多面体形硫化铅纳米晶的制备与自组装性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自组装一直是合成新型材料的有效且具有发展前景的重要方法。近年来,用纳米晶作为构筑基元来制备自组装超晶体成为人们的研究热点。本论文的主要工作就是形貌、尺寸可控纳米晶的制备,以及用纳米晶作为构筑基元来制备结构新颖的超晶体。
     本论文从三个方面开展工作:首先,首先,制备了一系列多面体形硫化铅纳米晶,通过简单地控制反应物浓度来调节纳米晶的尺寸和形貌。这些纳米晶尺寸分布窄、形貌均一,具有很好的自组装性质。然后,以硫化铅纳米晶作为构筑基元,通过溶剂挥发法,在硅基底的不同区域得到了维度、形貌和超晶格结构各异的超晶体,我们对形成超晶体的影响因素和推动力进行了分析。最后,利用垂直沉积技术,在硅片、ITO和PDMS基底上得到了大面积二维有序超晶体膜。通过控制实验条件,可以在一定程度内调节超晶体的形貌和结构。
Self-assembly has become a very effective and promising approach to synthesize a wide range of novel materials. In the past decades, with the quick development of nanotechnology, self-assembled nanoscale materials have attracted many fundamental and technological interests. Due to their physical and chemical functional specificity and selectivity, nanocrytals (NCs) become ideal building blocks for self-assembled structures, which are called "supercrystals (SCs)". Well-defined SCs provide new opportunities for optimizing, tuning, and/or enhancing the properties and performance of the materials. Recently, researchers have successfully fabricated plentiful SCs, using spherical NCs as building blocks. In addition, many methods have been developed to generate SCs of non-spherical building blocks, such as solvent evaporation, LB technique, controlled crystallization in oversaturated solution and self-assemble under specific conditions, etc. Since the monodispersity of size and shape of NCs is one of the preconditions of self-assembly, many efforts have been paid to prepare size and shape selected and controlled NCs. In this thesis, attention is paid on the preparation and self-assembly of polyhedral PbS NCs with different sizes and shapes. SCs are obtained through controlled solvent evaporation and vertical deposition method, respectively.
     In chapter 2, PbS NCs with different sizes and shapes have been prepared by controlling the thermal decomposition of TAA in aqueous solution of Pb(Ac)2, with the help of cetyltrimethylammonium bromide (CTAB) as surfactant. It follows the regulation that the increase of TAA concentration leads firstly to decrease in the particle size and then to gradual changes of the particle shape from octahedral to cubic. Furthermore, on the basis of our investigating into the influences of concentrations of CTAB and Pb(Ac)2, a reasonable growth mechanism has been proposed, which must be very helpful in predicting the final architecture of NCs and preparing NCs with unique properties. In addition, optical properties and phase transition behavior under high pressure of PbS NCs are investigated.
     In chapter 3, large-scale preparation of dimension-controllable SCs of octahedral PbS NCs was achieved first through a solvent-evaporation approach. Applying the capillary flow of the drying droplet,2D close-packed SCs,3D faceted SCs and 3D bulk SCs were identified from the central region to the edge of the substrate, which have different shapes and superlattice structures, due to the interaction between NC and the substrate. Moreover, the supperlattice structures of SCs were tuned by using truncated octahedrons as building blocks under similar experimental conditions, demonstrating the importance of shape effect in NC self-assembly, while size is proved to have less effect on self-assembly. Nanoscale forces are investigated and the formation of SCs is believed to be a entropy-driven process. What is more, the influence of experimental conditions on self-assembly is discussed.
     In chapter 4, SCs are prepared by vertical deposition method.2D monolayered SC is generated on Si substrate with specific hydrophilia through two-substrate vertical deposition and 2D SCs with several layers are fabricated on ITO and PDMS film through one-substrate vertical deposition. In addition, patterned SCs are obtained with patterned substrates.
引文
1. Glotzer, S. C., Some Assembly Required. Science 2004,306, (5695),419-420.
    2. Whitesides, G. M.; Grzybowski, B., Self-Assembly at All Scales. Science 2002,295, (5564),2418-2421.
    3. Haw, M. D.; Poon, W. C. K.; Pusey, P. N.; Hebraud, P.; Lequeux, F., Colloidal Glasses under Shear Strain. Phys. Rev. E 1998,58, (4),4673.
    4. Nitschke, J., R.; Hutin, M.; Bernardinelli, G., The Hydrophobic Effect as a Driving Force in the Self-Assembly of a [2*2] Copper(I) Grid. Angew. Chem. Int. Ed.2004,43, (48),6724-6727.
    5. Gong, H.; Krische, M., J., Hydrogen-Bond-Mediated Self-Assembly of Aminopyrazolones:Macrocyclic Quartets-Single and Stacked One-Dimensional Motifs. Angew. Chem. Int. Ed.2005,44, (43),7069-7071.
    6. Liu, Y.; Xiao, S.; Li, H.; Li, Y.; Liu, H.; Lu, F.; Zhuang, J.; Zhu, D., Self-Assembly and Characterization of A Novel Hydrogen-Bonded Nanostructure. J. Phys.Chem. B 2004,108, (20),6256-6260.
    7. Zhu, Z.; Su, D.; Weinberg, G.; Schlogl, R., Supermolecular Self-Assembly of Graphene Sheets:Formation of Tube-in-Tube Nanostructures. Nano Lett.2004,4, (11), 2255-2259.
    8. Reches, M.; Gazit, E., Formation of Closed-Cage Nanostructures by Self-Assembly of Aromatic Dipeptides. Nano Lett.2004,4, (4),581-585.
    9. Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; de Pablo, J. J.; Nealey, P. F., Epitaxial Self-Assembly of Block Copolymers on Lithographically Defined Nanopatterned Substrates. Nature 2003,424, (6947),411-414.
    10. Yu, C.; Zhai, J.; Gao, X.; Wan, M.; Jiang, L.; Li, T.; Li, Z., Water-Assisted Fabrication of Polyaniline Honeycomb Structure Film. J. Phys. Chem. B 2004,108, (15), 4586-4589.
    11. Temple, K.; Kulbaba, K.; Power-Billard, K. N.; Manners, I.; Leach, K. A.; Xu, T.; Russell, T. P.; Hawker, C. J., Spontaneous Vertical Ordering and Pyrolytic Formation of Nanoscopic Ceramic Patterns from Poly(styrene-b-ferrocenylsilane). Adv. Mater.2003, 15, (4),297-300.
    12. Lin, Z. Q.; Kim, D. H.; Wu, X. D.; Boosahda, L.; Stone, D.; LaRose, L.; Russell, T. P., A Rapid Route to Arrays of Nanostructures in Thin Films. Adv. Mater.2002,14, (19), 1373-1376.
    13. Lim, W. P.; Low, H. Y.; Chin, W. S., IR-Luminescent PbS-Polystyrene Nanocomposites Prepared from Random Ionomers in Solution. J. Phys. Chem. B 2004, 108,(35),13093-13099.
    14. Fustin, C. A.; Glasser, G.; Spiess, H. W.; Jonas, U., Site-Selective Growth of Colloidal Crystals with Photonic Properties on Chemically Patterned Surfaces. Adv. Mater.2003,15, (12),1025-1028.
    15. Wolfe, D. B.; Snead, A.; Mao, C.; Bowden, N. B.; Whitesides, G. M., Mesoscale Self-Assembly:Capillary Interactions When Positive and Negative Menisci Have Similar Amplitudes. Langmuir 2003,19, (6),2206-2214.
    16. Wong, S.; Kitaev, V.; Ozin, G. A., Colloidal Crystal Films:Advances in Universality and Perfection. J. Am. Chem. Soc.2003,125, (50),15589-15598.
    17. Xia, Y.; Yin, Y.; Lu, Y.; McLellan, J., Template-Assisted Self-Assembly of Spherical Colloids into Complex and Controllable Structures. Adv. Func. Mater.2003, 13, (12),907-918.
