognition [J]. Advanced Materials,2000,12:1381-1383.
    ZHUANG J, ZHANG X, WANG G, LI D, YANG W, LI T. Synthesis ofwater-soluble ZnS:Mn2+nanocrystals by using mercaptopropionic acid as astabilizer [J]. Journal of Materials Chemistry,2003,13:1853-1857.
    NORRIS D J, YAO N, CHARNOCK F T, KENNEDY A T. High-qualitymanganese-doped ZnSe nanocrystals [J]. Nano Letters,2001,1:3-7.
    TURNBULL D. Formation of Crystal Nuclei in Liquid Metals [J]. Journal ofApplied Physics,1950,21:1022-1028.
    MUHAMMED M, RAO K, KEAR B. Book of Abstracts of Fourth InternationalConference on Nanostructured Materials,159-190,1998[C], Stockholm,Sweden.
    ROCO M C, WILLIAMS R S, ALIVISATOS P. Nanotechnology ResearchDirctions [M]. Kluwer Academic Publishers.2001.
    BHARGAVA R N, GALLAGHER D, HONG X, HURMIKKO A, Opticalproperties of manganese-doped nanocrystals of ZnS [J]. Physical Review Letters,1994,72:416-419.
    NORRIS D J, YAO N, CHARNOCK F T, KENNEDY T A. High-qualitymanganese-doped ZnSe nanocrystals [J]. Nano Letters,2001,1:3-7.
    YI G, SUN B, YANG F, CHEN D. Bionic synthesis of ZnS:Mn nanocrystals andtheir optical properties [J]. Journal of Materials Chemistry,2001,11:2928-2991.
    [92] PENG X. An Essay on Synthetic Chemistry of Colloidal Nanocrystals [J]. NanoResearch,2009,2:425-464.
    [93] PRADHAN N, PENG X. Efficient and color tunable Mn doped ZnSe nanocrystalemitters: control of optical performance via greener synthetic chemistry [J].Journal of the American Chemical Society,2007,129:3339-3347.
    [94] KIM S, LIM Y T, SOLTESZ E G, DE GRAND A M, LEE J, NAKAYAMA A,PARKER J A, MIHALJEVIC T, LAURENCE R G, DOR D M, COHN L H,BAWENDI M G, FRANGIONI J V. Near-infrared fluorescent type II quantumdots for sentinel lymph node mapping [J]. Nature Biotechnology,2004,22:93-97.
    5BLACKAN B, BATTAGLIA D, PENG X. Bright and water-soluble nearIR-emitting CdSe/CdTe/ZnSe type-II/type-I nanocrystals, tuning the efficiencyand stability by growth [J]. Chemistry of Materials,2008,20:4847-4853.
    6ALLEN P M, LIU W, CHAUHAN V P, LEE J, TING A Y, FUKUMURA D,JAIN R K, BAWENDI M G. InAs(ZnCdS) Quantum dots optimized forbiological imaging in the near-infrared [J]. Journal of the American ChemicalSociety,2010,132:470-471.
    [1] CARSTEN S, XU C, BROWN D A, BREIT S N, MICHAEL A, NAKAMURA T,Diamandis E P, MEYER H, CAMMANN H, JUNG K. Three new serummarkers for prostate cancer detection within a percent free PSA-based artificialneural network [J]. Prostate,2006,66:651-659.
    [2] SIROVICH B E, SCHWARTZ L M, WOLOSHIN S. Screening men for prostateand colorectal cancer in the United States: does practice reflect the evidence [J]?Journal of the American Medical Association,2003,289:1414-1420.
    [3] JIANG Z, WU C, WODA B A, DRESSER K, XU J, FANGER G R, YANG X J.P504S/α-methylacyl-CoA racemase: a useful marker for diagnosis of small fociof prostatic carcinoma on needle biopsy [J]. The American Journal of SurgicalPathology,2002,26:1169-1174.
