光子晶体用纳米颗粒的制备改性自组装及其光学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体,是目前材料领域研究的热点。它是一种存在带隙的周期结构材料,这种材料具有独特的调节光子传播状态的功能,是目前信息功能材料的前沿领域。
     光子晶体的制备主要是通过两种或多种材料一定尺寸的周期性排布来实现的。采用一些精密加工的方法,如层层叠加(Layer-by-layer Method)蚀刻,已经可制备出在近红外波段的三维(3D)光子晶体。这些方法的缺点是设备昂贵,制备过程复杂。自组装法被认为是制备三维近红外、可见光及更短波段光子晶体最简单有效的方法。在已知的自组装单分散体系中,以SiO_2体系和聚苯乙烯(PS)体系最为成熟,通过严格控制反应条件可制备出符合光子晶体要求的单分散体系。
     由SiO_2胶体球自组装的光子晶体,虽然在近红外到可见光波段可以产生赝光子带隙,但是其存在两个缺点:一是介质的介电常数对比值小;二是介质微球排列不完整。后者导致光子晶体引入不可控的缺陷。高折射率材料(如ZnO、CdS和ZnS等)的引入,能增强光子晶体的介电参数反差,提高周期性介电函数的变化幅度。另外,提高用于自组装光子晶体的SiO_2微球的表面电荷,也可有效提高自组装的效果,减少不可控缺陷的产生。
     本论文主要研究了光子晶体用结构基元的制备方法,基元材料主要包括ZnO、CdS、ZnS半导体材料及SiO_2胶体材料。通过控制反应温度、反应物浓度及溶液pH值来控制ZnO颗粒的形貌。随后深入研究了不同形貌ZnO颗粒的微观结构特征,发现其微观结构具有共同特点。在此基础上,探索了ZnO纳米颗粒光致发光性能及其发光机理。
     本论文还通过用超声辅助湿化学法制备了球形形貌的CdS和ZnS纳米颗粒,研究了其晶体结构及其形貌特征,为以后作为光子晶体基元自组装光子晶体打下了基础并对超声辅助在合成中的作用机理作了一些探索研究。
     另外,本论文采用St(o|¨)ber法制备SiO_2颗粒,为了改善SiO_2颗粒自组装性能,提高其表面电荷,分别采用了电解质NaCl改进St(o|¨)ber法和表面包覆琥珀酸这两种方法来达到目的。最后,采用垂直沉积法制备了SiO_2蛋白石光子晶体,并对其光学性能做了研究。
     论文的主要工作成果如下:
     1)采用超声辅助法,通过改变反应温度、反应物浓度和溶液pH值,制备了圆锥形、哑铃形、球形、橄榄形、飞镖形和花形六种不同形貌的ZnO颗粒。以橄榄石ZnO颗粒为典型,系统研究了ZnO颗粒的微观结构。发现在ZnO颗粒中心区域为单晶结构,主要沿着{10(?)0}这组面生长,在其中心附近区域存在孪晶缺陷层,这层缺陷层决定了ZnO颗粒最终的形貌特征。随后ZnO颗粒将沿着[0001]方向生长变大,最后得到各种形貌的ZnO颗粒。通过对ZnO颗粒的微观结构分析,本论文提出了一种新的ZnO颗粒生长机制。随后,分析了反应温度、反应物浓度和溶液pH值对ZnO颗粒形貌的影响。最后,研究了不同形貌ZnO颗粒的光致发光性能,发现ZnO可见光波段的发光与ZnO中缺陷密切相关。
     2)采用超声辅助法,制备球形纳米CdS和ZnS颗粒。SEM测试表明所获得CdS和ZnS颗粒为球形,粒径范围在150-500nm,且CdS为六方纤锌矿结构,而ZnS为立方相结构。
     3)采用传统的St(o|¨)ber法制备了粒径范围在300-800nm内的,相对标准偏差小于5.0%的SiO_2胶体球。为改善SiO_2胶体球的自组装性能,对St(o|¨)ber法进行改进,在反应过程中加入电解质NaCl,以提高SiO_2胶体球的表面电荷。试验发现,电解质NaCl的加入能有效提高SiO_2胶体球的表面电荷,但其对颗粒大小有一定的影响。SiO_2胶体球表面Zeta电位由未改进前的48.7mV提高到56.6mV,而粒径由315nm增长到380nm。实验发现当电解质NaCl的加入量在一定范围内时,SiO_2胶体球的粒径随着NaCl量的增加而变大;当超出这个范围,SiO_2胶体球将出现双尺寸的现象。研究发现,NaCl的加入能改善SiO_2胶体球的自组装性能,减少缺陷在光子晶体内出现点几率。另外,SiO_2光子晶体的光学性能与其粒径有直接关系。
     4)采用有机物表面改性的方法对SiO_2胶体球进行改性,是另一种可有效提高SiO_2胶体球表面电荷的方法。实验中,采用琥珀酸作为改性剂,用乙腈作为溶剂,通过酯化反应,使琥珀酸一端的羧酸基团与SiO_2胶体球表面自带的不饱和羟基键相互反应,从而使琥珀酸键合到SiO_2胶体球表面。测试表明,经过表面改性后,SiO_2胶体球的表面电荷有明显提高,自组装的性能也显著改善。
     5)探索性地制备了CdS@SiO_2核壳微球,以用于光子晶体的自组装。本实验试图将CdS用化学沉积的方式沉积到SiO_2胶体球表面。实验结果显示,CdS虽然在SiO_2胶体球表面有一定的沉积,但是沉积的量非常有限,并未达到实验设计的致密均匀要求。
Photonic crystal material is one of the hotspots in material research. It is a kind of materials with regular periodicity of dielectric structures, which has the ability to manipulate, confine, and control light. So photonic crystal becomes the frontier of functional materials.
