青霉素G的金标记免疫共振散射光谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部份:绪论
     综述了金纳米微粒的制备、表征及其在生化分析中的应用;综述了近年来共振散射技术在生化分析中的应用。介绍了青霉素G的分析进展。
     第二部份:痕量青霉素的金纳米标记免疫共振散射光谱快速检测
     在pH8.0条件下,用粒径为9.0 nm的金纳米微粒标记兔抗青霉素获得青霉素金标免疫探针。在pH5.4磷酸氢二钠-柠檬酸缓冲溶液及聚乙二醇存在下,金标记兔抗青霉素与青霉素G产生特异性结合,并生成胶体金免疫复合物。在PEG作用下胶体金免疫复合物发生聚集,导致体系在580 nm处的共振散射峰增强。青霉素G浓度在7.5 ng.mL-1-1.65×103 ng.mL-1范围内与580 nm处的共振散射光强度增加值呈线性,方法的检出限为0.070 ng.mL-1。该法用于定量分析牛奶中的青霉素,简便快速,结果令人满意。
     第三部份:痕量青霉素G的免疫纳米金催化共振散射光谱检测
     小粒径的金、银和免疫纳米金粒子对氯金酸-盐酸羟胺这一反应具有较强的催化作用。基于金纳米微粒在580 nm处的共振散射效应及免疫纳米金的催化作用,可用它做检测技术研究该纳米反应在生化分析中的应用。我们用粒径为9.0 nm的金纳米微粒标记兔抗青霉素抗体。在pH5.4的柠檬酸-磷酸氢二钠缓冲溶液中,青霉素G与金标兔抗青霉素发生特异性结合生成胶体金免疫复合物,离心分离。以适量金标兔抗青霉素的上层清液做晶种,加入pH3.36盐酸-柠檬酸钠缓冲溶液、40μg.mL-1氯金酸和21.6μg.mL-1盐酸羟胺,利用金纳米粒子表面发生的自催化反应使晶种的粒径增大,在580 nm处共振散射强度增强。随着青霉素G浓度C(0.15-225 ng.mL-1)的增大,上层清液中免疫纳米金微粒数量降低,I580 nm值随之降低。△I580 nm与C成线性关系,其回归方程为△I580 nm=0.28C+5.16,检出限为0. 050 ng. mL-1。该法用于牛奶中青霉素G的检测,结果较好,其回收率在101.6-120.3%之间。
     第四部份:免疫纳米金催化Cu(II)-葡萄糖反应的共振散射光谱研究及其分析应用
     小粒径的金纳米粒子对酒石酸钾钠铜络合物-葡萄糖这一微粒反应具有较强的催化作用,其产物氧化亚铜-金复合纳米微粒在608 nm处存在较强的共振散射效应。将纳米金标记技术、共振散射光谱检测技术和纳米金催化作用有机地结合,可建立高灵敏、高选择性的生化分析新方法。用粒径为9.0 nm的金纳米微粒标记兔抗青霉素G抗体(RAPG)可获得青霉素G(PG)的光谱探针(AuRAPG)。在pH5.2的柠檬酸-磷酸氢二钠缓冲溶液中,PG与AuRAPG发生特异性结合生成胶体金免疫复合物,离心分离。取适量上层清液做晶种,在0.010 g.mL-1氢氧化钠-0.86 mg.mL-1硫酸铜-0.080 mg.mL-1的葡萄糖-水浴70℃条件下反应,反应形成粒径较大的氧化亚铜-金复合微粒,导致608 nm处共振散射强度I608 nm增强。随着PG浓度CPG(0.090-21.6 ng.mL-1)增大,上层清液中免疫纳米金微粒数量降低,I608 nm值降低。△I608 nm降低值与CPG成线性关系,其回归方程为△I608 nm=3.86C+1.1,检出限为0. 010 ng.mL-1。该法用于牛奶中PG的检测,结果较好,其回收率在100.6-109.2%之间。
PartⅠIntrodction
     The preparation and identification of gold nanoparticles, the application of gold-labeled technology in biochemical analysis and the application of resonance scattering technology in analytical chemistry were introduced. The analytical progress of penicillin G was also reviewed.