    18. Choi, S.-W.; Xie, J.; Xia, Y., Chitosan-Based Inverse Opals:Three-Dimensional Scaffolds with Uniform Pore Structures for Cell Culture. Adv. Mater.2009,21, (29), 2997-3001.
    19. Chen, J. I. L.; Freymann, G. v.; Choi, S. Y.; Kitaev, V.; Ozin, G. A., Slow Photons in the Fast Lane in Chemistry. J. Mater. Chem.2008,18, (4),369-373.
    20. Wang, Z. L., Structural Analysis of Self-Assembling Nanocrystal Superlattices. Adv. Mater.1998,10, (1),13-30.
    21. Zhang, J. Z.; Wang, Z. L.; Liu, J.; Chen, S.; Liu, G. Y., Nanocrystal Self-Assembly. Kluwer Academic Publishers:New York,2004.
    22. Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and Characterization of Nearly Monodisperse CdE (E= Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites. J.Am. Chem. Soc.1993,115, (19),8706-8715.
    23. Collier, C. P.; Vossmeyer, T.; Heath, J. R., Nanocrystal Superlattices. Annu. Rev. Phys. Chem.1998,49, (1),371-404.
    24. Desvaux, C.; Amiens, C.; Fejes, P.; Renaud, P.; Respaud, M.; Lecante, P.; Snoeck, E.; Chaudret, B., Multimillimetre-Large Superlattices of Air-Stable Iron-Cobalt Nanoparticles. Nat. Mater.2005,4, (10),750-753.
    25. Pileni, M. P., Nanocrystal Self-Assemblies:Fabrication and Collective Properties. J. Phys. Chem. B 2001,105, (17),3358-3371.
    26. Shevchenko, E.; Talapin, D.; Kornowski, A.; Wiekhorst, F.; Kotzler, J.; Haase, M.; Rogach, A.; Weller, H., Colloidal Crystals of Monodisperse FePt Nanoparticles Grown by a Three-Layer Technique of Controlled Oversaturation. Adv. Mater.2002,14, (4), 287-290.
    27. Shevchenko, E. V.; Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H., Colloidal Synthesis and Self-Assembly of CoPt3 Nanocrystals. J. Am. Chem. Soc. 2002,124,(38),11480-11485.
    28. Talapin, D. V.; Shevchenko, E. V.; Kornowski, A.; Gaponik, N.; Haase, M.; Rogach, A. L.; Weller, H., A New Approach to Crystallization of CdSe Nanoparticles into Ordered Three-Dimensional Superlattices. Adv. Mater.2001,13, (24),1868-1871.
    29. Murray, C. B.; Kagan, C. R.; Bawendi, M. G., Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices. Science 1995,270, (5240),1335-1338.
    30. Brock, S. L., All-Inorganic Nanocrystal Arrays. Angew. Chem. Int. Ed.2009,48, (41),7484-7486.
    31. Hong, M.; Wu, L.; Tian, L.; Zhu, J., Controlled Assembly of Au, Ag, and Pt Nanoparticles with Chitosan. Chemistry-A European Journal 2009,15, (24), 5935-5941.
    32. Zhou, S.; Ma, Z.; Baker, G. A.; Rondinone, A. J.; Zhu, Q.; Luo, H.; Wu, Z.; Dai, S., Self-Assembly of Metal Oxide Nanoparticles into Hierarchically Patterned Porous Architectures Using Ionic Liquid/Oil Emulsions. Langmuir 2009,25, (13),7229-7233.
    33. Talapin, D. V.; Poznyak, S. K.; Gaponik, N. P.; Rogach, A. L.; Eychmuller, A., Synthesis of Surface-Modified Colloidal Semiconductor Nanocrystals and Study of Photoinduced Charge Separation and Transport in Nanocrystal-Polymer Composites. Physica E 2002,14, (1-2),237-241.
    34. Harfenist, S., A.; Wang, Z., L.; Whetten, R., L.; Vezmar, I.; Alvarez, M., M., Three-Dimensional Hexagonal Close-Packed Superlattice of Passivated Ag Nanocrystals. Adv. Mater.1997,9, (10),817-822.
    35. Chen, J.; Liao, W.-S.; Chen, X.; Yang, T.; Wark, S. E.; Son, D. H.; Batteas, J. D.; Cremer, P. S., Evaporation-Induced Assembly of Quantum Dots into Nanorings. ACS Nano 2008,3,(1),173-180.
    36. Hanrath, T.; Choi, J. J.; Smilgies, D.-M., Structure/Processing Relationships of Highly Ordered Lead Salt Nanocrystal Superlattices. ACS Nano 2009,3, (10), 2975-2988.
    37. Volinsky, R.; Jelinek, R., Laser-Modulated Ordering of Gold Nanoparticles at the Air/Water Interface. Angew. Chem. Int. Ed.2009,48, (25),4540-4542.
    38. Nishida, N.; Shibu, E. S.; Yao, H.; Oonishi, T.; Kimura, K.; Pradeep, T., Fluorescent Gold Nanoparticle Superlattices. Adv. Mater.2008,20, (24),4719-4723.
    39. Lisiecki, I.; Turner, S.; Bals, S.; Pileni, M. P.; Tendeloo, G. V., The Remarkable and Intriguing Resistance to Oxidation of 2D Ordered hcp Co Nanocrystals. A New Intrinsic Property. Chem. Mater.2009,21, (12),2335-2338.
    40. Harada, T.; Hatton, T. A., Formation of Highly Ordered Rectangular Nanoparticle Superlattices by the Cooperative Self-Assembly of Nanoparticles and Fatty Molecules. Langmuir 2009,25, (11),6407-6412.
    41. Lou, W.; Wang, X.; Chen, M.; Liu, W.; Hao, J., A Simple Route to Synthesize Size-Controlled Ag2S Core-Shell Nanocrystals, and Their Self-Assembly. Nanotechnology 2008,19, (22),225607.
    42. Dinsmore, A. D.; Yodh, A. G.; Pine, D. J., Phase Diagrams of Nearly-Hard-Sphere Binary Colloids. Phys. Rev. E 1995,52, (4),4045.
    43. Kiely, C. J.; Fink, J.; Brust, M.; Bethell, D.; Schiffrin, D. J., Spontaneous Ordering of Bimodal Ensembles of Nanoscopic Gold Clusters. Nature 1998,396, (6710), 444-446.
    44. Kiely, C. J.; Fink, J.; Zheng, J. G.; Brust, M.; Bethell, D.; Schiffrin, D. J., Ordered Colloidal Nanoalloys. Adv. Mater.2000,12, (9),640-643.
    45. Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O'Brien, S.; Murray, C. B., Structural Diversity in Binary Nanoparticle Superlattices. Nature 2006,439, (7072), 55-59.
    46. Shevchenko, E. V.; Talapin, D. V.; Murray, C. B.; O'Brien, S., Structural Characterization of Self-Assembled Multifunctional Binary Nanoparticle Superlattices. J. Am. Chem. Soc.2006,128, (11),3620-3637.
    47. Shevchenko, E. V.; Talapin, D. V.; O'Brien, S.; Murray, C. B., Polymorphism in AB13 Nanoparticle Superlattices:An Example of Semiconductor-Metal Metamaterials. J. Am. Chem. Soc.2005,127, (24),8741-8747.
    48. Redl, F. X.; Cho, K. S.; Murray, C. B.; O'Brien, S., Three-Dimensional Binary Superlattices of Magnetic Nanocrystals and Semiconductor Quantum Dots. Nature 2003, 423, (6943),968-971.
    49. Eldridge, M. D.; Madden, P. A.; Frenkel, D., Entropy-Driven Formation of a Superlattice in A Hard-Sphere Binary Mixture. Nature 1993,365, (6441),35-37.