     The method to prepare photonic crystal is to arrange in order using two or more different materials with uniform morphology. The 3D photonic crystal with near-infrared region forbidden band-gap has already been fabricated by Precision Process, such as layer-by-layer etch. The defects of this method is expensive and complex systems. Self-assemby method is an easy way to fabricate photonic crystal with near-infrared or shorter wave regioin photonic band-gap. As we know, SiO_2 particles and polystyrene particles which meet the requirements of photonic crystal are easy to be prepared under reaction condition control.
     The photonic crystal assembled by SiO_2 particles possesses the near-infrared and visible region photonic band-gap, but there are two defects. One is that the relative value of dielectric constant contrasted with medium is small, another is unperfect arrangement of SiO_2 particles which result in accident defect. The materials with high refractive index, such as ZnO, CdS and ZnS, possess high relative value of dielectric constant and widen the range of periodicity Dielectric function. Additionally, enhancement the surface charge of SiO_2 particles assembled for photonic crystal is a effective way to reduce the accident defects in the photonic crystal.
     The thesis worked on the preparation of structure unit which was used to self-assemble photonic crystal. The unit contained ZnO, CdS, ZnS and SiO_2 particles. The morphology of ZnO particles was controlled by the reaction temperature, the reactant concentration and the pH value. The deep research indicated the mico-structure feature of ZnO particles with various morphology possessed the same structure. On this basis, the photoluminescence property and the mechanism were researched.
     The thesis worked on the preparation of spherical CdS and ZnS particles by wet chemical synthesization assisted by ultrasonic, too. The crystal structures and morphologies were researched. And the effect of ultrasonic during synthesization was researched.
     Additionally, we prepared SiO_2 particles by Stober method and modified this method by electrolyte NaCl to enhance the surface charge, which improved the property of self-assembly SiO_2 particles. And another method, surface modification by succinic acid, was used again for the same purpose. Finally, the SiO_2 opal photonic crystal was fabricated by vertical deposition method and the optical properties were researched.
     The results were listed:
     1) The various morphologies ZnO particles, including taper-like, dumbbell-like, spherical, rugby-like, dart-like and flower-like, were prepared by control of reaction temperature, reactant concentration and pH value by wet chemical synthesization assisted by ultrasonic. As research model, the micro-structure of rugby-like ZnO particles were researched. We found out that the single crystal structure was created in the center of ZnO particles, a great number of micro-twins were formed around the center, and polycrystal was formed on the fringe. The defect layers was the key of morphology of ZnO particles and then ZnO particles grew along [0001] direction. Base on the structure research, we suggested a new mechanism on the preparation of ZnO particles. And then the effects of temperature, pH value and reatant concentration were researched. At last, the photoluminescence property of ZnO particles was researched and we found out that the defects was the key of photoluminescence property of ZnO particles.
     2) The spherical CdS and ZnS particles were prepared by chemical synthesization assisted by ultrasonic. SEM images showed that the morphologies of CdS and ZnS particles were spherical and the sizes ranged from 150-500 nm. XRD test indicated that CdS particles possessed wurtzite structure of the six-party. Otherwise, ZnS particles possessed cubic structure.
     3) SiO_2 particles were prepared by St(o|¨)ber method, which the sizes ranged from 300-800 nm and The relative standard deviation was less than 5%. In order to improve self-assembly ability, the traditional St(o|¨)ber method was modified. The tlectrolyte NaCl was added during process to enhance the surface charge of SiO_2 particles. We found out that the surface charge of SiO_2 particles were enhanced after NaCl had been added. Moreover, the size of SiO_2 particles is larger. Zeta potential of SiO_2 particles enchanced from 48.7 mV to 56.6 mV, and the size become large from 315 nm to 380 nm. When the quantity of NaCl added is in a certain range, the size of SiO_2 particles become large with NaCl added. However, beyond the scope of this, double-size SiO_2 particles happened. Research showed that there was no effect to optical properties of photonic crystal assembled by SiO_2 particles modified by NaCl. Additionally, the optical properties were only effected by the size of SiO_2 parcles.
     4) In order to enhance surface charge of SiO_2 particles, they were modified by Organic. Succinic acid was modifier and acetonitrile was solvent. One carboxyl of the succinic acid reacted with the -OH on the surface of the SiO_2 particles and the product is carboxylate. Zeta potential proved that the surface charge of SiO_2 particles was enhanced after they had been modified.
     5) We attempted to prepare CdS@SiO_2 nucleus-shell particles by chemical deposition. Results showed that a little CdS deposited on the surface of SiO_2 particles, but the quantity is very small.
引文
[1]国家发改委经济运行局.中国电子工业运行分析及2007年预测趋势[J].财经界,2007,(6):26-27.
    [2]赵春柳,葛春风,丁镭,et al.新兴光子器件--Interleaver[J].光通信技术,2002,26(4):18-21.
    [3]E.Yablonovitch.Inhibited Spontaneous Emission in Solid-State Physics and Electronics[J].Phys.Rev.Lett.,1987,58:2059-2062.