    [4] OESTERLING J E. Prostate specific antigen: a critical assessment of the mostuseful tumor marker for adenocarcinoma of the prostate [J]. Journal of Urology,1991,145:907-923.
    [5] ROGERS C G, YAN G, ZHA S, GONZALGO M, ISAACS W B, LUO J,MARZO A M, NESON W G, PAVLOVICH C P. Prostate cancer detection onurinalysis for alpha methylacyl coenzyme a racemase protein [J]. Journal ofUrology,2004,172:1501-1503.
    [6] JIANG Z, WU C L, WODA B A, ICZKOWSKI K A, CHU P G, TRETIAKOVAM S, YOUNG R H, WEISS L M, BLUTE R D, BRENDLER C B, KRAUSZ T,XU J C, ROCK K L, AMIN M, YANG X J. Alpha-methylacyl-CoA racemase:a multi-institutional study of a new prostate cancer marker [J]. Histopathology,2004,45:218-225.
    [7] SREEKUMAR A, LAXMAN B, RHODES D R, BHAGAVATHULA S,HARWOOD J, GIACHERIO D, GHOSH D, SANDA M G, RUBIN M A,CHINNAIYAN A M. Humoral immune response to alpha-methylacyl-CoAracemase and prostate cancer [J]. Journal of the National Cancer Institute,2004,96:834-843.
    [8] WOLCOTT A, GERION D, VISCONTE M, SUN J, SCHWARTZBERG A,CHEN S, ZHANG J Z. Silica-coated CdTe quantum dots functionalized withthiols for bioconjugation to IgG proteins [J]. The Journal of Physical ChemistryB,2006,110:5779-5789.
    [9] LIUu W, CHOI H S, ZIMMER J P, TANAKA E, FRANGIONI J V, BAWENDIM. Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivoapplications [J]. Journal of the American Chemical Society,2007129:14530-14531.
    [10] YONG K T, QIAN J, ROY I, LEE H H, BERGEY E J, TRAMPOSCH K M,HE S, SWIHART M T, MAITRA A, PRASAD P N. Quantum rodbioconjugates as targeted probes for confocal and two-photon fluorescenceimaging of cancer cells [J]. Nano Letters,2007,7:761-765.
    [11] LIU W, HOWARTH M, GREYTAK A B, ZHENG Y, NOCERA D G, TING AY, BAWENDI M G. Compact biocompatible quantum dots functionalized forcellular imaging [J]. Journal of the American Chemical Society,2008,130:1274-1284.
    [12] YANG Y, JING L, YU X, YAN D, GAO M. Coating aqueous quantum dotswith silica via reverse microemulsion method: toward size-controllable androbust fluorescent nanoparticles [J]. Chemistry of Materials,2007,19:4123-4128.
    [13] PRADHAN N, GOORSKEY D, THESSING J, PENG X G. An alternative ofCdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSenanocrystals [J]. Journal of the American Chemical Society,2005,127:17586-17587.
    [14] YANG Y, CHEN O, ANGERHOFER A, CAO Y C. Radial-position-controlleddoping in CdS/ZnS core/shell nanocrystals [J]. Journal of the AmericanChemical Society,2006,128:12428-12429.
    [15] WANG C, MA Q, SU X G. Synthesis of CdTe Nanocrystals withMercaptosuccinic Acid as Stabilizer [J]. Journal of Nanoscience andNanotechnology,2008,8:4408-4414.
    [16] WANG C, GAO X, MA Q, SU X G. Aqueous synthesis of mercaptopropionicacid capped Mn-doped ZnSe quantum dots [J]. Journal of Materials Chemistry,2009,19:7016-7022.
    [17] ZHU C Q, ZHAO D H, CHEN J L, LI Y X, WANG L Y, WANG L.Application of Lcysteine-capped nano-ZnS as a fluorescence probe for thedetermination of proteins [J]. Analytical and Bioanalytical Chemistry,2004,378:811-815.