    50. Talapin, D. V., LEGO Materials. ACS Nano 2008,2,(6),1097-1100.
    51. Shevchenko, E. V.; Ringler, M.; Schwemer, A.; Talapin, D. V.; Klar, T. A.; Rogach, A. L.; Feldmann, J.; Alivisatos, A. P., Self-Assembled Binary Superlattices of CdSe and Au Nanocrystals and Their Fluorescence Properties. J. Am. Chem. Soc.2008,130, (11), 3274-3275.
    52. Jiang, C.; Tsukruk, V. V., Freestanding Nanostructures via Layer-by-Layer Assembly. Adv. Mater.2006,18, (7),829-840.
    53. Lee, J.; Govorov, A. O.; Kotov, N. A., Nanoparticle Assemblies with Molecular Springs:A Nanoscale Thermometer. Angew. Chem. Int. Ed.2005,44, (45),7439-7442.
    54. Dillenback, L. M.; Goodrich, G. P.; Keating, C. D., Temperature-Programmed Assembly of DNA:Au Nanoparticle Bioconjugates. Nano Lett.2005,6, (1),16-23.
    55. Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello, V. M., Self-Assembly of Nanoparticles into Structured Spherical and Network Aggregates. Nature 2000,404, (6779),746-748.
    56. Varon, M.; Pena, L.; Balcells, L.; Skumryev, V.; Martinez, B.; Puntes, V., Dipolar Driven Spontaneous Self Assembly of Superparamagnetic Co Nanoparticles into Micrometric Rice-Grain like Structures. Langmuir 2009,26, (1),109-116.
    57. Zhang, Z.; Sun, H.; Shao, X.; Li, D.; Yu, H.; Han, M., Three-Dimensionally Oriented Aggregation of a Few Hundred Nanoparticles into Monocrystalline Architectures. Adv. Mater.2005,17, (1),42-47.
    58. Binder, W. H., Supramolecular Assembly of Nanoparticles at Liquid-Liquid Interfaces. Angew. Chem. Int. Ed.2005,44, (33),5172-5175.
    59. Aleksandrovic, V.; Greshnykh, D.; Randjelovic, I.; Fromsdorf, A.; Kornowski, A.; Roth, S. V.; Klinke, C.; Weller, H., Preparation and Electrical Properties of Cobalt-Platinum Nanoparticle Monolayers Deposited by the Langmuir-Blodgett Technique. ACS Nano 2008,2, (6),1123-1130.
    60. Lin, Y.; Baker, A.; Skaff, H.; Cookson, D.; Dinsmore, A. D.; Emrick, T.; Russell, T. P., Nanoparticle Assembly at Fluid Interfaces:Structure and Dynamics. Langmuir 2004, 21,(1),191-194.
    61. Durbin, S. D.; Feher, G.,Protein Crystallization. Annu. Rev. Phys. Chem.1996,47, (1),171-204.
    62. Sciortino, F.; Tartaglia, P., Glassy Colloidal Systems. Adv. Phys.2005,54, (6),471-524.
    63. Foffi, G.; McCullagh, G. D.; Lawlor, A.; Zaccarelli, E.; Dawson, K. A.; Sciortino, F.; Tartaglia, P.; Pini, D.; Stell, G., Phase Equilibria and Glass Transition in Colloidal Systems with Short-Ranged Attractive Interactions:Application to Protein Crystallization. Phys. Rev. E 2002,65, (3),031407.
    64. Sau, T. K.; Murphy, C. J., Self-Assembly Patterns Formed upon Solvent Evaporation of Aqueous Cetyltrimethylammonium Bromide-Coated Gold Nanoparticles of Various Shapes. Langmuir 2005,21, (7),2923-2929.
    65. Jana, N. R., Shape Effect in Nanoparticle Self-Assembly. Angew. Chem. Int. Ed. 2004,43,(12),1536-1540.
    66. Klajn, R.; Bishop, K. J. M.; Fialkowski, M.; Paszewski, M.; Campbell, C.J.; Gray, T. P.; Grzybowski, B. A., Plastic and Moldable Metals by Self-Assembly of Sticky Nanoparticle Aggregates. Science 2007,316, (5822),261-264.
    67. Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M.; Grzybowski, B. A., Electrostatic Self-Assembly of Binary Nanoparticle Crystals with a Diamond-Like Lattice. Science 2006,312, (5772),420-424.
    68. Smoukov, S. K.; Bishop, K. J. M.; Kowalczyk, B.; Kalsin, A. M.; Grzybowski, B. A., Electrostatically "Patchy" Coatings via Cooperative Adsorption of Charged Nanoparticles. J. Am. Chem. Soc.2007,129, (50),15623-15630.
    69. Lalatonne, Y.; Richardi, J.; Pileni, M. P., Van der Waals versus Dipolar Forces Controlling Mesoscopic Organizations of Magnetic Nanocrystals. Nat. Mater.2004,3, (2),121-125.
    70. Hu, X.; Cheng, W.; Wang, T.; Wang, E.; Dong, S., Well-Ordered End-to-End Linkage of Gold Nanorods. Nanotechnology 2005,16, (10),2164.
    71. Sun, Z.; Ni, W.; Yang, Z.; Kou, X.; Li, L.; Wang, J., pH-Controlled Reversible Assembly and Disassembly of Gold Nanorods. Small 2008,4, (9),1287-1292.
    72. Lin, K.-h.; Crocker, J. C.; Prasad, V.; Schofield, A.; Weitz, D. A.; Lubensky, T. C.; Yodh, A. G, Entropically Driven Colloidal Crystallization on Patterned Surfaces. Phys. Rev. Lett.2000,85, (8),1770.
    73. Fraden, S.; Maret, G.; Caspar, D. L. D.; Meyer, R. B., Isotropic-Nematic Phase Transition and Angular Correlations in Isotropic Suspensions of Tobacco Mosaic Virus. Phys. Rev. Lett.1989,63, (19),2068.
    74. Bechinger, C., Colloidal Suspensions in Confined Geometries. Curr. Opin. Colloid Interface Sci.2002,7, (3-4),204-209.
    75. Bishop, K., J. M.; Wilmer, C., E.; Soh, S.; Grzybowski, B., A., Nanoscale Forces and Their Uses in Self-Assembly. Small 2009,5, (14),1600-1630.
    76. Bakkers, E. P. A. M.; Verheijen, M. A., Synthesis of InP Nanotubes. J. Am. Chem. Soc.2003,125, (12),3440-3441.
    77. Gao, P. X.; Wang, Z. L., Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process. J. Phys. Chem. B 2004,108, (23),7534-7537.
    78. Goldberger, J.; He, R.; Zhang, Y.; Lee, S.; Yan, H.; Choi, H.-J.; Yang, P., Single-Crystal Gallium Nitride Nanotubes. Nature 2003,422, (6932),599-602.
    79. Kong, X. Y.; Ding, Y; Yang, R.; Wang, Z. L., Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts. Science 2004,303, (5662),1348-1351.
    80. Ma, C.; Ding, Y.; Moore, D.; Wang, X.; Wang, Z. L., Single-Crystal CdSe Nanosaws. J. Am. Chem. Soc.2003,126, (3),708-709.
    81. Zhang, Y.; Wang, L.; Liu, X.; Yan, Y.; Chen, C.; Zhu, J., Synthesis of Nano/Micro Zinc Oxide Rods and Arrays by Thermal Evaporation Approach on Cylindrical Shape Substrate. J. Phys. Chem. B 2005,109, (27),13091-13093.
    82. Xiong, S.; Xi, B.; Xu, D.; Wang, C.; Feng, X.; Zhou, H.; Qian, Y, 1-Cysteine-Assisted Tunable Synthesis of PbS of Various Morphologies. J. Phys. Chem. C 2007,111,(45),16761-16767.
    83. Zuo, F.; Yan, S.; Zhang, B.; Zhao, Y.; Xie, Y.,L-Cysteine-Assisted Synthesis of PbS Nanocube-Based Pagoda-like Hierarchical Architectures. J. Phys. Chem. C 2008,112, (8),2831-2835.