     PartⅡCombination nanogold resonance scattering effect with immunoreaction for assay of trace penicillin G
     A new immunonanogold resonance scattering spectral assay was developed for the sensitive determination of penicillin G in milk sample, based on resonance scattering (RS) effect of the nanogold at 580 nm and the nanoglold labeled immunoreactions in the presence of pH 5.4 phosphate citric acid buffer solutions and the polythylene glycol (PEG). The resonance scattering intensity at 580 nm (I580 nm) enhanced greatly with penicillin G. The enhanced RS intensity△I580 nm was linear to the penicillin G concentration in the range of 7.5-1.7×103 ng.mL-1, with a detection limit of 0.78 ng.mL-1. The results indicate that the immunonanogold labeled RS spectral assay has a high specificity and good sensitivity for quantitative determination of penicillin G in raw milk sample.
     PartⅢImmunonanogold Probe as Catalyst for HAuCl4-NH2OH Particle Reaction and Its Application to Resonance Scattering Assay of Trace Penicillin G
     Both nanogold and nanosilver exhibit catalytic activity toward the HAuCl4-NH2OH particle reaction. Based on the catalytic effect of nanogold on the redox reaction and the gold particle resonance scattering (RS) effect at 580 nm, RS can be used to monitor the nanocatalytic reaction and utilized in bioanalytical assay. As a model, we used nanogold in size of 9 nm to label goat anti-rabbit penicillin G to obtain an immunonanogold probe for penicillin G. The immunoreactions between rabbit anti-penicillin G antibody labeled nanogold and penicillin G took place in pH 5.4 phosphate-citric acid buffer solutions, and after centrifugation, the supernatant of the nanogold-labeled immunoreaction was used as nanocatalyst for the redox reaction. After the immunonanogold catalytic reaction, the resonance scattering intensity enhanced at 580 nm (I580 nm). With the addition of penicillin G, the concentration of immunonanogold in the supernatant reduced linearly, which leaded the I580 nm to decrease accordingly. Under the optimal conditions, the decreased intensity ?I580 nm was inversely proportional to the penicillin G concentration in the range of 0.15-225 ng.mL-1, with a detection limit of 0.05 ng.mL-1 penicillin G. These results indicate that the immunonanogold-catalytic resonance scattering spectral assay offers good results for quantitative determination of penicillin G in raw milk sample, with the recovery between 101.6% and 120.3%.
     PartⅣ
     As the seeds, small size nanogold can initiate the particle reaction between Cu (II) and glucose. Based on the (Au) nucleus (Cu2O) shell complex nanoparticles resonance scattering (RS) effect at 608 nm, RS can be used to monitor the particle reaction and utilized in bioanalytical assay. As a model, we used nanogold in size of 9 nm to label rabbit anti-penicillin G (RAPG) to obtain an immunonanogold probe for penicillin G (PG). The immunoreactions between rabbit anti-penicillin G antibody labeled nanogold (AuRAPG) and PG took place in pH 5.2 phosphate-citric acid buffer solutions, and after centrifugation, the supernatant of the immunoreaction products were used as seeds for the reaction between Cu (II) and glucose. Then, the RS intensity enhanced at 608 nm (I608 nm). With the addition of PG, the concentration of AuRAPG in the supernatant reduced linearly, which leaded the I608 nm to decrease accordingly. Under the optimal conditions, the decreased RS intensity was inversely proportional to the PG concentration in the range of 0.09-21.6 ng.mL-1, with a detection limit of 0.01 ng.mL-1 PG. It is shown that the data produced here can be used to determine trace PG in raw milk sample, with the recovery between 100.6% and 109.2%.
引文
[1] Faulk W, Taylorn G M. An immunocolloidal gold method for the electron microscope [J]. Immunochemistry, 1971, 8: 1081-1087.
    [2] 朱立平,陈学清.免疫学实验方法[M].北京:人民军医出版社,2000,426-429.
    [3] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse glod solution [J]. Nature, 1973, 241:20 - 22.
    [4] 林均安,高锦梁,洪健. 实用生物电子显微术[M].沈阳:辽宁科学技术出版社,1989.
    [5] 贺昕,熊晓东,梁敬博,李治宇,张曦.免疫检测用纳米胶体金的制备和粒径控制 [J].稀有金属,2005,29:471-474.
    [6] 王劭,胡奇林,程晓霞,林锋强,欧阳岁东,陈仕龙.胶体金技术及其在禽病诊断上的应用 [J].畜牧兽医科技信息,2006,9:10-12.
    [7] 王楠, 徐淑坤.用葡萄糖制备纳米金及其与牛血清白蛋白偶联的研究[J]. 分析科学学报,2007,23:189-192.
    [8] Liang Z J, Susha A, Caruso F. Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof [J]. Chem Mater, 2003, 15:3176-3183.