    [18] BORKOVSKA L V, GERMASH L P, KORSUNSKA N O, PECHERSKA E Y.The influence of biomolecules on the luminescence of defects in CdSe/ZnSquantum dots [J]. Ukrainian Journal of Physics,2008,53:1002-1005.
    [19] YU H W, LEE J W, KIM S Y, KIM S J, KIM I S. Photoelectroniccharacterization of IgG antibody molecule-quantum dot hybrid as biosensingprobe [J]. Nanotechnology,2010,21:425501/01-425501/11.
    [20] DERFUS A M, CHAN W C W, BHATIA S N. Probing the cytotoxicity ofsemiconductor quantum dots [J]. Nano Letters,2004,4:11-18.
    [21] CHO S J, MAYSINGER D, JAIN M, RODER B, HACKBARTH S, WINNIK FM. Long-term exposure to CdTe quantum dots causes functional impairments inlive cells [J]. Langmuir,2007,23:1974-1980.
    [1] HIROTA M, OHMURAYA M, BABA H. The role of trypsin inhibitor, andtrypsin receptor in the onset and aggravation of pancreatitis [J]. Journal ofGastroenterology,2006,41:832-836.
    [2] ARTIGAS J M, GARCIA M E, FAURE M R, GIMENO A M. Serum trypsinlevels in acute pancreatic and non-pancreatic abdominal conditions [J].Postgraduate Medical Journal,1981,57:219-222.
    [3] SEE W A, SMITH J L. Urinary levels of activated trypsin in whole-organpancreas transplant patients with duodenocystostomies [J]. Transplantation,1991,52:630-633.
    [4] BYRNE M F, MITCHELL R M, STIFFLER H, JOWELL P S, BRANCH M S,PAPPAS T N, TYLER D, BAILLIE J. Extensive investigation of patients withmild elevations of serum amylase and/or lipase is 'low yield'[J]. CanadianJournal of Gastroenterology,2002,16:849-854.
    [5] ARGTIGAS J M, GARCIA M E, FAURE M R, GIMENO A M. Serum trypsinlevels in acute pancreatic and non-pancreatic abdominal conditions [J].Postgraduate Medical Journal,1981,57:219-222.
    [6] KERSEY A D, BERKOFF T A, MOREY W W. Multiplexed fiber Bragggratingstrain-sensor system with a fiber fabry-perot wavelength filters [J]. Optics Letters,1993,18:1370-1372.
    [7] RHODES M B, HILL R M, FEENEY R E. Spectrophotomerric determination oftrypsin and trypsin inhibitors [J]. Analytical Chemistry,1957,29:376-378.
    [8] HOMER G M, KATCHMAN B J, ZIPF R E. A spectrophotometric method formeasuring serum trypsin inhibitor capacity [J]. Clinical Chemistry,1963,9:428-437.
    [9] IONESCU R E, COSNIER S, MARKS R S. Protease amperometric sensor [J].Analytical Chemistry,2006,78:6327-6331.
    [10] MU J M, LAVAN D A, LANGER R S, ZETTER B R. Two-photonluminescence imaging of cancer cells using molecularly targeted gold nanorods[J]. ACS Nano,2010,4:1511-1520.
    [11] BAGALKOT V, ZHANG L, NISSENBAUM E L, JON S, KANTOFF P W,LANGER R, FAROKHZAD O C. Quantum dot-aptamer conjugates forsynchronous cancer imaging, therapy and sensing of drug delivery based onbi-fluorescence resonance energy transfer [J]. Nano Letters,2007,7:3065-3070.
    [12] CHO S J, MAYSINGER D, JAIN M, RODEER B, HACKBARTH S, WINNIKF M. Long-term exposure to CdTe quantum dots causes functional impairmentsin live cells [J]. Langmuir,2007,23:1974-1980.