    [4]S.John.Strong loecalization of photons in certain disordered dielectric superlattices[J].Phys.Rev.Lett.,1987,58:2486-2489.
    [5]S.Noda,K.Tomoda,N.Yamamoto,et al.Full Three-dimensional Photonic Bandgap Crystals at Near-infrared Wavelengths[J].Science,2000,289:604-606.
    [6]M.H.Qi,E.Lidorikis,P.T.Rakich,et al.A Three-dimensional Optical Photonic Crystal with Designed Point Defects[J].Nature,2004,429:538-542.
    [7]S.Y.Lin,J.G.Fleming,D.L.Hetherington,et al.A Three-dimensional Photonic Crystal Operating at Infrared Wavelengths[J].Nature,1998,394:251-253.
    [8]韩喻,谢凯.三维光子晶体及其制备技术研究进展[J].材料导报,2007,21(5):4-13.
    [9]李燕,谢娟,邓宏,et al.光子晶体的研究进展[J].材料导报,2006,20(2):10-12.
    [10]张蜡宝,熊予莹,费贤翔,et al.光半导体--光子晶体[J].大学物理,2006,25(4):49-53.
    [11]K.M.Ho,C.T.Chan,C.M.Soukoulis.Existence of a Photonic Gap in Periodic Dielectric Structures[J].Phys.Rev.Lett.,1990,65(25):3152-3155.
    [12]E.Yablonovitch,T.J.Gmitter.Photonic band structure:The face-centered-cubic case employing nonspherical atoms[J].Phys.Rev.Lett.,1991,67(17):2295-2298.
    [13]E.(o|¨)zbay,E.Michel,G.Tuttle,et al.Micromachined millimeter-wave photonic band-gap crystals[J].Appl.Phys.Lett.,1994,64(16):2059-2061.
    [14]G.M.Whitesides,M.Boncheva,M.Beyond.Self-assembly of mesoscopic and macroscopic components[J].P.N.A.S.,2002,99(8):4769-4774.
    [15]G.M.Whitesides,B.Grzybowski.Self-assmebly at all scales[J].Science,2002,295(5564):2418-2421.
    [16]A.Moroz,C.Sommers.Photonic band gaps of three-dimensional face-centred cubic lattices[J].J.Phys.Condens.Matter,1999,11:997-1008.
    [17]郭红霞,范吉军,赵晓鹏.光子晶体及其制备方法研究进展[J].功能材料,2003,34(1):5-8.
    [18]何耀洪,谢重木.宽禁带半导体材料特性及生长技术[J].半导体杂志,1999,24(4):31-39.
    [19]A.Mekis,J.C.Chen,I.Kurland.High Transmission through Sharp Bends in Photonic Crystal Waveguides[J].Phys.Rev.Lett.,1996,77(18):3787-3790.
    [20]J.D.Joannopoulos,P.R.Villeneuve,S.Fan.Photonic crystals:putting a new twist on light[J].Nature,1997,386(6621):143-149.
    [21]E.R.Brown,O.B.McMahon.High zenithal directivity from a dipole antenna on a photonic crystal[J].Appl.Phys.Lett.,1996,68(9):1300-1302.
    [22]D.Kim,C.Cho,Y.Roh,et al.Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns[J].Appl.Phys.Lett.,2005,87:203508-203511.
    [23]M.Meier,A.Mekis,A.Dodabalapur,et al.Laser action from two-dimensional distributed feedback in photonic crystals[J].Appl.Phys.Lett.,1999,74(1):7-9.
    [24]R.F.Cregan,B.J.Mangan,J.C.Knight,et al.Single-mode photonic band gap guidance of light in air[J].Science,1999,285:1537-1539.
    [25]M.Campbell,D.N.Sharp,M.T.Harrison,et al.Fabrication of photonic crystals for the visible spectrum by holographic lithography[J].Nature,2000,6773(404):53-56.
    [26]张道中.光子晶体[J].物理,1994,23:141-147.
    [27]E.Yablonovitch,T.J.Gmitter.Photonic band structure:the face-centered-cubic case[J].Phys.Rev.Lett.,1989,63:1950-1953.
    [28]S.G.Johnson,J.D.Joannopoulos.Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap[J].Appl.Phys. Lett.,2000,77(21):3490-3492.
    [29]J.Martorell,N.M.Lavancly.Observation of inhibited spontaneous emission in a periodic dielectric structure[J].Phys.Rev.Lett.,1990,65(15):1877-1880.
    [30]E.M.Purcell,H.C.Torrey,R.V.Pound.Resonance Absorption by Nuclear Magnetic Moments in a Solid[J].Phys.Rev.,1946,69:37-38.
    [31]E.Yablonovitch.Photonic band-gap structures[J].Journal of optical society of American B,1993,10:283-285.
    [32]A.R.Parker,V.L.Welch,D.Driver,et al.Structural color opal analogue discovered in weevil[J].Nature,2003,426:786-789.
    [33]L.P.Biro,Z.Balint,K.Kertesz,et al.Role of photonic-crystal-type structures in the thermal regulation of a lycaenid butterfly sister species pair [J].Phys.Rev.E.,2003,67:1-5.
    [34]M.A.V.Eijkelenborg,A.Argyros,S.D.Jackson.Microstructured polymer optical fibre laser[J].Opt.Lett.,2004,29(16):1882-1884.