    84. Zhou, G.; Lv, M.; Xiu, Z.; Wang, S.; Zhang, H.; Zhou, Y.; Wang, S., Controlled Synthesis of High-Quality PbS Star-Shaped Dendrites, Multipods, Truncated Nanocubes, and Nanocubes and Their Shape Evolution Process. J. Phys. Chem. B 2006,110, (13), 6543-6548.
    85. Zhao, Z.; Zhang, K.; Zhang, J.; Yang, K.; He, C.; Dong, F.; Yang, B., Synthesis of size and shape controlled PbS nanocrystals and their self-assembly. Colloids Surf. A 2010,355,(1-3),114-120.
    86. Ghezelbash, A.; Korgel, B. A., Nickel Sulfide and Copper Sulfide Nanocrystal Synthesis and Polymorphism. Langmuir 2005,21, (21),9451-9456.
    87. Seo, J.-w.; Jun, Y.-w.; Ko, S. J.; Cheon, J., In Situ One-Pot Synthesis of 1-Dimensional Transition Metal Oxide Nanocrystals. J. Phys. Chem. B 2005,109, (12), 5389-5391.
    88. Li, Y.; Malik, M. A.; O'Brien, P., Synthesis of Single-Crystalline CoP Nanowires by a One-Pot Metal-Organic Route. J. Am. Chem. Soc.2005,127, (46),16020-16021.
    89. Si, R.; Zhang, Y.-W.; You, L.-P.; Yan, C.-H., Rare-Earth Oxide Nanopolyhedra, Nanoplates, and Nanodisks. Angew. Chem. Int. Ed.2005,44, (21),3256-3260.
    90. Zitoun, D.; Pinna, N.; Frolet, N.; Belin, C., Single Crystal Manganese Oxide Multipods by Oriented Attachment. J. Am. Chem. Soc.2005,127, (43),15034-15035.
    91. Jana, N. R.; Chen, Y.; Peng, X., Size-and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach. Chem. Mater.2004,16, (20),3931-3935.
    92. Cheon, J.; Kang, N.-J.; Lee, S.-M.; Lee, J.-H.; Yoon, J.-H.; Oh, S. J., Shape Evolution of Single-Crystalline Iron Oxide Nanocrystals. J. Am. Chem. Soc.2004,126, (7),1950-1951.
    93. Sun, Y.; Xia, Y., Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science 2002,298, (5601),2176-2179.
    94. Manna, L.; Scher, E. C.; Alivisatos, A. P., Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals. J. Am. Chem. Soc. 2000,122, (51),12700-12706.
    95. Yu, H.; Buhro, W. E., Solution-Liquid-Solid Growth of Soluble GaAs Nanowires. Adv. Mater.2003,15, (5),416-419.
    96. Ahrenkiel, S. P.; Micic, O. I.; Miedaner, A.; Curtis, C. J.; Nedeljkovic, J. M.; Nozik, A. J., Synthesis and Characterization of Colloidal InP Quantum Rods. Nano Lett.2003, 3, (6),833-837.
    97. Tuan, H.-Y.; Lee, D. C.; Hanrath, T.; Korgel, B. A., Catalytic Solid-Phase Seeding of Silicon Nanowires by Nickel Nanocrystals in Organic Solvents. Nano Lett.2005,5, (4),681-684.
    98. Pacholski, C.; Kornowski, A.; Weller, H., Self-Assembly of ZnO:From Nanodots to Nanorods. Angew. Chem. Int. Ed.2002,41, (7),1188-1191.
    99. Yu, J. H.; Joo, J.; Park, H. M.; Baik, S.-I.; Kim, Y W.; Kim, S. C.; Hyeon, T., Synthesis of Quantum-Sized Cubic ZnS Nanorods by the Oriented Attachment Mechanism. J. Am. Chem. Soc.2005,127, (15),5662-5670.
    100. Sigman, M. B.; Ghezelbash, A.; Hanrath, T.; Saunders, A. E.; Lee, F.; Korgel, B. A., Solventless Synthesis of Monodisperse Cu2S Nanorods, Nanodisks, and Nanoplatelets.J. Am. Chem. Soc.2003,125, (51),16050-16057.
    101. Jun, Y.-w.; Lee, J.-H.; Choi, J.-s.; Cheon, J., Symmetry-Controlled Colloidal Nanocrystals:Nonhydrolytic Chemical Synthesis and Shape Determining Parameters. J. Phys. Chem. B 2005,109, (31),14795-14806.
    102. Jun, Y.-w.; Jung, Y.-y.; Cheon, J., Architectural Control of Magnetic Semiconductor Nanocrystals. J.Am. Chem. Soc.2002,124, (4),615-619.
    103. Zelaya-Angel, O.; Alvarado-Gil, J. J.; Lozada-Morales, R.; Vargas, H.; Silva, A. F. d., Band-Gap Shift in CdS Semiconductor by Photoacoustic Spectroscopy:Evidence of A Cubic to Hexagonal Lattice Transition. Appl. Phys. Lett.1994,64, (3),291-293.
    104. Wang, Z. L., Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. J. Phys. Chem. B 2000,104,(6),1153-1175.
    105. Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P., Shape Control of CdSe Nanocrystals. Nature 2000,404, (6773),59-61.
    106. Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P., Controlled Growth of Tetrapod-Branched Inorganic Nanocrystals. Nat. Mater.2003,2, (6),382-385.
    107. Yeh, C.-Y.; Lu, Z. W.; Froyen, S.; Zunger, A., Zinc-Blende-Wurtzite Polytypism in Semiconductors. Phys. Rev. B 1992,46, (16),10086.
    108. Lee, S.-M.; Jun, Y.-w.; Cho, S.-N.; Cheon, J., Single-Crystalline Star-Shaped Nanocrystals and Their Evolution:Programming the Geometry of Nano-Building Blocks. J. Am. Chem. Soc.2002,124, (38),11244-11245.
    109. Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P., Colloidal Nanocrystal Shape and Size Control:The Case of Cobalt. Science 2001,291, (5511),2115-2117.
    110.Li, L.-s.; Walda, J.; Manna, L.; Alivisatos, A. P., Semiconductor Nanorod Liquid Crystals. Nano Lett.2002,2, (6),557-560.
    111. Saunders, A. E.; Ghezelbash, A.; Smilgies, D.-M.; Sigman, M. B.; Korgel, B. A., Columnar Self-Assembly of Colloidal Nanodisks. Nano Lett.2006,6, (12),2959-2963.
    112.Chen, S.; Fan, Z.; Carroll, D. L., Silver Nanodisks:Synthesis, Characterization, and Self-Assembly. J. Phys. Chem. B 2002,106, (42),10777-10781.
    113.Pietrobon, B.; McEachran, M.; Kitaev, V., Synthesis of Size-Controlled Faceted Pentagonal Silver Nanorods with Tunable Plasmonic Properties and Self-Assembly of These Nanorods. ACS Nano 2008,3, (1),21-26.
    114.Busbee, B. D.; Obare, S. O.; Murphy, C. J., An Improved Synthesis of High-Aspect-Ratio Gold Nanorods. Adv. Mater.2003,15, (5),414-416.
    115.Jana, N. R.; Gearheart, L. A.; Obare, S. O.; Johnson, C. J.; Edler, K. J.; Mann, S.; Murphy, C. J., Liquid Crystalline Assemblies of Ordered Gold Nanorods. J. Mater. Chem.2002,12, (10),2909-2912.
    116.Shen, X. S.; Wang, G. Z.; Hong, X.; Zhu, W., Simple-cubic microcubes assembled by palladium nanocubes. CrystEngComm 2009,11, (5),753-755.
    117.Song, Q.; Ding, Y.; Wang, Z. L.; Zhang, Z. J., Formation of Orientation-Ordered Superlattices of Magnetite Magnetic Nanocrystals from Shape-Segregated Self-Assemblies. J. Phys.Chem. B 2006,110, (50),25547-25550.