    [13] PRADHAN N, GOORSKEY D, THESSING J, PENG X G. An alternative ofCdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSenanocrystals [J]. Journal of the American Chemical Society,2005,127:17586-17587.
    [14] HE Y, WANG H F, YAN X P. Self-assembly of Mn-doped ZnS quantumdots/octa(3-aminopropyl)octasilsequioxane octahydrochloride nanohybrids foroptosensing DNA [J]. Chemistry-A European Journal,2009,15:5436-5440.
    [15] WANG H F, HE Y, JI T R, YAN X P. Surface molecular imprinting onMn-doped ZnS quantum dots for room-temperature phosphorescenceoptosensing of pentachlorophenol in water [J]. Analytical Chemistry,2009,81:1615-1621.
    [16] WU P, HE Y, WANG H F, YAN X P. Conjugation of glucose oxidase ontoMn-doped ZnS quantum dots for phosphorescent sensing of glucose inbiological fluids [J]. Analytical Chemistry,2010,82:1427-1433.
    [17] WANG H F, LI Y, WU Y Y, HE Y, YAN X P. Ascorbic acid inducedenhancement of room temperature phosphorescence of sodium tripolyphosphate-capped Mn-doped ZnS quantum dots: mechanism and bioprobe applications[J]. Chemistry-A European Journal,2010,16:12988-12994.
    [18] ZOU W S, SHENG D, GE X, QIAO J Q, LIAN H Z. Room-temperaturephosphorescence chemosensor and rayleigh scattering chemodosimeterdual-recognition probe for2,4,6-trinitrotoluene based on manganese-doped ZnSquantum dots [J]. Analytical Chemistry,2011,83:30-37.
    [19] WU P, MIAO L N, WANG H F, SHAO X G, YAN X P. The binding offluorophores to proteins depends on the cellular environment [J]. AngewandteChemie International Edition,2011,50:8118-8121.
    [20] NOH M, KIM T, LEE H, KIM C K, JOO S, LEE K W. Fluorescence quenchingcaused by aggregation of water-soluble CdSe quantum dots [J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2010,359:39-44.
    [21] ZHANG Y, MI L, WANG P N, MAB J, CHEN J Y. PH-dependent aggrefationand photoluminescence behavior of thiol-capped CdTe quantumdots in aqueoussolutions [J]. Journal of Luminescence,2008,128:1948-1951.
    [22] WANG H X, NG T B. Concurrent isolation of a Kunitz-type trypsin inhibitorwith antifungal activity and a novel lectin from Pseudostellaria heterophyllaroots [J]. Biochemical and Biophysical Research Communications,2006,342:349-353.
    [23] GU X G, YANG G, ZHANG G X, ZHANG D Q, ZHU D B. A newfluorescence turn-on assay for trypsin and inhibitor screening based ongraphene oxide [J]. ACS Applied Materials and Interfaces,2011,3:1175-1179.
    [24] LI P, LIU Y, WANG X, TANG B. A new FRET nanoprobe for trypsin using abridged β-cyclodextrin dimmer-dye complex and its biological imagingapplications [J]. Analyst,2011,136:4520-4525.
    [25] ZHU Q, ZHAN R Y, LIU B. Homogeneous detection of trypsin in proteinmixtures based on fluorescence resonance energy transfer between anionicconjugated polymer and fluorescent probe [J]. Macromolecular RapidCommunications,2010,31:1060-1064.
    [26] XU K H, LIU F, MA J, TANG B. A new specific fullerene-based fluorescentprobe for trypsin [J]. Analyst,2011,136:1199-1203.
    [1] CHANG E, MILLER J S, SUN J, YU W W, COLVIN V L, DREZEK R, WEST JL. Protease-activated quantum dot probes [J]. Biochemical and BiophysicalResearch Communications,2005,334:1317-1321.