    [35]M.C.J.Large,S.Ponrathnam,A.Argyros.Solution doping of microstructured polymer optical fibres[J].Opt.Express,2004,12(9):1966-1971.
    [36]武东升,顾培夫,刘旭,等.一维光子晶体及其应用[J].激光与光电子学进展,2001,(12):1-6.
    [37]马小涛,郑婉华,任刚,等.感应耦合等离子体刻蚀InP/InGaAsP二维光子晶体结构的研究[J].物理学报,2007,56(2):977-981.
    [38]汪静丽,陈鹤鸣.二维棋盘格子复式晶格的完全光子带隙研究[J].物理学报,2007,56(2):922-926.
    [39]E.(O|¨)zbay,B.Temelkuran,G.Tuttle,et al.Defect structures in metallic photonic crystals[J].Appl.Phys.Lett.,1996,69:3797-3799.
    [40]J.G.Fleming,S.Y.Lin.Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 mm[J].Opt.Lett.,1999,24(1):49-51.
    [41]潘传鹏,周明,刘立鹏.光子晶体的制备及其应用[J].激光与光电子进展,2004,41(12):42-47.
    [42]C.B.Murray,C.R.Kagan,M.G.Bawendi.Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices[J].Science,1995,270:1355-1358.
    [43]G.M.Whitesides,J.P.Mathias,C.T.Seto.Molecular self-assembly and nanochemistry:a chemical strategy for the synthesis of nanostructures[J].Science,1991,254:1312-1315.
    [44]汪静,袁春伟,唐芳琼.高质量胶体晶体的快速制备及表征[J].物理学报,2004,53(9):3054-3058.
    [45]丛海林,曹维孝.胶体晶体中的两种排列方式及堆积模式[J].高等学校化学学报,2003,24(8):1489-1491.
    [46]H.Y.Ko,H.W.Lee,J.Moon.Fabrication of colloidal self-assembled monolayer(SAM) using monodisperse silica and its use as lithographic mask [J].Thin Solid Films,2004,447:638-644.
    [47]Y.A.Vlasov,X.Z.Bo,J.C.Sturm.On-chip natural assembly of silicon photonic bandgap crystals[J].Nature,2001,53(1):58-61.
    [48]M.Holgado,A.Blanco,M.Ibisate.Electrophoretic deposition to control artificial opal growth[J].Langmuir,1999,15:4701-4704.
    [49]L.Xu,W.Zhou,M.E.Kozlov,et al.Metal Sphere Photonic Crystals by Nanomolding[J].J.Am.Chem.Soc.,2001,123(4):763-764.
    [50]M.Aloshyna,S.Sivakumar,M.Venkataramanan,et al.Significant Suppression of Spontaneous Emission in SiO_2 Photonic Crystals Made with Tb3+-Doped LaF3 Nanoparticles[J].J.Phys.Chem.C,2007,111(10):4047-4051.
    [51]V.Berger,O.Gauthier-Lafaye,E.Costard.Photonic band gaps and holography[J].J.Appl.Phys.,1997,82(1):60-64.
    [52]N.D.Sharp,M.Campbell,R.E.Dedman,et al.Photonic crystal for the visible spectrum by holographic lithography[J].Optical and Quantum Electronics,2002,34(1):3-12.
    [53]T.Kondo,S.Matsuo,S.Juodkazis,et al.Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals[J].Appl.Phys.Lett.,2001,79(6):725-727.
    [54]V.Y.Miklyaev,C.D.Meisel,A.Blanco,et al.Three-dimensional face-centered-cubic photonic crystal templates by laser holography:fabrication,optical characterization,and band-structure calculations[J].Appl.Phys.Lett.,2003,82(8):1284-1286.
    [55]S.Y.Lin,V.M.Hietala,L.Wang,et al.Highly dispersive photonic band gap prism[J].Opt.Lett.,1996,21(21):1771-1773.
    [56]S.Enoch,G.Tayeb,D.Maystre.Numerical evidence of ultrarefractive optics in photonic crystals[J].Opt.Commun,1999,161:171-176.
    [57]H.Kosaka,T.Kawashima,A.Tomita,et al.Superprism phenomena in photonic crystals[J].Phys.Rev.B,1998,58(16):R10096-R10099.
    [58]J.B.Pendry.Negative Refraction Makes a Perfect Lens[J].Phys.Rev.Lett.,2000,85(18):3966-3969.
    [59]张瑞君,邓海丽.光子晶体与光子晶体无源器件[J].纳米器件与技术,2004.7:15-19.
    [60]S.Gupta,G.Tuttle,M.Sigalas,et al.Infrared filters using metallic photonic band gap structures on flexible substrates[J].Appl.Phys.Lett.,1997,71(17):2412-2414.
    [61]S.Noda,A.Chutinan,M.Imada.Trapping and emission of photons by a single defect in a photonic bandgap structure[J].Nature,2000,407:608-610.
    [62]K.B.Chung,S.W.Hong.Wavelength demultiplexers based on the superprism phenomena in photonic crystals[J].Appl.Phys.Lett.,2002,81(9):1549-1551.
    [63]H.B.Lee,B.J.Eom,J.Kim,et al.photonic crystal fiber-coupler[J].Opt.Lett.,2002,27(10):812-814.
    [64]S.Fan,P.Villeneuve,J.D.Joannopoulos.High extraction efficiency of spontaneous emission from slabs of photonic crystals[J].Phys.Rev.Lett.,1997,78(17):3294-3297.