    [9] Jana N R, Gearheart L, Murphy C J. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles [J]. Chem Meter, 2001, 13:2313-2322.
    [10] Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J. A DNA-based method for rationally assembling naoparticles into nacroscopic materials. Nature 1996, 382:607-609.
    [11] Brown K R, Natan M J. Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surface [J]. Langmiur, 1998, 14:726-728.
    [12] Nakamura K, Kawabata T, Mori Y. Size distribution analysis of colloidal gold by small- angle- X-ray scattering and light absorbance [J]. Powder Technol, 2003, 131:120-128.
    [13] Shi H, Zhang L, Cai W. Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica [J]. Materials Research Bulletin, 2000, 35:1689-1695.
    [14] Xie H, Gill-Sharp K L, Patrick O'Neal D. Quantitative estimation of gold nanoshell concent- rations in whole blood using dynamic light scattering [J].Nanomedicine-UK, 2007,3: 88-94.
    [15] Wang R Y, Yang J, Zheng Z P, Carducci M D, Jiao J, Seraphin S. Dendron-controlled nucleation and growth of gold nanoparticles [J]. Angew Chem Int Ed, 2001, 40:549-552.
    [16] Pradier C M, Salmain M, Zheng L,Jaouen G. Specific binding of avidin to biotin immobilised on modified gold surfaces: Fourier transform infrared reflection absorption spectroscopy analysis [J]. Sur Sci, 2002, 502-503:193-202.
    [17] Tokita M, Haga E. Nuclear magnetic resonance of 197Au in gold metal [J]. J Mol Struct, 1982, 83:143-153.
    [18] 林均安,高锦梁,洪健. 实用生物电子显微术[M].沈阳:辽宁科学技术出版社,1989.
    [19] Zeman E J, Schatz G C. An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, In, Zn and Cd [J]. J Phys Chem, 1987, 91:634-643.
    [20] Manara M L I. Silver enhancement kit. J Immunol Meth, 1984, 74: 355.
    [21] Romano E L. Immunolakebling for Electron Microscopy. New York: A cad Press, 1984. 3215.
    [22] Hermann R, Walther P, Müller M. Immunogold labeling in scanning electron microscopy.Histochem Cell Biol, 1996, 106: 31-39.
    [23] Moses S, Brewer S H, Lowe L B, Lappi S E, Givey L B G, Sauthier M, Tenent R C, Feldheim D L, Franzen Stefan. Characterization of single-and double- stranded DNA on gold surfaces [J]. Langmuir, 2004, 20(25): 11134-11140.
    [24] 朱前勇, 李志, 陶生策,王栋,焦文仓,史常旭,梁志清. 胶体金标记/银染信号放大法在寡核苷酸芯片检测人 HCM 突变中的应用[J].第三军医大学学报,2004,19: 9-12.
    [25] Hoyer L C, Lee J C, Bucana C. Scanning immunoelectron microscopy for the identification and mapping of two or more antigens on cell surfaces. Scanning Electron Microscopy, 979, 3:629-636.
    [26] Beggs M, Novotny M, Sampedro S. A self-performing chromatography immunoassay for the quantitative determination of HCG in urine and serum [J]. Clin Chem, 1990, 36(6):1084-1085.
    [27] Hasan J A, Huq A, Tamplin M L, Siebeling R J, Colwell R R. A novel kit for rapid detection of Vibrio cholerae O1 [J].J Clin Microbiol, 1994, 32 (1):249-252.
    [28] 王中力,宋晓晖,陈西召,陈国胜. 犬细小病毒病免疫胶体金诊断技术的研究 [J]. 国预防兽医学报,2004,26:62-66.
    [29] 王俭,涂政,李兆隆,蒋之连,徐秀兰,吴博韬,林涛,郭红玲,张英兰,常彩琴. 检验人精浆特异蛋白 P30 免疫胶体金试纸条的研制[J]. 法医学杂志, 2002,18(4): 210- 212.
    [30] 曲萌,毕胜利,董志恒. 胶体金免疫层析技术同步检测甲、戊型肝炎病毒 IgM 抗体的研究[J].北华大学学报:自然科学版,2002,3(4):295-297.
    [31] 富青,李长江. 胶体金免疫层析半定量检测方法的研究[J]. 湖北预防医学杂志,2002, 13(5):18.
    [32] Haruta M, Yamada N, Kobayashi T. Gold-catalysis prepared by coprecipitation for low temperature oxidation of hydrogen and of carbon monoxide [J]. J Catal, 1989, 115: 301- 309.