    [2] DYADYSHA L, YIN H, JAISWAL S, BROWN T, BAUMBERG J J, BOOY F P,MELVIN T. Quenching of CdSe quantum dot emission, a new approach forbiosensing [J]. Chemical Communications,2005,25:3201-3203.
    [3] CORDES D B, GAMSEY S, SINGARAM B. Fluorescent quantum dots withboronic acid substituted viologens to sense glucose in aqueous solution [J].Angewandte Chemie International Edition,2006,45:3829-3832.
    [4] JIN T, FUJII F, YAMADA E, NODASAKA Y, KINJO M. Preparation andcharacterization of thiacalix[4]arene coated water-soluble CdSe/ZnS quantumdots as a fluorescent probe for Cu2+ions [J]. Combinatorial Chemistry and HighThroughput Screening,2007,10:473-479.
    [5] MA Y, YANG C, LI N, YANG X. A sensitive method for the detection ofcatecholamine based on fluorescence quenching of CdSe nanocrystals [J].Talanta,2005,67:979-983.
    [6] ACHERMANN M, PETRUSKA M A, CROOKER S A, KLIMOV V I.Picosecond energy transfer in quantum dot Langmuir-Blodgett nanoassemblies[J]. The Journal of Physical Chemistry B,2003,107:13782-13787.
    [7] UNEP (United Nations Environment Programme). Assessment of the state ofpollution of the Mediterranean Sea by organophosphoruscompounds [R]. MAPTechnical Reports Series,1991,58:125.
    [8] MUNCH D J, FREBIS C P. Analyte stability studies conducted during thenational pesticide survey environmental science and technology [J].1992,26:921-925.
    [9]王宗贤,高志贤,马成林.有机磷检测方法的研究进展[J].中国卫生检验杂志.2003,13:401-403.
    [10] DELVAUX M, WALCARIUS A, DEMOUSTIER-CHAMPAGNE S.Bienzyme Hrp-Gox-modified gold nanoelectrodes for the sensitiveamperometric detection of glucose at low overpotentials [J]. Biosensors andBioelectronics,2005,20:1587-1594.
    [11] CASTILLO J, GASPAR S, SAKHAROV I, CSOREGI E. Bienzyme biosensorsfor glucose, ethanol and putrescine built on oxidase and sweet potatoperoxidase [J]. Biosensors and Bioelectronics,2003,18:705-714.
    [12] BUCUR B, DANET A F, MARTY J. Versatile method of cholinesteraseimmobilisation via affinity bonds using Concanavalin A applied to theconstruction of a screen-printed biosensor [J]. Biosensors and Bioelectronics,2004,20:217-225.
    [13] LI F, WANG Z, CHEN W, ZHANG S S. A simple strategy for one-stepconstruction of bienzyme biosensor by in-situ formation of biocomposite filmthrough electrodeposition [J]. Biosensors and Bioelectronics,2009,24:3030-3035.
    [14] SHELDON R A. Advanced Synthesis and Catalysis,2007,349:1289-1307.
    [15] Brady D, Jordaan J. Biotechnology Letters,2009,32:1639-1650.
    [16] H uang C P, Li Y K, Chen T M. Fabrication of a microbial biosensor based onQD-MWNT supports by a one-step radiation reaction and detection of phenoliccompounds in red wines [J]. Biosensors and Bioelectronics,2007,22:1835-1838.
    [17] XUE J, YE Y, MEDINA F, MARTINEZ L, LOPEZ-RIVERA S A, GIRIAT W.Temperature evolution of the2.1eV band in the Zn1xMnxSe system for lowconcentration [J]. Journal of Luminescence,1998,78:173-178.
    [18] PRADHAN N, DAVID M, BATTAGLIA D, LIU Y C, PENG X. Efficient,stable, small, and water-soluble doped ZnSe nanocrystal emitters asnon-cadmium biomedical labels [J]. Nano Letters,2007,7:312-317.