    [65]M.Boroditsky,T.F.Krauss,R.Coccioli.Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals[J].Appl.Phys.Lett.,1999,75(8):1036-1038.
    [66]A.Fehrembach,S.Enoch,A.Sentenac.Highly directive light sources using two-dimensional photonic crystal slabs[J].Appl.Phys.Lett.,2001,79(26):4280-4282.
    [67]J.C.Knight,T.A.Birks,P.S.Russell,et al.All-silica single-mode optical fiber with photonic crystal cladding:errata[J].Opt.Lett.,1997,22(7):484-485.
    [68]T.Aoki,Y.Hatanaka,D.C.Look.ZnO diode fabricated by excimer-laser doping[J].appl.Phys.Lett.,2000,76:3257-3279.
    [69]S.Choopun,R.D.Vispute,W.Noch,et al.Oxygen pressure-tuned epitaxy and optoelctronic properties of laser deposited ZnO films on sapphire[J].Appl.Phys.Lett.,1999,75:3947-3949.
    [70]H.J.Ko,Y.F.Chen,S.K.Hong,et al.MBE growth of high-quality ZnO films on eip-GaN[J].J.Crystal Growth,2000,209:816-820.
    [71]R.Konenkamp,K.Boedecker,M.C.Lux-Steiner,et al.Thin film semiconductor deposition on free standing ZnO columns[J].Appl.Phys.Lett.,2000,76:2575-2577.
    [72]Y.Li,G.W.Meng,L.D.Zhang,et al.Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties[J].Appl.Phys.Lett.,2000,76:2011-2013.
    [73]Z.W.Pan,Z.R.Dai,Z.L.Wang.Nanobelts of semiconducting oxides[J].Science,2001,291:1947-1949.
    [74]M.H.Huang,Y.Y.Wu,H.Feick,et al.Catalytic growth of zinc oxide nanowires by vapor transport[J].Adv.Mater.,2001,13:113-116.
    [75]H.Zhang,D.Yang,X.Ma,et al.Arrays of ZnO nanowires fabricated by a simple chemical soluiton route[J].Nanotechnology,2004,15:622-626.
    [76]J.Q.Hu,Y.Bando.Growth and optical properties of single-crystal tubular ZnO whisers[J].Appl.Phys.Lett.,2003,82:1401-1403.
    [77]X.Y.Kong,Z.L.Wang.Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes,nanosprings,and nanospirals[J].Appl.Phys.Lett.,2004,84:975-977.
    [78]W.I.Park,D.H.Kim,S.W.Jung,et al.Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods[J].Chem.Mater.,2002,13(10):172-177.
    [79]H.M.Manasevit.Single-crystal gallium arsenide on insulating substrates[J].Appl.Phys.Lett.,1986,12:156-158.
    [80]V.L.Colvin,M.C.Schlamp,A.P.Alivisatos.Light emittingdiodes made from cadmium selenide nanocrystals and a semiconduction polymer[J].Nature,1994,370:354-357.
    [81]柳闽生,杨迈之,余祯.半导体纳米粒子的基本性质及光电化学特性[J].化学通报,1997,(1):20-24.
    [82]王相田,胡黎明,顾达.超细颗粒分散过程分析[J].化学通报,1995,(5):13-17.
    [83]舒磊,俞书宏,钱逸泰.半导体硫化物纳米微粒的制备[J].无机化学学报,1999,15(1):1-7.
    [84]Y.Qian,Y.Su,Y.Xie,et al.Hydrothermal preparation and characterization of nanocrystalline powder of sphalerite[J].Mater.Res.Bull.,1995,30(5):601-605.
    [85]G.Kolbe.Das Komlexchemische Verhalten der Kieselsaure[M].Dissertation Jena,1956.
    [86]W.St(o|¨)ber,A.Fink.Controlled growth of monodisperse silica spheres in the micron size range[J].J.Colloid.Interface.Sci.,1968,26:62-69.
    [87]陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社,2001.
    [88]王光信,陈宗淇.均分散胶体的研究--V.锆化合物均分散颗粒的制备[J].物理化学学报,1993,9(6):815-818.
    [89]H.Dislich.New Routes to Multicomponent Oxide Glasses[J].Angew Chem.Int.Ed.Engl.,1971,10(6):363-369.
    [90]S.L.Chen,P.Dong,G.H.Yang.Kinetics of formation of monodisperse colloidal silica particles through the hydrolysis and condensation of tetraethylorthosilicate[J].Ind.Eng.Chem.Res.,1996,35:4487-4493.
    [91]S.L.Chen,P.Dong,G.H.Yang.Characteristic aspects of formation of new particles during the growth of monosize silica seeds[J].J.Colloid.Interface.Sci.,1996,180:237-241.
    [92]S.L.Chen,P.Dong,G.H.Yang.The size dependence of growth rate of monodisperse silica particles from tetraalkoxysilane[J].J.Colloid.Interface.Sci.,1997,189:268-272.
    [93]D.Y.Zhao,J.L.Feng,Q.S.Huo.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J].Science,1998,279:548-552.
    [94]H.Miguez,F.Meseguer,C.Lopez.Evidence of fcc crystallization of SiO_2nanospheres[J].Langmuir,1997,13:6009-6011.
    [95]C.Lopez,L.Vazquez,F.Mesequer.Photonic crystal made by close packing SiO_2 submicron spheres[J].Superlattices and Microstructures,1997,22: 399-404.