    [33] 王东辉,程代云, 郝郑平, 王东辉. 金催化剂的研究进展及在环保催化中的作用 [J]. 自然科学进展, 2002, 12(8):794-799.
    [34] 王东辉,程代云, 郝郑平, 史喜成. 纳米金催化剂上 CO 低(常)温氧化的研究 [J].化学进展, 2002, 14(5):360-397.
    [35] 郝郑平, 安立敦, 王弘立. 负载型金催化剂的制备、催化性能及应用前景 [J].分子催化,1996,10(3):235-240.
    [36] Bond G C, Thompson D T. Catalysis by gold Catal [J]. Rev-Sci Eng, 1999, 41: 319-388.
    [37] Haruta M. Size-and support-dependency in the catalysis of gold [J]. Catal Today, 1997, 36: 153 - 166.
    [38] Haruta M. Novel catalysts of gold deposited on metal oxides[R]. Catal Survey of Japan, 1997, 1: 61 - 73.
    [39] 周忠清, 金国山. 金超微粒催化剂的新进展 [J].现代化工,1999,19(12):19-21.
    [40] 齐世学, 周旭华, 安立敦. 负载型金催化剂 [J].化学通报,2002,(11):734-741.
    [41] Haruta M, Date M. Advances in the catalysis of Au nanoparticles.Applied Catalysis A: General, 2001, 222:427-437.
    [42] Boccuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T. FTIR study of the low-temperature water–gas shift reaction on Au/Fe2O3 and Au/TiO2 Catalysts [J]. J Catal, 1999, 188:176-185.
    [43] Yuan Y, Kozlova A P, Asakura K, Wan H L, Tsai K, Iwasawa Y. Supported Au catalysts prepared from Au phosphine complexes and As-precipitated metal hydroxides: characterization and low-temperature CO oxidation [J]. J Catal, 1997, 170:191-199.
    [44] Kozlova A P, Sugiyama S, Kozlov A I, Asakura K, Iwasawa Y. Iron-oxide supported gold catalysts derived from gold-phosphine complex Au(PPh3)(NO3): State and structure of the support [J]. J Catal, 1998, 176:426-438.
    [45] Kozlova A P, Kozlov A I, Sugiyama S, Matsui Y, Asakura K, Iwasawa Y. Study of gold species in iron-oxide-supported gold catalysts derived from gold-phosphine complex Au(PPh3)(NO3) and As-precipitated wet Fe(OH)3 [J]. J Catal, 1999, 181:37-48.
    [46] Soares J M C, Morrall P, Crossley A, Harris P, Bowker M. Catalytic and noncatalytic CO oxidation on Au/TiO2 catalysts [J]. J Catal, 2003, 219:17-24.
    [47] Thormpson D T. Using gold nanoparticles for catalysis [J]. Nano Taday, 2:40-43.
    [48] Grunwaldt J D, Kiener C, W?gerbauer C, Baiker A. Preparation of supported gold catalysts for low-temperature CO oxidation via “size-controlled” gold colloids [J]. J Catal, 1999, 181:223-232.
    [49] Tripathi A K, Kamble V S, Gupta N M. Microcalorimetry, adsorption, and reaction studies of CO, O2, and CO+O2 over Fe2O3, Au/Fe2O3, and polycrystalline gold catalysts as a function of reduction treatment [J]. J Catal, 1999, 187:343-347.
    [50] Date M, Haruta M. Moisture effect on CO oxidation over Au/TiO2 catalyst [J]. J Catal, 2001, 201:221-224.
    [51] Knell A, Barnickel P, Baiker A, Wokaun A. CO oxidation over Au/ZrO2 catalysts: Activity, deactivation behavior, and reaction mechanism [J]. J Catal, 1992, 137:306-321.
    [52] Suhumacher B, Plzak V, Kinne M, Behm R J. Highly active Au/TiO2 catalysts for low-temperature CO oxidation: preparation, conditioning and stability [J]. Catal Lett, 2003, 89:109-114.
    [53] Kozlov A I, Kozlova A P, Asakura K, Matsui Y, Kogure T, Shido T, Iwasawa Y. Supported gold catalysts prepared from a gold phosphine precursor and as-precipitated metal-hydroxide precursors: effect of preparation conditions on the catalytic performance [J]. J Catal, 2000, 196:56-65.
    [54] Kung H H, Kung M C, Costello C K. Supported Au catalysts for low temperature CO oxidation [J]. J Catal, 2003, 216:425-432.