    118.Niu, W.; Zheng, S.; Wang, D.; Liu, X.; Li, H.; Han, S.; Chen, J.; Tang, Z.; Xu, G, Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals. J. Am. Chem. Soc.2008,131, (2),697-703.
    119.Chang, C.-C.; Wu, H.-L.; Kuo, C.-H.; Huang, M. H., Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures. Chem. Mater.2008,20, (24),7570-7574.
    120. Tao, A. R.; Huang, J.; Yang, P., Langmuir-Blodgettry of Nanocrystals and Nanowires. Acc. Chem. Res.2008,41, (12),1662-1673.
    121. Lu, W.; Liu, Q.; Sun, Z.; He, J.; Ezeolu, C.; Fang, J., Super Crystal Structures of Octahedral c-In2O3 Nanocrystals. J. Am. Chem. Soc.2008,130, (22),6983-6991.
    122. Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A., Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops. Nature 1997,389, (6653),827-829.
    123. Ming, T.; Kou, X.; Chen, H.; Wang, T.; Tam, H.-L.; Cheah, K.-W.; Chen, J.-Y.; Wang, J., Ordered Gold Nanostructure Assemblies Formed By Droplet Evaporation. Angew. Chem. Int. Ed.2008,47, (50),9685-9690.
    124. Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M., Large-Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems. Nano Lett.2003,3, (9), 1255-1259.
    125. Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P., Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. Nano Lett.2003,3, (9),1229-1233.
    126. Yang, P., Nanotechnology:Wires on Water. Nature 2003,425, (6955),243-244.
    127. Kim, F.; Kwan, S.; Akana, J.; Yang, P., Langmuir-Blodgett Nanorod Assembly. J. Am. Chem. Soc.2001,123, (18),4360-4361.
    128. Diehl, M. R.; Yaliraki, S. N.; Beckman, R. A.; Barahona, M.; Heath, J. R., Self-Assembled, Deterministic Carbon Nanotube Wiring Networks. Angew. Chem.2002, 114, (2),363-366.
    129. Tao, A.; Sinsermsuksakul, P.; Yang, P., Tunable Plasmonic Lattices of Silver Nanocrystals. Nat. Nano.2007,2, (7),435-440.
    130. Xie, S.; Zhou, X.; Han, X.; Kuang, Q.; Jin, M.; Jiang, Y.; Xie, Z.; Zheng, L., Supercrystals from Crystallization of Octahedral MnO Nanocrystals. J. Phys. Chem. C 2009,113,(44),19107-19111.
    131. Wang, N.; Cao, X.; Guo, L.; Yang, S.; Wu, Z., Facile Synthesis of PbS Truncated Octahedron Crystals with High Symmetry and Their Large-Scale Assembly into Regular Patterns by a Simple Solution Route. ACS Nano 2008,2, (2),184-190.
    132. Cho, K.-S.; Talapin, D. V.; Gaschler, W.; Murray, C. B., Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles. J. Am. Chem. Soc.2005,127, (19),7140-7147.
    133. Qi, H.; Chen, Q.; Wang, M.; Wen, M.; Xiong, J., Study of Self-Assembly of Octahedral Magnetite under an External Magnetic Field. The Journal of Physical Chemistry C 2009,113, (40),17301-17305.
    134. Lin, T..-H.; Huang, W.-H.; Jun, I.-K.; Jiang, P., Bioinspired Assembly of Colloidal Nanoplatelets by Electric Field. Chem. Mater.2009,21,(10),2039-2044.
    135. Liu, S.; Tang, Z., Nanoparticle Assemblies for Biological and Chemical Sensing. J. Mater. Chem.2010,20, (1),24-35.
    136. Srivastava, S.; Kotov, N. A., Nanoparticle Assembly for 1D and 2D Ordered Structures. Soft Matter 2009,5, (6),1146-1156.
    137. Lee, K. J.; Nallathamby, P. D.; Browning, L. M.; Osgood, C. J.; Xu, X.-H. N., In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos. ACS Nano 2007,1, (2),133-143.
    138. Lin, S.; Li, M.; Dujardin, E.; Girard, C.; Mann, S., One-Dimensional Plasmon Coupling by Facile Self-Assembly of Gold Nanoparticles into Branched Chain Networks. Adv. Mater.2005,17, (21),2553-2559.
    139. Michaels, A. M.; Jiang; Brus, L., Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules. J. Phys. Chem. B 2000,104, (50),11965-11971.
    140. Qiu, T.; Wu, X. L.; Shen, J. C.; Chu, P. K., Silver Nanocrystal Superlattice Coating for Molecular Sensing by Surface-Enhanced Raman Spectroscopy. Appl. Phys. Lett.2006,89,(13),131914-3.
    141. Jana, N. R.; Pal, T., Anisotropic Metal Nanoparticles for Use as Surface-Enhanced Raman Substrates. Adv. Mater.2007,19, (13),1761-1765.
    142. Aslan, K.; Holley, P.; Geddes, C. D., Metal-Enhanced Fluorescence from Silver Nanoparticle-Deposited Polycarbonate Substrates. J. Mater. Chem.2006,16, (27), 2846-2852.
    143. Fu, Y.; Lakowicz, J. R., Enhanced Fluorescence of Cy5-Labeled DNA Tethered to Silver Island Films:Fluorescence Images and Time-Resolved Studies Using Single-Molecule Spectroscopy. Analytical Chemistry 2006,78, (17),6238-6245.
    144. Zhang, J.; Fu, Y.; Liang, D.; Zhao, R. Y.; Lakowicz, J. R., Enhanced Fluorescence Images for Labeled Cells on Silver Island Films. Langmuir 2008,24, (21), 12452-12457.
    145. Teranishi, T., Fabrication and Electronic Properties of Gold Nanoparticle Superlattices. C. R. Chimie 2003,6, (8-10),979-987.
    146. Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G., DNA-Templated Assembly and Electrode Attachment of a Conducting Silver Wire. Nature 1998,391, (6669), 775-778.
    147. Petit, C.; Russier, V.; Pileni, M. P., Effect of the Structure of Cobalt Nanocrystal Organization on the Collective Magnetic Properties. J. Phys. Chem. B 2003, 107,(38),10333-10336.
    148. Li, Y.; Zhang, X. L.; Qiu, R.; Qiao, R.; Kang, Y S., Investigation of Co Nanoparticle Assemblies Induced by Magnetic Field. J. Ind. Eng. Chem.2008,14, (1), 22-27.
    1. Alivisatos, A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996,271, (5251),933-937.
    2. Jun, Y.-w.; Choi, J.-s.; Cheon, J., Shape Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal Routes. Angew. Chem. Int. Ed.2006,45, (21),3414-3439.
    3. Eychmuller, A., Structure and Photophysics of Semiconductor Nanocrystals. J. Phys. Chem. B 2000,104, (28),6514-6528.
    4. Talapin, D. V.; Shevchenko, E. V.; Kornowski, A.; Gaponik, N.; Haase, M.; Rogach, A. L.; Weller, H., A New Approach to Crystallization of CdSe Nanoparticles into Ordered Three-Dimensional Superlattices. Adv. Mater.2001,13, (24),1868-1871.
    5. Mokari, T.; Zhang, M.; Yang, P., Shape, Size, and Assembly Control of PbTe Nanocrystals. J. Am. Chem. Soc.2007,129, (32),9864-9865.
    6. Kawano, T.; Imai, H., A simple preparation technique for shape-controlled zinc oxide nanoparticles:Formation of narrow size-distributed nanorods using seeds in aqueous solutions. Colloids Surf. A 2008,319, (1-3),130-135.
    7. Yang, D.; Qi, L.; Ma, J., Well-Defined Star-Shaped Calcite Crystals Formed in Agarose Gels. Chem. Comm.2003, (10),1180-1181.