    [19] NACHMANSOHN D, WILSON I B. In: Nord, F.F.(Ed.), In Advances inEnzymol-ogy [M]. Interscience Publisher, New York,1991.
    [20] EISENTHAL R, DANSON M J, Enzyme Analysis-A Practical Approach [M].IRL Press, New York,1993.
    [21] TUMTURK H, SAHIN F, DEMIREL G. A new method for immobilization ofacetylcholinesterase [J]. Bioprocess and Biosystems Engineering,2007,30:141-145.
    [22] JOSHI K A, TANG J, HADDON R, JOSEPH W, CHEN W, MULCHANDANIA. A disposable biosensor for organophosphorus nerve agents based on carbonnanotubes modified thick film strip electrode [J]. Electroanalysis,2005,17:54-58.
    [23] SHARAREH S, HEDAYATOLLAH G, HASSAN T. Choline oxidase as aselective recognitio element for determination of paraoxon [J]. Biosensors andBioelectronics,2009,24:2509-2514.
    [24] LIN T L, HUANG K T, LIU C Y. Determination of organophosphorouspesticides by a novel biosensor based on localized surface plasmon resonance[J]. Biosensors and Bioelectronics,2006,22:513-518.
    [25] CONSTANTINE C A, GATTAS-ASFURA K M, MELLO S V, CRESPO G,RASTOGI V, CHENG T C, DEFRANK J J, LEBLANC R M. Layer-by-Layerbiosensor assembly incorporating functionalized quantum dots [J]. Langmuir,2003,19:9863-9867.
    [26] ORBULESCU J, CONSTANTINE C A, RASTOGI V K, SHAH S S,DEFRANK J J, LEBLANCE R M. Detection of organophosphorus compoundsby covalently immobilized organophosphorus hydrolase [J]. AnalyticalChemistry,2006,78:7016-7021.
    [27] WANG H, WANG J, TIMCHALK C, LIN Y H. Magnetic electrochemicalimmunoassays with quantum dot labels for detection of phosphorylatedacetylcholinesterase in plasma [J]. Analytical Chemistry,2008,80:8477-8484.
    [28] CAMPANELLA L, LELO D, MARTINI E, TOMASSETTI M. Directelectrochemistry of glucose oxidase entrapped in nano gold particles-ionicliquid-N, N-dimethylformamide composite film on glassy carbon electrode andglucose sensing [J]. Analytica Chimica Acta,2007,587:22-32.
    [1] HOLLAND C A, HENRY A T, WHINNA H C, CHURCH F C. Effect ofoligodeoxynucleotide thrombin aptamer on thrombin inhibition by heparincofactor II and antithrombin [J]. FEBS Letters,2000,484:87-91.
    [2] SHUMAN M A, MAJERUS P W J. The measurement of thrombin in clottingblood by radioimmunoassay [J]. Journal of Clinical Investigation,1976,58:1249-1258.
    [3] BICHLER J, HEIT J A, OWEN W G. Detection of thrombin in human blood byex-vivo hirudin [J]. Thrombosis Research,1996,84:289-294.
    [4] PAVLOV V, SHLYAHOVSHY B, WILLNER I. Fluorescence detection of DNAby the catalytic activation of an aptamer/thrombin complex [J]. Journal of theAmerican Chemical Society,2005,127:6522-6523.
    [5] HEYDUK E, HEYDUK T. Nucleic acid-based fluorescence sensors for detectingproteins [J]. Analytical Chemistry,2005,77:1147-1156.
    [6] XIAO Y, WANG J M, ZHOU W Y, XIAO S S, ZHU C, HE P G, FANG Y Z.Detection of thrombin using electrogenerated chemiluminescence based onRu(bpy)32+-doped silica nanoparticle aptasensor via target protein-inducedstrand displacement [J]. Analytical Chemical Acta,2007,598:242-248.