    [55] Oh S H, Sinkevitch R M. Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation [J]. J Catal, 1993, 142:254-262.
    [56] Schubert M M, Gasteiger H A, Jürgen Behm R. Surface formates as side products in the selective CO oxidation on Pt/γ-Al2O3 [J]. J Catal, 1997, 172:256-258.
    [57] Haruta M, Yamada N, Kobayashi T, Iijima S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide [J]. J Catal, 1989, 115:301-309.
    [58] Grisel R J H, Nieuwenhuys B E. Selective oxidation of CO, over supported Au catalysts [J]. J Catal, 2001, 199:48-59.
    [59] Kimura K, Tsuto K, Wakisaka T, Kazumi Y, Inaya Y. Selective oxidation of glycerol on a platinum-bismuth catalyst [J].Appl Catal A:Gen,1993,96:217-228.
    [60] Besson M, Gallezot P. Selective oxidation of alcohols and aldehydes on metal catalysts [J]. Catal today, 2000, 57:127-141.
    [61] Prati L, Rossi M. Gold on carbon as a new catalyst for selective liquid phase oxidation of diols [J]. J Catal, 1998, 176:552-560.
    [62] Biella S, Biella S, Castiglioni G L, Fumagalli C, Prati L, Rossi M. Application of gold catalysts to selective liquid phase oxidation [J]. Catal today, 2002, 72:43-49.
    [63] Clerici M G, Bellussi G, Romano U. Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite [J]. J Catal, 1991, 129:159-160.
    [64] Hayashi T, Tanke K, Haruta M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen [J]. J Catal, 1998, 178:566-575.
    [65] Mul G, Zwijnenburg A, van der Linden B, Makkee M, Moulijn J A. Stability and selectivity of Au/TiO2 and Au/TiO2/SiO2 catalysts in propene epoxidation: An in situ FT-IR Study [J]. J Catal, 2001, 201:128-137.
    [66] Qi C X, Akita T, Okumura M, Haruta M. Epoxidation of propylene over gold catalysts supported on non-porous silica [J].Appl Catal A:Gen, 2001, 218:81-89.
    [67] Ribeiro F H, Chow M, Dallabetta R A. Kinetics of the complete oxidation of methane over supported palladium catalysts [J]. J Catal, 1994, 146:537-544.
    [68] Galvagno S, Parravano G. Chemical reactivity of supported gold : IV. Reduction of NO by H2 [J]. J Catal, 1978, 55:178-190.
    [69] Lee J Y, Schwank J. Infrared spectroscopic study of NO reduction by H2 on supported gold catalysts [J]. J Catal, 1986, 102:207-215.
    [70] Ueda A, Haruta M. Reduction of nitrogen monoxide with propene over Au/Al2O3 mixed mechanically with Mn2O3 [J]. Appl Catal B: Environ, 1998, 18:115-121.
    [71] Gauthard F, Epron F, Barbier J. Palladium and platinum-based catalysts in the catalytic reduction of nitrate in water:effect of copper, silver, or gold addition [J]. J Catal, 2003, 220:182-191.
    [72] Ueda A, Oshima T, Haruta M. Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides [J]. Appl Catal B: Environ, 1997, 12:81-93.
    [73] Haick H, Paz Y. Long-range effects of noble metals on the photocatalytic properties of titanium dioxide [J]. J Phys Chem B, 2003, 107:2319.
    [74] Orlov A, Jefferson D A, Macleod N, Lambert R M. Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of 4-chlorophenol in aqueous solution [J]. Catal lett, 2004, 92:41-47.
    [75] Holgate C S, Jackson P, Cowen P N, Bird C C. Immunogold-staining: new method of immunostaining with enhanced sensitivity [J]. J Histochem Cytochem, 1983, 31: 938 -944.
    [76] Owen G R, Meredith D O, Gwynn I, Richards R G. Enhancement of immunogold-labeled focal adhesion sites in fibroblasts cultured on metal substrates: problems and solution [J]. Cell Biol Int, 2001, 25:1251-1253.
    [77] Leitinger G, Pabst M A, Kral K. Serotonin-immunoreactive neurons in the visual system of the praying mantis: an immunohistochemical, confocal laser scanning and electron microscopic study [J]. Brain res, 1999, 823:11-23.
    [78] Chiao D J, Shyu R H, Hu C S, Chiang H Y, Tang S S. Colloidal gold –based immunochromato graphic assay for detection of botulinum neurotoxin type B [J]. J Chromatogra B, 2004, 809:37-41.