    8. Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P., Shape Control of CdSe Nanocrystals. Nature 2000,404, (6773),59-61.
    9. Machol, J. L.; Wise, F. W.; Patel, R. C.; Tanner, D. B., Vibronic Quantum Beats in PbS Microcrystallites. Phys. Rev. B 1993,48, (4),2819.
    10. McDonald, S. A.; Konstantatos, G.; Zhang, S.; Cyr, P. W.; Klem, E. J. D.; Levina, L. Sargent, E. H., Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater.2005,4, (2),138-142.
    11. Choudhury, K. R.; Sahoo, Y.; Jang, S.; Prasad, P. N., Efficient Photosensitization and High Optical Gain in a Novel Quantum-Dot-Sensitized Hybrid Photorefractive Nanocomposite at a Telecommunications Wavelength. Adv. Func. Mater.2005,15, (5), 751-756.
    12. Lim, W. P.; Low, H. Y.; Chin, W. S., IR-Luminescent PbS-Polystyrene Nanocomposites Prepared from Random Ionomers in Solution. J. Phys. Chem. B 2004, 108,(35),13093-13099.
    13. Wang, Y, Nonlinear Optical Properties of Nanometer-Sized Semiconductor Clusters. Acc. Chem. Res.1991,24, (5),133-139.
    14. Zhang, J.; Jiang, X., Confinement-Dependent Below-Gap State in PbS Quantum Dot Films Probed by Continuous-Wave Photoinduced Absorption. J. Phys. Chem. B 2008,112, (32),9557-9560.
    15. Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L., Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots. Nano Lett.2005,5, (5),865-871.
    16. Bose, R.; McMillan, J. F.; Gao, J.; Rickey, K. M.; Chen, C. J.; Talapin, D. V.; Murray, C. B.; Wong, C. W., Temperature-Tuning of Near-Infrared Monodisperse Quantum Dot Solids at 1.5 μm for Controllable Forster Energy Transfer. Nano Lett. 2008,8, (7),2006-2011.
    17. Lee, S.-M.; Jun, Y.-w.; Cho, S.-N.; Cheon, J., Single-Crystalline Star-Shaped Nanocrystals and Their Evolution:Programming the Geometry of Nano-Building Blocks. J. Am. Chem. Soc.2002,124, (38),11244-11245.
    18. Singh, K.; McLachlan, A. A.; Marangoni, D. G., Effect of Morphology and Concentration on Capping Ability of Surfactant in Shape Controlled Synthesis of PbS Nano-and Micro-Crystals. Colloids Surf. A 2009,345, (1-3),82-87.
    19. Cao, H.; Gong, Q.; Qian, X.; Wang, H.; Zai, J.; Zhu, Z., Synthesis of 3-D Hierarchical Dendrites of Lead Chalcogenides in Large Scale via Microwave-Assistant Method. Cryst. Growth Des.2007,7, (2),425-429.
    20. Lau, Y. K. A.; Chernak, D. J.; Bierman, M. J.; Jin, S., Epitaxial growth of hierarchical PbS nanowires. J. Mater. Chem.2009,19, (7),934-940.
    21. Thongtem, T.; Kaowphong, S.; Thongtem, S., Biomolecule and surfactant-assisted hydrothermal synthesis of PbS crystals. Ceramics International 2008,34, (7), 1691-1695.
    22. Quan, Z.; Li, C.; Zhang, X.; Yang, J.; Yang, P.; Zhang, C.; Lin, J., Polyol-Mediated Synthesis of PbS Crystals:Shape Evolution and Growth Mechanism. Cryst. Growth Des. 2008,8, (7),2384-2392.
    23. Xiong, S.; Xi, B.; Xu, D.; Wang, C.; Feng, X.; Zhou, H.; Qian, Y, 1-Cysteine-Assisted Tunable Synthesis of PbS of Various Morphologies. J. Phys. Chem. C 2007,111,(45),16761-16767.
    24. Zuo, F.; Yan, S.; Zhang, B.; Zhao, Y.; Xie, Y, L-Cysteine-Assisted Synthesis of PbS Nanocube-Based Pagoda-like Hierarchical Architectures. J. Phys. Chem. C 2008,112, (8),2831-2835.
    25. Jun, Y.-w.; Lee, J.-H.; Choi, J.-s.; Cheon, J., Symmetry-Controlled Colloidal Nanocrystals:Nonhydrolytic Chemical Synthesis and Shape Determining Parameters. J. Phys. Chem.B 2005,109, (31),14795-14806.
    26. Wang, Z. L., Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. J. Phys. Chem. B 2000,104, (6),1153-1175.
    27. Zhao, N.; Qi, L., Low-Temperature Synthesis of Star-Shaped PbS Nanocrystals in Aqueous Solutions of Mixed Cationic/Anionic Surfactants. Adv. Mater.2006,18, (3), 359-362.
    28. Xia, Y.; Yin, Y.; Lu, Y.; McLellan, J., Template-Assisted Self-Assembly of Spherical Colloids into Complex and Controllable Structures. Adv. Func. Mater.2003, 13, (12),907-918.
    29. http://www.chinabaike.com/article/baike/wli/2008/200801111129343.html.
    1. Fendler, J. H.; Meldrum, F. C., The Colloid Chemical Approach to Nanostructured Materials. Adv. Mater.1995,7, (7),607-632.
    2. Alivisatos, A. P., Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. J. Phys. Chem.1996,100, (31),13226-13239.
    3. Pileni, M. P., Nanosized Particles Made in Colloidal Assemblies. Langmuir 1997, 13, (13),3266-3276.
    4. Collier, C. P.; Saykally, R. J.; Shiang, J. J.; Henrichs, S. E.; Heath, J. R., Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition. Science 1997,277, (5334),1978-1981.
    5. Brinker, C. J.; Lu, Y.; Sellinger, A.; Fan, H., Evaporation-Induced Self-Assembly: Nanostructures Made Easy. Adv. Mater.1999,11, (7),579-585.
    6. Wang, Z. L., Structural Analysis of Self-Assembling Nanocrystal Superlattices. Adv. Mater.1998,10, (1),13-30.
    7. Murray, C. B.; Kagan, C. R.; Bawendi, M. G, Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices. Science 1995,270, (5240),1335-1338.
    8. Murray, C. B.; Kagan, C. R.; Bawendi, M. G., Synthesis and Characterization of Monodisperse Nanocrystals and Close-packed Nanocrystal Assemblies. Annu. Rev. Mater. Sci.2000,30, (1),545-610.
    9. Liu, S.; Tang, Z., Nanoparticle Assemblies for Biological and Chemical Sensing. J. Mater. Chem.2010,20, (1),24-35.
    10. Xia, Y.; Gates, B.; Yin, Y.; Lu, Y, Monodispersed Colloidal Spheres:Old Materials with New Applications. Adv. Mater.2000,12, (10),693-713.
    11. Ozin, G. A.; Yang, S. M., The Race for the Photonic Chip:Colloidal Crystal Assembly in Silicon Wafers. Adv. Func. Mater.2001,11, (2),95-104.
    12. Seo, D.; Yoo, C. I.; Park, J. C.; Park, S. M.; Ryu, S.; Song, H., Directed Surface Overgrowth and Morphology Control of Polyhedral Gold Nanocrystals. Angew. Chem. Int. Ed.2008,47, (4),763-767.
    13. Jun, Y.-w.; Lee, J.-H.; Choi, J.-s.; Cheon, J., Symmetry-Controlled Colloidal Nanocrystals:Nonhydrolytic Chemical Synthesis and Shape Determining Parameters. J. Phys. Chem. B 2005,109, (31),14795-14806.
    14. Ming, T.; Kou, X.; Chen, H.; Wang, T.; Tam, H.-L.; Cheah, K.-W.; Chen, J.-Y.; Wang, J., Ordered Gold Nanostructure Assemblies Formed By Droplet Evaporation. Angew. Chem. Int. Ed.2008,47, (50),9685-9690.