    [96]P.G.Ni,P.Dong,B.Y.Cheng.Sythetic SiO_2 opals[J].Adv.Mater.,2001,13:437-441.
    [97]E.G.Judith,J.Wijnhoven,V.L.Willem.Preparation of photonic crystals made of air spheres in titania[J].Science,1998,281:802-804.
    [98]D.Kang,N.A.Clark.Fast growth of silica colloidal crystals[J].Journal of the Korean Physical Society,2002,41:817-819.
    [99]V.M.Shelekhina,O.A.Prokhorov,P.A.Vityaz.Towards 3D photonic crystals[J].Synthetic Metals,2001,124:137-139.
    [100]B.Gates,Y.N.Xia.Fabrication and characterization of chirped 3D photonic crystals[J].Adv.Mater.,2000,12:1329-1332.
    [101]Z.Z.Gu,A.Fujishima,O.Sato.Fabrication of high-quality opal films with controllable thickness[J].Chem.Mater.,2002,14:760-765.
    [102]P.Jiang,J.F.Bertone,K.S.Hwang.Single-crystal colloidal multilayers of controlled thickness[J].Chem.Mater.,1999,11:2132-2140.
    [103]R.C.Hayward,D.A.Saville,I.A.Aksay.Electrophoretic assembly of colloidal crystals with optically tunable micropatterns[J].Nature,2000,15:4701-4703.
    [104]X.L.Xu,S.A.Majetich,S.A.Asher.Mesoscopic monodisperse ferromagnetic colloids enable magnetically controlled photonic crystal[J].J.Am.Chem.Soc.,2002,124:13864-13868.
    [105]A.Cabanas,E.Enciso,M.C.Carbajo.Synthesis of SiO_2-Aerogel Inverse Opals in Supercritical Carbon Dioxide[J].Chem.Mater.,2005,17(24):6137-6145.
    [106]Y.H.Ye,T.S.Mayer,I.C.Khoo,et al.Self-assembly of three-dimensional photonic-crystals with air-core line defects[J].J.Mater.Chem.,2002,12:3637-3639.
    [107]张琦,孟庆波,张道中.大直径聚苯乙烯小球自组织方法制备高质量opal 晶体[J].物理学报,2004,53(1):58-61.
    [108]F.G.Santanria,C.Lopez,F.Meseguer.Opal-like photonic crystal with diamond lattice[J].Appl.Phys.Lett.,2001,79:2309-2311.
    [109]F.G.Santanria,H.T.Miyazaki,A.Urquia.Nanorobotic manipulation of microspheres for on-chip diamond architectures[J].Adv.Mater.,2002,14: 1144-1147.
    [110]R.Biswas,M.M.Sigalas,G.Subramania.Photonic band gaps in colloidal systems[J].Phys.Rev.B.,1998,57:3701-3704.
    [111]K.Busch,S.John.Photonic band gap formation in certain self-organizing systems[J].Phys.Rev.E.,1998,58:3896-3908.
    [112]A.Blanco,E.Chomski,S.Grabtchak.CdS photoluminescence inhibition by a photonie structure[J].Appl.Phys.Lett.,1998,73:1781-1783.
    [113]V.G.Golubev,V.Y.Davydov,N.F.Kartenko.Phase transition-governed opal-VO2 photonic crystal[J].Appl.Phys.Lett.,2001,79:2127-2129.
    [114]R.Torrecillas,A.Blanco,M.E.Brito.Microstructural study of CdS/opal composites[J].Act.Mater.,2000,48:4653-4657.
    [115]B.Li,J.Zhou,L.T.Li.Ferroelectrie inverse opals with electrically tunable photonic band gap[J].Appl.Phys.Lett.,2003,83:4704-4706.
    [116]胡行方,快素兰,于云.大面积3D有序介孔二氧化钛薄膜光子晶体制备与性能研究[J].无机材料学报,2005,20(6):1463-1466.
    [117]Z.Z.Gu,S.Kubo,W.P.Qian.Varying the optical stop band of a three-dimensional photonic crystal by refractive index control[J].Langmuir,2001,17:6751-6753.
    [118]Q.B.Meng,Z.Z.Gu,O.Sato.Fabrication of highly ordered porous structures[J].Appl.Phys.Lett.,2000,77:4313-4315.
    [119]A.Blanco,E.Chomski,S.Grabtchak,et al.Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5micrometres[J].Nature,2000,405:437-440.
    [120]C.H.Tan,G.H.Fan,T.M.Zhou,et al.Preparation of InP- SiO_2 3D photonic crystals[J].Physica B:Condensed Matter(Amsterdam),2005,363:1-6.
    [121]M.Scharrer,X.Wu,A.Yamilov,et al.Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition[J].Appl.Phys.Lett.,2005,86(151113-151115):
    [122]T.Sumida,Y.Wada,T.Kitamura,et al.Macroporous ZnO films electrochemically prepared by templateing of opal films[J].Chem.Lett.,2001,30:38-39.
    [123]R.B.Wehrspohn,J.Schilling.Electrochemically prepared pore arrays for photonic-crystal applications[J].Mrs Bulletin,2001,26:623-626.
    [124]K.K.Mendu,J.Shi,Y.F.Lu,et al.Fabrication of multi-layered inverse opals using laser-assisted imprinting[J].Nanotechnology,2005,16:1965-1968.