    [79] Lyon L A, Musick D M, Natan M J. Colloidal Au-enhanced surface plasmon resonanceimmunosensing [J]. Anal Chem, 1998, 70: 5177-5183.
    [80] Liu C H, Li Z P, Du B A, Duan X R, Wang Y C. Silver nanoparticle-based ultrasensitive chemiluminescent detection of DNA hybridization and singe-nucleotide polymorphisms[J]. Anal Chem, 2006, 78: 3738-3744.
    [81] Jiang Z L, Li Y, Sun S J, Chen B. A new nanogold-labeled immunoresonance scattering spectral probe for determination of trace IgG [J]. Chin J Chem, 2007, 25:1282-1287.
    [82] Ma Z F, Sui S F. Naked-eye sensitive detection of immunoglubulin G by enlargement of Au nanoparticles in vitro [J]. Angew Chem Int Ed, 2002, 41: 2176.
    [83] Mao X, Jiang J H, Luo Y, Shen G L, Yu R Q. Copper-enhanced gold nanoparticle tags for electrochemical stripping detection of human IgG [J]. Talanta 2007, 73:420-424.
    [84] Cai H, Wang Y Q, He P G, Fang Y Z. Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label [J]. Anal Chim Acta, 2002, 469:165-172.
    [85] Chu X, Fu X, Chen K, Shen G L, Yu R Q. An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label [J]. Biosens Bioelectron, 2005, 20: 1805-1821.
    [86] Chu X, Xiang Z F, Fu X, Wang S P, Shen G L, Yu R Q, Silver-enhanced colloidal gold metalloimmunoassay for Schistosoma japonicum antibody detection [J]. J Immunol Methods, 2005, 301:77-88.
    [87] Liao K T, Huang H J. Femtomoar immunoassay based on coupling gold nanoparticle enlargement with square wave stripping voltammetry[J]. Anal Chim Acta, 2005, 538:159-164.
    [88] Wang Y X, Yin X L, Shi M H, Li W, Zhang L, Kong J L. Probing chiral amino acids at sub-picomolar level based on bovine serum albumin enantioselective films coupled with silver-enhanced gold nanoparticles [J]. Talanta 2006, 69:1240-1245.
    [89] Huang L, Reekmans G, Saerens D, Friedt J M, Frederix F, Francis L, Muylder S, Campitelli A, Hoof C V. Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays[J]. Biosens Bioelectron, 2005, 21:483-490.
    [90] Qi H L, Zhang Y, Peng Y G, Zhang C X. Homogenous electrogenerated chemiluminescence immunoassay for human immunoglobulin G using N-(aminobutyl)-N-ethylisoluminol as luminescence label at gold nanoparticles modified paraffin- impregnated graphite electrode[J]. Talanta 2008, 75:684-690.
    [91] Hu S Q, Xie J W, Xu Q H, Rong K T, Shen G L, Yu R Q. A label-free electrochemical immunosensor based on gold nanoparticles for detection of paraoxon [J]. Talanta 2003, 61:769-777.
    [92] Sousa A A, Aronova M A, Kim Y C, Dorwarda L M, Zhang G, Leapman R D. On the feasibility of visualizing ultrasmall gold labels in biological specimens by STEM tomography [J]. J Struct Biol, 2007, 159:507-522.
    [93] Li Z P, Liu C H, Fan Y S, Wang Y C, Duan X R. A chemiluminescent metalloimmunoassay based on silver deposition on colloidal gold labels [J]. Anal Biochem, 2006, 359:247-252.
    [94] Fan A P, Lau C W, Liao Z X, Liang J Y, Lu J Z. A novel chemiluminescence metalloimmunoassay based on gold label [J]. Chin J Anal Chem, 2006, 34:35-37.
    [95] 李原芳, 黄承志, 胡小莉.共振光散射技术的原理及其在生化分析中的应用 [J]. 分析化学, 1998 , 26(12) : 1508-1515.
    [96] 蒋治良,李芳,李廷盛,梁宏.共振散射光强度与金粒子粒径的关系[J].高等学校化学学报,2000,21(10):1488-1490.
    [97] 蒋 治 良 , 刘 绍 璞 , 刘 庆 业 . 碳 纳 米 微 粒 的 共 振 散 射 光 谱 研 究 [J]. 应 用 化学,2002,19(1):22-25.
    [98] 刘庆业,蒋治良,蒙冕武.钯纳米微粒的微波高压液相合成及共振散射光谱研究[J].分析测试技术与仪器,2001,7(4):199-203.