    15. Pietrobon, B.; McEachran, M.; Kitaev, V., Synthesis of Size-Controlled Faceted Pentagonal Silver Nanorods with Tunable Plasmonic Properties and Self-Assembly of These Nanorods. ACS Nano 2008,3, (1),21-26.
    16. Saunders, A. E.; Ghezelbash, A.; Smilgies, D.-M.; Sigman, M. B.; Korgel, B. A., Columnar Self-Assembly of Colloidal Nanodisks. Nano Lett.2006,6, (12),2959-2963.
    17. Song, Q.; Ding, Y.; Wang, Z. L.; Zhang, Z. J., Formation of Orientation-Ordered Superlattices of Magnetite Magnetic Nanocrystals from Shape-Segregated Self-Assemblies. J. Phys. Chem. B 2006,110, (50),25547-25550.
    18. Niu, W.; Zheng, S.; Wang, D.; Liu, X.; Li, H.; Han, S.; Chen, J.; Tang, Z.; Xu, G., Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals. J. Am. Chem. Soc.2008,131, (2),697-703.
    19. Tao, A.; Sirisermsuksakul, P.; Yang, P., Tunable Plasmonic Lattices of Silver Nanocrystals. Nat. Nano.2007,2, (7),435-440.
    20. Zhang, J.; Kumbhar, A.; He, J.; Das, N. C.; Yang, K.; Wang, J.-Q.; Wang, H.; Stokes, K. L.; Fang, J., Simple Cubic Super Crystals Containing PbTe Nanocubes and Their Core-Shell Building Blocks. J. Am. Chem. Soc.2008,130, (45),15203-15209.
    21. Qi, H.; Chen, Q.; Wang, M.; Wen, M.; Xiong, J., Study of Self-Assembly of Octahedral Magnetite under an External Magnetic Field. J. Phys. Chem. C 2009,113, (40),17301-17305.
    22. Lu, W.; Liu, Q.; Sun, Z.; He, J.; Ezeolu, C.; Fang, J., Super Crystal Structures of Octahedral c-In2O3 Nanocrystals. J. Am. Chem. Soc.2008,130, (22),6983-6991.
    23. Chang, C.-C.; Wu, H.-L.; Kuo, C.-H.; Huang, M. H., Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures. Chem. Mater.2008,20, (24),7570-7574.
    24. Zhang, L.; Wu, J.; Liao, H.; Hou, Y.; Gao, S., Octahedral Fe3O4 Nanoparticles and Their Assembled Structures. Chem. Comm.2009, (29),4378-4380.
    25. Tao, A. R.; Ceperley, D. P.; Sinsermsuksakul, P.; Neureuther, A. R.; Yang, P., Self-Organized Silver Nanoparticles for Three-Dimensional Plasmonic Crystals. Nano Letters 2008,8, (11),4033-4038.
    26. Xie, S.; Zhou, X.; Han, X.; Kuang, Q.; Jin, M.; Jiang, Y; Xie, Z.; Zheng, L., Supercrystals from Crystallization of Octahedral MnO Nanocrystals. J. Phys. Chem. C 2009,113,(44),19107-19111.
    27. Wang, N.; Cao, X.; Guo, L.; Yang, S.; Wu, Z., Facile Synthesis of PbS Truncated Octahedron Crystals with High Symmetry and Their Large-Scale Assembly into Regular Patterns by a Simple Solution Route. ACS Nano 2008,2, (2),184-190.
    28. Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A., Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops. Nature 1997,389, (6653),827-829.
    29. Huang, J.; Fan, R.; Connor, S.; Yang, P., One-Step Patterning of Aligned Nanowire Arrays by Programmed Dip Coating13. Angew. Chem. Int. Ed.2007,46, (14), 2414-2417.
    30. Liddle, J. A.; Cui, Y.; Alivisatos, P. In Lithographically directed self-assembly of nanostructures, The 48th International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication, San Diego, California (USA),2004; AVS:San Diego, California (USA),2004; pp 3409-3414.
    31. Zhao, Z.; Zhang, K.; Zhang, J.; Yang, K.; He, C.; Dong, F.; Yang, B., Synthesis of Size and Shape Controlled PbS Nanocrystals and Their Self-Assembly. Colloids Surf. A 2010,355,(1-3),114-120.
    32. Wang, Z. L., Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. J. Phys. Chem. B 2000,104, (6),1153-1175.
    33. Hanrath, T.; Choi, J. J.; Smilgies, D.-M., Structure/Processing Relationships of Highly Ordered Lead Salt Nanocrystal Superlattices. ACS Nano 2009,3, (10), 2975-2988.
    34. Zhang, J. Z.; Wang, Z. L.; Liu, J.; Chen, S.; Liu, G. Y., Nanocrystal Self-Assembly. Kluwer Academic Publishers:New York,2004.
    35. Rogach, A. L.; Talapin, D. V.; Shevchenko, E. V.; Kornowski, A.; Haase, M.; Weller, H., Organization of Matter on Different Size Scales:Monodisperse Nanocrystals and Their Superstructures. Adv. Func. Mater.2002,12, (10),653-664.
    36. Elechiguerra, J. L.; Reyes-Gasga, J.; Yacaman, M. J., The Role of Twinning in Shape Evolution of Anisotropic Noble Metal Nanostructures. J. Mater. Chem.2006,16, (40),3906-3919.
    37. Lofton, C.; Sigmund, W., Mechanisms Controlling Crystal Habits of Gold and Silver Colloids. Adv. Func. Mater.2005,15, (7),1197-1208.
    38. Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A., Nanoscale Forces and Their Uses in Self-Assembly. Small 2009,5, (14),1600-1630.
    39. Jana, N. R.; Gearheart, L. A.; Obare, S. O.; Johnson, C. J.; Edler, K. J.; Mann, S.; Murphy, C. J., Liquid Crystalline Assemblies of Ordered Gold Nanorods. J. Mater. Chem.2002,12, (10),2909-2912.
    40. Jana, N. R., Shape Effect in Nanoparticle Self-Assembly. Angew. Chem. Int. Ed. 2004,43,(12),1536-1540.
    1. Zhang, J. Z.; Wang, Z. L.; Liu, J.; Chen, S.; Liu, G Y., Nanocrystal Self-Assembly. Kluwer Academic Publishers:New York,2004.
    2. Wang, N.; Cao, X.; Guo, L.; Yang, S.; Wu, Z., Facile Synthesis of PbS Truncated Octahedron Crystals with High Symmetry and Their Large-Scale Assembly into Regular Patterns by a Simple Solution Route. ACS Nano 2008,2, (2),184-190.
    3. Jing, S.; Xing, S.; Wang, Y.; Hu, H.; Zhao, B.; Zhao, C., Synthesis of 3D Well-Packed Octahedral PbS Nanocrystal Arrays. Mater. Lett.2008,62, (6-7),977-979.
    4. Hanrath, T.; Choi, J. J.; Smilgies, D.-M., Structure/Processing Relationships of Highly Ordered Lead Salt Nanocrystal Superlattices. ACS Nano 2009,3, (10), 2975-2988.
    5. Zhang, J.; Kumbhar, A.; He, J.; Das, N. C.; Yang, K.; Wang, J.-Q.; Wang, H.; Stokes, K. L.; Fang, J., Simple Cubic Super Crystals Containing PbTe Nanocubes and Their Core-Shell Building Blocks. J. Am. Chem. Soc.2008,130, (45),15203-15209.
    6. Urban, J. J.; Talapin, D. V.; Shevchenko, E. V.; Murray, C. B., Self-Assembly of PbTe Quantum Dots into Nanocrystal Superlattices and Glassy Films. J. Am. Chem. Soc. 2006,128, (10),3248-3255.