    [7] DI GIUSTO D A, WLASSOFF W A, GOODINGL J J, MESSERLEL B A, KINGG C. Proximity extension of circular DNA aptamers with real-time proteindetection [J]. Nucleic Acids Research,2005,33:64-70.
    [8] LIU S Y, ZHANG H, QIAO Y, SU X G. One-pot synthesis of ternary CuInS2quantum dots with near-infrared fluorescence in aqueous solution [J]. RSCAdvances,2012,2:819-825.
    [9] IDOWU M, LAMPRECHT E, NYOKONG T. Interaction of water-soluble thiolcapped CdTe quantum dots and bovine serum albumin [J]. Journal ofPhotochemistry and Photobiology A: Chemistry,2008,198:7-12.
    [10] GOY-LOPEZ S, JUAREZ J, ALATORRE-MEDA M, CASALS E, PUNTES VF, TABOADA P, MOSQUERA V. Physicochemical characteristics ofprotein–NP bioconjugates: the role of particle curvature and solution conditionson human serum albumin conformation and fibrillogenesis inhibition [J].Langmuir,2012,28:9113-9126.
    [11] MANDAL G, BARDHAN M, GANGULY T. Occurrence of f rster resonanceenergy transfer between quantum dots and gold nanoparticles in the presence ofa biomolecule [J]. The Journal of Physical Chemistry C,2011,115:20840-20848.
    [12] YU Y, LAI Y, ZHENG X L, WU J Z, LONG Z Y, LIANG C S. Synthesis offunctionalized CdTe/CdS QDs for spectrofluorimetric detection of BSA [J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2007,68:1356-1361.
    [13] MATHUR A, SCHLAPKOHL W A, CERA E D. Thrombin-fibrinogeninteraction: pH dependence and effects of the slow.fwdarw. fast transition [J].Biochemistry,1993,32:7568-7573.
    [14] NOH M, KIM T, LEE H, KIM C K, JOO S, LEE K W. Fluorescence quenchingcaused by aggregation of water-soluble CdSe quantum dots [J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2010,359:39-44.
    [15] ZHANG Y, MI L, WANG P N, MAB J, CHEN J Y. PH-dependent aggregationand photoluminescence behavior of thiol-capped CdTe quantum dots in aqueoussolutions [J]. Journal of Luminescence,2008,128:1948-1951.
    [16] LI X X, SHEN L H, ZHANG D D, QI H L, GAO Q, MA F, ZHANG C X.Electrochemical impedance spectroscopy for study of aptamer-thrombininterfacial interactions [J]. Biosensors and Bioelectronics,2008,23:1624-1630.
    [17] CENTI S, TOMBELLI S, MINUNNI M, MASCINI M. Aptamer-baseddetection of plasma proteins by an electrochemical assay coupled to magneticbeads [J]. Analytical Chemistry,2007,79:1466-1473.
    [18] LI B L, WEI H, DONG S J. Sensitive detection of protein by an aptamer-basedlabel-free fluorescing molecular switch [J]. Chemical Communications,2007,1:73-75.
    [19] CHOI J H, CHEN K H, STRANO M S. Aptamer-capped nanocrystal quantumdots: a new method for label-free protein detection [J]. Journal of the AmericanChemical Society,2006,128:15584-15585.
    [20] BAI L, YUAN R, CHAI Y, ZHUO Y, YUAN Y, WANG Y. Simultaneouselectrochemical detection of multiple analytes based on dual signalamplification of single-walled carbon nanotubes and multi-labeled graphenesheets [J]. Biomaterials,2012,33:1090-1096.
    [21] KWON D, JEONG H, CHUNG B. Label-free electrochemical detection ofhuman α-thrombin in blood serum using ferrocene-coated gold nanoparticles [J].Biosensors and Bioelectronics,2011,28:454-458.
    [1] JEMAL A, SIEGEL R, WARD E, et al. Cancer statistics,2008[J]. CA: A CancerJournal for Clinicians,2008,58:71-96.