    [99] 钟福新,蒋治良,李廷盛,李芳,梁宏. 绿色和黄色银胶的光化学制备及其共振散射光谱研究[J]. 感光科学与光化学,2001,19(1):13-18.
    [100] 蒋治良,冯忠伟,蒋毅民,凌绍明.TiO2 纳米粒子的微波合成及其共振散射光谱研究[J].化学通报,2001,4:250.
    [101] 陈飒,蒋治良,刘绍璞.二氧化锰纳米微粒的制备及其共振瑞利散射光谱研究[J].西南师范大学学报(自然科学版),2002,27(1):73-77.
    [102] 蒋治良.金原子团簇的分频散射光谱研究[J].光子学报,2001,30(4):460-464.
    [103] 刘庆业, 蒋治良.(AgCl)核·Ag)壳纳米粒子的光化学制备及其光谱特性研究[J].广西师范大学学报(自然科学版),2001,19(2):52-57.
    [104] 蒋治良. 纳米微子与共振散射光谱学,桂林:广西师范大学出版社,2003,90-149.
    [105] Liu S P, Liu Z F, Zhou G M. Resonamce Rayleigh scattering for the determination of trace amounts mercury (Ⅱ) with thiocyanate and basic triphenylmethane dyes. Anal ett. 1998, 31(7):1247-1259.
    [106] 王照丽,李树伟,张万诚, 谭舒敏.共振光散射法测定汞-硫氰酸盐-罗丹明B体系中的汞[J].四川师范大学学报(自然科学版),2002,25(3):295-297.
    [107] 刘芹,刘绍璞. 汞(Ⅱ)-1,10-菲咯啉-卤代荧光素染料体系的共振瑞利散射及其分析应用[J].云南大学学报(自然科学版),1998, 21(增):58.
    [108] 林竹光,梁榕源,钟振明,张江龙,黄淑英.汞-雷氏盐体系共振光散射光谱及其特性分析[J].福州大学学报(自然科学版),1999,27(增刊):138-139.
    [109] Liu S P, Liu Q, Liu Z F, Li M, Huang C Z. Resonance Rayleigh scattering of chromium( Ⅵ ) - iodide basic triphenylmethane dye systems and their analytical application[J].Anal Chim Acta, 1999,379:53-61.
    [110] 刘绍璞,杨睿,刘忠芳.铬(Ⅵ)-碘化钾-维多利亚蓝 4R 体系的共振瑞利散射和二级散射及其分析应用[J].分析化学,1998,26(12):1432.
    [111] 王照丽,张新申,罗娅君,李树伟.铬Ⅵ-碘化物-罗丹明 6G 体系共振光散射光谱法测定铬Ⅵ[J].冶金分析,2003,23(4):4-5.
    [112] 方骏,金雅瑸,夏小庆.痕量 Cr(Ⅲ)的共振光散射法测定[J].安全与环境学报,2003,3(6):9-10.
    [113] Liu S P,Liu Z F, Luo H Q. Resonance Rayleigh scattering method for the determination of trace amounts of cadmium with iodier hodamine dye systems [J].Anal Chim Acta, 2000, 407:255.
    [114] Liu S P, Liu Z F, Li M, Li N B, Luo H Q. Resonance Rayleigh scattering method for the determination of trace amounts of Cadium with Iodide Basic Triphenylmethane dye systems. Fresenius J Anal Chem, 2000, 368:848-852.
    [115] 曾铭,李树伟,王小红, 苏小东, 潘建章, 何 艺, 李小燕.共振光散射光谱法测定镉的研究及应用[J].四川师范大学学报(自然科学版),2005,28(2):218—221.
    [116] 王小红,李树伟,张万诚,苏小东, 何 艺, 潘建章.铅-BSA-刚果红体系共振散射光谱法测定铅的含量的研究 [J].四川师范大学学报(自然科学版),2004,27(2):198-201.
    [117] 王丹,罗红群,李念兵,刘绍璞.碘化物-甲基紫体系共振瑞利散射法测定痕量铅[J].西南师范大学学报(自然科学版),2004,29(6):1005-1008.
    [118] 王丹,罗红群,李念兵. 碘化物-罗丹明 6G 体系共振瑞利散射法测定痕量铅[J].环境化学,2005,24(1):97-100.
    [119] 刘绍璞,刘忠芳,罗红群. 硒(Ⅳ)-碘化物-维多利亚蓝 4R 体系共振瑞利散射、二级散射和倍频散射法测定痕量硒(Ⅳ) [J]. 西南师大学报,2000,25(4): 409-412.