    7. Tao, A. R.; Ceperley, D. P.; Sinsermsuksakul, P.; Neureuther, A. R.; Yang, P., Self-Organized Silver Nanoparticles for Three-Dimensional Plasmonic Crystals. Nano Lett.2008,8, (11),4033-4038.
    8. Tao, A. R.; Huang, J.; Yang, P., Langmuir-Blodgettry of Nanocrystals and Nanowires. Acc. Chem. Res.2008,41, (12),1662-1673.
    9. Rycenga, M.; McLellan, J. M.; Xia, Y, Controlling the Assembly of Silver Nanocubes through Selective Functionalization of Their Faces13. Adv. Mater.2008,20, (12),2416-2420.
    10. Zhang, Q.; Xie, J.; Yang, J.; Lee, J. Y, Monodisperse Icosahedral Ag, Au, and Pd Nanoparticles:Size Control Strategy and Superlattice Formation. ACS Nano 2008,3, (1), 139-148.
    11. Pietrobon, B.; McEachran, M.; Kitaev, V., Synthesis of Size-Controlled Faceted Pentagonal Silver Nanorods with Tunable Plasmonic Properties and Self-Assembly of These Nanorods. ACS Nano 2008,3, (1),21-26.
    12. Harfenist, S. A.; Wang, Z. L.; Whetten, R. L.; Vezmar, I.; Alvarez, M. M., Three-Dimensional Hexagonal Close-Packed Superlattice of Passivated Ag
    Nanocrystals. Adv. Mater.1997,9, (10),817-822. 13. Ming, T.; Kou, X.; Chen, H.; Wang, T.; Tam, H.-L.; Cheah, K.-W.; Chen, J.-Y.; Wang, J., Ordered Gold Nanostructure Assemblies Formed By Droplet Evaporation. Angew. Chem. Int. Ed.2008,47, (50),9685-9690.
    14. Chang, C.-C.; Wu, H.-L.; Kuo, C.-H.; Huang, M. H., Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures. Chem. Mater.2008,20, (24),7570-7574.
    15. Niu, W.; Zheng, S.; Wang, D.; Liu, X.; Li, H.; Han, S.; Chen, J.; Tang, Z.; Xu, G., Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals. J. Am. Chem. Soc.2008,131, (2),697-703.
    16. Nishida, N.; Shibu, E. S.; Yao, H.; Oonishi, T.; Kimura, K.; Pradeep, T., Fluorescent Gold Nanoparticle Superlattices. Adv. Mater.2008,20, (24),4719-4723.
    17. Jana, N. R.; Gearheart, L. A.; Obare, S. O.; Johnson, C. J.; Edler, K. J.; Mann, S.; Murphy, C. J., Liquid Crystalline Assemblies of Ordered Gold Nanorods. J. Mater. Chem.2002,12, (10),2909-2912.
    18. Shen, X. S.; Wang, G. Z.; Hong, X.; Zhu, W., Simple-cubic microcubes assembled by palladium nanocubes. CrystEngComm 2009,11, (5),753-755.
    19. Zhang, L.; Wu, J.; Liao, H.; Hou, Y.; Gao, S., Octahedral Fe3O4 Nanoparticles and Their Assembled Structures. Chem. Comm.2009, (29),4378-4380.
    20. Song, Q.; Ding, Y.; Wang, Z. L.; Zhang, Z. J., Formation of Orientation-Ordered Superlattices of Magnetite Magnetic Nanocrystals from Shape-Segregated Self-Assemblies. J. Phys. Chem. B 2006,110, (50),25547-25550.
    21. Qi, H.; Chen, Q.; Wang, M.; Wen, M.; Xiong, J., Study of Self-Assembly of Octahedral Magnetite under an External Magnetic Field. J. Phys. Chem. C 2009,113, (40),17301-17305.
    22. Lu, W.; Liu, Q.; Sun, Z.; He, J.; Ezeolu, C.; Fang, J., Super Crystal Structures of Octahedral c-In2O3 Nanocrystals. J. Am. Chem. Soc.2008,130, (22),6983-6991.
    23. Xie, S.; Zhou, X.; Han, X.; Kuang, Q.; Jin, M.; Jiang, Y.; Xie, Z.; Zheng, L., Supercrystals from Crystallization of Octahedral MnO Nanocrystals. J. Phys. Chem. C 2009,113,(44),19107-19111.
    24. Talapin, D. V.; Shevchenko, E. V.; Kornowski, A.; Gaponik, N.; Haase, M.; Rogach, A. L.; Weller, H., A New Approach to Crystallization of CdSe Nanoparticles into Ordered Three-Dimensional Superlattices. Adv. Mater.2001,13, (24),1868-1871.
    25. Shevchenko, E.; Talapin, D.; Kornowski, A.; Wiekhorst, F.; Kotzler, J.; Haase, M.; Rogach, A.; Weller, H., Colloidal Crystals of Monodisperse FePt Nanoparticles Grown by a Three-Layer Technique of Controlled Oversaturation. Adv. Mater.2002,14, (4), 287-290.
    26. Lisiecki, I.; Turner, S.; Bals, S.; Pileni, M. P.; Tendeloo, G. V., The Remarkable and Intriguing Resistance to Oxidation of 2D Ordered hcp Co Nanocrystals. A New Intrinsic Property. Chem. Mater.2009,21, (12),2335-2338.
    27. Shevchenko, E. V.; Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H., Colloidal Synthesis and Self-Assembly of CoPt3 Nanocrystals. J. Am. Chem. Soc. 2002,124,(38),11480-11485.
    28. Liu, S.; Tang, Z., Nanoparticle Assemblies for Biological and Chemical Sensing. J. Mater. Chem.2010,20, (1),24-35.
    29. Tao, A.; Sinsermsuksakul, P.; Yang, P., Tunable Plasmonic Lattices of Silver Nanocrystals. Nat. Nanotechnol.2007,2, (7),435-440.
    30. Jiang, P.; Bertone, J. F.; Hwang, K. S.; Colvin, V. L., Single-Crystal Colloidal Multilayers of Controlled Thickness. Chem. Mater.1999,11, (8),2132-2140.
    31. Yang, S. M.; Ozin, G. A., Opal Chips:Vectorial Growth of Colloidal Crystal Patterns inside Silicon Wafers. Chem. Comm.2000, (24),2507-2508.
    32. Denkov, N.; Velev, O.; Kralchevski, P.; Ivanov, I.; Yoshimura, H.; Nagayama, K., Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates. Langmuir 1992,8, (12),3183-3190.
    33. Yang, P.; Deng, T.; Zhao, D.; Feng, P.; Pine, D.; Chmelka, B. F.; Whitesides, G. M.; Stucky, G. D., Hierarchically Ordered Oxides. Science 1998,282, (5397),2244-2246.
    34. Jiang, P.; Ostojic, G N.; Narat, R.; Mittleman, D. M.; Colvin, V. L., The Fabrication and Bandgap Engineering of Photonic Multilayers. Adv. Mater.2001,13, (6),389-393.
    35. Huang, J.; Fan, R.; Connor, S.; Yang, P., One-Step Patterning of Aligned Nanowire Arrays by Programmed Dip Coating 13. Angew. Chem. Int. Ed.2007,46, (14), 2414-2417.
    36. Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A., Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops. Nature 1997,389, (6653),827-829.
    37. Kim, E.; Xia, Y.; Whitesides, G. M., Polymer Microstructures Formed by Moulding in Capillaries. Nature 1995,376, (6541),581-584.
    38. Xia, Y.; Kim, E.; Zhao, X.-M.; Rogers, J. A.; Prentiss, M.; Whitesides, G. M., Complex Optical Surfaces Formed by Replica Molding Against Elastomeric Masters. Science 1996,273, (5273),347-349.
    39. Zhao, X.-M.; Xia, Y.; Whitesides, G. M., Fabrication of Three-Dimensional Micro-Structures:Microtransfer Molding. Adv. Mater.1996,8, (10),837-840.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700