    [125]A.A.Zakhidov,R.H.Baughman,Z.Iqbal,et al.Carbon structures with three-dimensional periodicity at optical wavelengths[J].Science,1998,282:897-890.
    [126]B.T.Holland,C.F.Blanford,A.Stein.Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids[J].Science,1998,281:538-540.
    [127]A.Rugge,J.S.Park,R.G.Gordon,et al.Tantalum(V) nitride inverse opals as photonic structures for visible wavelengths[J].J.Phys.Chem.B,2005,109:3764-3771.
    [128]M.Deutsch,Y.A.Vlasov,D.J.Norris.Conjugated-polymer photonic crystals[J].Adv.Mater.,2000,12:1176-1180.
    [129]O.D.Velev,P.M.Tessier,A.M.Lenhoff,et al.A class of porous metallic nanostructures[J].Nature,1999,401:458-460.
    [130]G.V.Freymann,S.John,M.S.Dobrick,et al.Tungsten inverse opals:influence of absorption on the photonic band structure in the visible spectral region[J].Appl.Phys.Lett.,2004,84(224-226):
    [131]Y.A.Vlasov,N.Yao,D.J.Norris.Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots[J].Adv.Mater.,1999,11:165-169.
    [132]Y.N.Xia,B.Gates,Y.Yin,et al.Monodispersed colloidal spheres:old materials with new applications[J].Adv.Mater.,2000,12:693-713.
    [133]A.Stein.Sphere templating methods for periodic porous solids[J].Microprous and Mesoporous Materials,2001,44-45:227-239.
    [134]杨南如.无机非金属材料测试[M].武汉:武汉工业大学出版社,1993:1-16.
    [135]吴瑾光.近代傅里叶变换红外光谱技术及应用[M].北京:科学技术文献出版社,1994:54-100.
    [136]杜学礼,潘子昂.扫描电子显微镜分析技术[M].北京:化学工业出版社,1986:1-22.
    [137]刘海兴.毛细管电泳在药物分析及物化常数测定中应用[D].保定:河北 大学,2001.
    [138]黄新民.材料分析测试方法[M].北京:国防工业出版社,2006:198-206.
    [139]K.M.Leung,Y.F.Liu.Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media[J].Phys.Rev.Lett.,1990,65:2646-2649.
    [140]Z.Zhang,S.Satpathy,M.R.Salehpour.Electromagnetic wave propagation in periodic structures:Bloch wave solution of Maxwell's equation[J].Phys.Rev.Lett.,1990,65:2650-2653.
    [141]Z.Y.Li,J.Wang,B.Y.Gu.Creation of partial band gaps in anisotropic photonic-band-gap structures[J].Phys.Rev.B,1998,58:3721-3729.
    [142]Y.N.Xia,B.Gates,Z.Y.Li.Self-assembly approach to three-dimensional photonic crystals[J].Adv.Mater.,2001,13:409-413.
    [143]N.Eradat,A.Y.Sivachenko,M.E.Raikh,et al.Evidence for braggoriton excitations in opal photonic crystals infiltrated with highly polarizable dyes [J].Appl.Phys.Lett.,2002,80:3491-3493.
    [144]Y.I.Alivov,E.V.Kalinina,A.E.Cherenkov,et al.Fabrication and characterization of n-Zno/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates[J].Appl.Phys.Lett.,2003,83:4719-4721.
    [145]A.Tsukazaki,A.Ohtomo,T.Onuma,et al.Repeated temperature modulation epitaxy for p-type doping and light-emitting diodes[J].Appl.Phys.Lett.,2005,86:222101-222103.
    [146]周利民,王一平,黄群武,等.不同形貌ZnO纳米/微米晶粒的制备与光学特性[J].过程工程学报,2008,8(2):389-393.
    [147]陈庆春.D-山梨醇和n(OH~-)/n(Zn~(2+))对氧化锌形貌的影响[J].精细化工,2005,22(4):253-255.
    [148]X.Gao,X.Li,W.Yu.Flowerlike ZnO Nanostructures via Hexamethylenetetramine-Assisted Thermolysis of Zinc-Ethylenediamine Complex[J].J.Phys.Chem.B,2005,109(3):1155-1161.
    [149]郝彦忠,崔玥.花状氧化锌的制备及光电性能的研究[J].功能材料,2008,39(1):83-85.
    [150]张艳辉,田彦文,邵忠财,et al.不同离子对氧化锌晶体形貌的影响[J].东北大学学报,2006,27(6):673-676.
    [151]J.R.Wang,Z.Z.Ye,J.Y.Huang,et al.ZnMgO nanorod arrays grown by metal-organic chemical vapor deposition[J].mater,lett.,2008,62(8-9):1263-1266.
    [152]王晓宇,周建新,洪建明,等.化锌叶片状纳米晶的结构和光谱特性[J].光散射学报,2006,18(4):374-378.
    [153]R.G.xie,D.Li,H.Zhang,et al.Low-Temperature Growth of Uniform ZnO Particles with Controllable Ellipsoidal Morphologies and Characteristic Luminescence Patterns[J].J.Phys.Chem.B,2006,110(39):19147-19153.
    [154]K.Vanheusden,C.H.Seager,W.L.Warrmen.Correlation between photoluminescence and oxygen vacancies in ZnO phosphors[J].J.Appl.Phys.Lett.,1996,68(3):403-405.