    [2] PEREZ-CAMERO G, CONGREGADO F, BOU J, et al. Biosynthesis andultra-sonic degradation of bacterial poly(γ-glutamic acid)[J]. Journal ofBioscience and Bioengineering,1999,63:110-115.
    [3] FUMIO S, TAIZO F, TAKESHI E. Chemical synthesis of poly-gamma-glutamicacid by polycondensation of gamma-glutamic acid dimmer: synthesis andreaction of poly-gamma-glutamic acidmethyester [J]. Journal of polymerscience part A: polymer chemistry,2001,39:732-741.
    [4]原敏夫,上田诚之助. PGA生产的基因解析[J].发酵与工业,1985,43:910-918.
    [5] OGAWA Y, YAMAGUCHI F, YUASA K, et al. Efficient production of gam-ma-polyglutamic acid by bacillus subtilis (natto) in jar fermenters [J].Bioscience, Biotechnology, and Biochemistry,1997,61:1684-1687.
    [6] HIDETOSHI K, TOSHIO M, KAZUMICHI U. Production of poly(γ-glutamicacid) by bacillus subtilis F-2-01[J]. Bioscience, Biotechnology, andBiochemistry,1993,57:1212-1213.
    [7]潘仕荣,施锋,黄宁芳,等. α-氨基酸共聚物的生物降解性[J].中国生物医学工程学报,1993,12:161-167.
    [8] PEER D, KARP J M, HONG S, et al. Nanocarriers as an emerging plat-form forcancer therapy [J]. Nature Nanotechnology,2007,2:751-760.
    [9] GIEPMANS B N G, ADAMS S R, ELLISMAN M H, TSIEN R Y. Thefluorescent toolbox for assessing protein location and function [J]. Science,2006,312:217-224.
    [10] LEE S M, CHEN H, O’HALLORA T V, NGUYEN S T. The role of HER2incancer therapy and targeted drug delivery [J]. Journal of the AmericanChemical Society,2009,131:9311-9320.
    [11] VARGHESE O P, SUN W L, HILBORN J, OSSIPOV D."Clickable"polymer-caged nanobins as a modular drug delivery platform [J]. Journal of theAmerican Chemical Society,2009,131:8781-8783.
    [12] LI L, DAOU T J, TEXIER I, CHI T T K, LIEM N Q, REISS P. Highlyluminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dotsfor in vivo imaging [J]. Chemistry of Materials,2009,21:2422-2429.
    [13] PONS T, PIC E, LEQUEUX N, CASSETTE E, BEZDETNAYA L, Guillemin F,MARCHAL F, DUBERTRET B. Cadmium-free CuInS2/ZnS quantum dots forsentinel lymph node imaging with reduced toxicity [J]. ACS Nano,2010,4:2531-2538.
    [14] LIU S Y, ZHANG H, QIAO Y, SU X G. One-pot synthesis of ternary CuInS2quantum dots with near-infrared fluorescence in aqueous solution [J]. RSCAdvances,2012,2:819-825.
    [15] YUAN J P, GUO W W, WANG E K. Utilizing a CdTe quantum dots-enzymehybrid system for the determination of both phenolic compounds and hydrogenperoxide [J]. Analytical Chemistry,2008,80:1141-1145.
    [16] LAKOWICZ J R. Principles of Fluorescence Spectroscopy [M]. KluwerAcademic/Plenum: New York,1999.
    [17] LI C. Poly(L-glutamic acid)-anticancer drug conjugates [J]. Advanced DrugDelivery Reviews,2002,54:695-713.
    [18] SHEN J M, TANG W J, ZHANG X L, CHEN T, ZHANG H X. A novelcarboxymethyl chitosan-based folate/Fe3O4/CdTe nanoparticle for targeteddrug delivery and cell imaging [J]. Carbohydrate Polymers,2012,88:239–249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700