    [155]K.Vanheusden,W.L.Warren,C.H.Seager.Mechanism behind green photoluminescence in ZnO phosphor powders[J].J.Appl.Phys.Lett.,1996,79(3):7983-7990.
    [156]B.J.Jin,S.Y.Lee.Violet and UV luminescence emitted from ZnO thin films grown on by pulsed laser deposition[J].Thin Solid Films,2000,366(1-2):107-110.
    [157]T.Minami,H.Nanto,S.Takata.UV emission from sputtered zinc oxide thin films[J].Thin Solid Films,1983,109(4):379-384.
    [158]林碧霞,傅竹西,贾云波.非掺杂ZnO薄膜中紫外与绿色发光中心[J].物理学报,2001,50(11):2208-2211.
    [159]G.D.Mahan.Intrinsic defects in ZnO varistors[J].J.Appl.Phys.Lett.,1983,54(7):3825-3832.
    [160]M.Liu,A.H.Kitai,P.Mascher.Point defects and luminescence centers in zinc oxide and zinc oxide doped with manganese[J].J.Luminescence,1992,54(1):35-42.
    [161]C.X.Guo,Z.X.Fu,.C.S.Shi.Ultraviolet Super-Radiation Luminescence of Sputtering ZnO Film Under Cathode-Ray Excitation at Room Temperature[J].J.Chin.Phys.Lett.,1999,16(2):146-148.
    [162]B.J.Jin,S.Im,S.Y.Lee.Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition[J].Thin Solid Films,2000,366(1-2):107-110.
    [163]李廷盛,尹其光.超声化学[M].北京:科学出版社,1995:38-39.
    [164]李玲,龚克成.超声波在纳米材料合成中的应用[J].材料导报,1998,12 (4):18-19.
    [165]Y.Didenko,K.S.Suslick.Photons,radicals,and ions from a single bubble:an energy inventory during cavitation[J].Nature,2002,418:394-397.
    [166]W.B.McNamara,Y.Didenko,K.S.Suslick.Sonoluminescence temperatures during multibubble cavitation[J].Nature,1999,401:772-775.
    [167]K.S.Suslick.The chemical effects of ultrasound[J].Sci.Am.,1989,260(2):80-86.
    [168]K.S.Suslick,Y.Didenko,M.M.fang.Acoustic cavitation and its chemical con-sequences[J].Phil.Trans.Roy.Soc.A,1999,357(335-353):
    [169]K.S.Suslick,G.Price.Applications of ultrasound to materials chemistry[J].Annu.Rev.Mater.Sci.,1999,2:295-326.
    [170]Z.B.Lei,J.M.Li,Y.G.Zhang.Fabrication and characterization of highly-ordered periodic macroporous barium titanate by the sol-gel method [J].J.Mater.Chem.,2000,20:2629-2631.
    [171]G.H.Bogush,C.F.Zukoski.Uniform silica particle precipitation:an aggregative growth model[J].J.Colloid.Interface.Sci.,1991,142:19-34.
    [172]T.Matsoukas,E.Gulari.Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetraethyl orthosilicate[J].J.Colloid.Interface.Sci.,1988,124(1):252-261.
    [173]赵丽,余家国,程蓓.单分散二氧化硅球形颗粒的制备与形成机理[J].化学学报,2003,61(4):562-565.
    [174]A.S.Sinitskii,Y.D.Tretyakov,A.V.Knolko.Silica photonic crystals:synthesis and optical properties[J].Solid State Ionics,2004,172:477-479.
    [175]W.Wang,B.H.Gu,L.Y.Liang.Fabrication of near-infrared photonic crystals using highly monodisperse submicrometer SiO2 spheres[J].J.Phys.Chem.B.,2003,107:12113-12117.
    [176]W.Wang,B.H.Gu,L.Y.Liang.Fabrication of two- and three-dimensional silica nanocolloidal particle arrays[J].J.Phys.Chem.B.,2003,107:3400-3404.
    [177]K.Yoshinaga,C.Chiyoda,H.Ishiki.Colloidal crystallization of monodisperse and polymer-modified colloidal silica in organic solvents[J].Colloid Surface A,2002,204:285-293.
    [178]K.M.Ho,C.T.Chan,C.M.Soukoulis.Photonic band gaps in three dimensions:new layer-by-layer periodic structures[J].Solid State Communications,1994,89:413-416.
    [179]E.Yablonovitch.Photonic band gap crystals[J].J.Phys.Condens.Matter.,1993,5:2443-2460.
    [180]G.H.Bogush,M.A.Tracy,C.F.Zukoski.Preparation of monodisperse silica particles:control of size and mass fraction[J].Journal of Non-Crystalline Solids,1988,104:95-106.
    [181]G.H.Bogush,C.F.Zukoski.Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silica alkoxides[J].Journal of Colloid and Interface Science,1990,142:1-18.
    [182]T.Matsoukas,E.Gulari.Self-sharpening distributions revisted-polydispersity in growth by monomer addition[J].Journal of Colloid and Interface Science,1991,145:557-561.
    [183]A.P.Philipse,A.Vrij.Preparation and properties of nanaqueous model dispersions of chemically modified,charged silica spheres[J].Journal of Colloid and Interface Science,1989,128:121-136.
    [184]张铸勇,祁国珍,庄甫.精细有机合成单元反应[M].上海:华东化工学院出版社,1990:409-428.
    [185]邢祺毅,徐瑞秋,周政.基础有机化学[M].北京:高等教育出版社,1993:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700