    [120] Liu S P, Liu Z F, Huang C Z. Resonance Rayleigh scattering for an indirect determination of trace amounts of selenium (IV) with iodide-basic triphenylmethane dye systems [J]. Anal Sci, 1998, 14(4):799-802.
    [121] 贺冬秀,李贵荣,吕昌银. 共振光散射法测定环境水样中痕量亚硝酸根[J].南华大学学报 (理工版),2003,17(4):42.
    [122] 龙云飞,陈小明,杨伟军,伍群丽.吖啶黄共振光散射法测定亚硝酸根[J].分析化学,2004,32(1):127.
    [123] 贺冬秀,李贵荣,杨慧仙,吕昌银.罗丹明 B 共振光散射法测定水中痕量亚硝酸根[J].中国卫生检验杂志,2004,14(6):689-690.
    [124] 蒋治良,李芳,梁宏.磷钼杂多酸-罗丹明 S 体系的共振散射光谱研究[J].化学学报,2000,58:1059.
    [125] 刘绍璞,周光明,刘忠芳,李明.共振瑞利散射法测定硫氰酸盐-碱性三苯甲烷染料体系中的痕量钼[J].高等学校化学学报,1998,19(7):1040.
    [126] 韩志辉,吕昌银, 杨胜圆.硫化银体系共振散射光谱研究及分析应用[J].光谱实验室,2005,22(2):242-246.
    [127] 蒋治良,潘宏程,袁伟恩.铬天青 S-铝(Ⅲ)-聚乙二醇 4000 体系的共振散射光谱及其应用[J]. 环境化学, 2004,23(5):573-577.
    [128] 王小红,李树伟,苏小东,何 艺,潘建章,曾 铭,李小燕.共振光散射比浊发测定钾[J].化学研究与应用,2004,16(16):837-838.
    [129] 李树伟,苏小东,王小红,潘建章,何 艺.共振光散射光谱法测定痕量氯离子[J].化学研究与应用,2004,16(4):535-536.
    [130] Huang C Z, Li Y F, Liu X D. Determination of nucleic acids at nanogram levels with safranine T by preresonance light-scattering technique [J]. Anal Chim Acta, 1998, 375: 89.
    [131] 达毛拉,杰力里,黄承志.酚藏红花与 DNA 作用的共振散射光谱特征及痕量 DNA的测定[J]. 分析化学,1999,27(10):1204-1207.
    [132] 黄新华,李原芳,奉萍, 黄承志.小牛胸腺脱氧核糖核酸诱导中性红聚集的机理及其影响因素研究[J]. 分析化学,2000,28 (6):682-686.
    [133] Huang C Z, Li Y F, Shi Y D, Shu R L.Assembly of methylene blue on nucleic acid template as studied by resonance light-scattering technique and determination of nucleic acids at nanogram levels [J]. Bull Chem Soc Jpn, 1999, 72: 1501.
    [134] Hang C Z, Li Y F, Xu X L, Li N B.Three-dimensional spectrum of the interactions of nile blue sulphate with DNA and determination of DNA by light-scattering [J]. Anal Chim Acta, 1999, 395: 187.
    [135] Zhang W J, Xu H P, Xue C X, Chen X G, Hu Z D. Resonance Light scattering for the Determination of Nucleic Acids with Methyl Violet [J]. Anal Lett, 2001, 34: 553-568.
    [136] 李天剑,沈含熙.乙基紫-脱氧氧核糖核酸酸共振振发光光体系的研究及其应用[J]. 高等学校化学学报,1998,19 (10):1570.
    [137] Zhang W J, Xu H P, Wu S Q, Chen X G. Determination of nucleic acids with crystalviolet by a resoonance light-scattering technique[J].Analyst, 2001, 126: 513-517.
    [138] Liu Z, Qin W W, Gong G Q. Determination of nucleic acids at nanogram levels by the method of resonance light scattering on night Blue[J].Anal Lett, 2002, 35: 111-121.
    [139] Chen L H, Nie Y T, Liu Z L, Shen H X. Determination of nucleic acids on the basis of enhancement effect of resonance light scattering of toluidine Blue[J].Anal Lett, 2003,36: 107-122.
    [140] Huang C Z, Li K A, Tong S Y. Determination of nucleic acids in nanogram by their enhancement effect on the resonance light-scattering of Cobalt (II) /4-[(5-Chloro- 2-pyridyl)azo]-l,3-diaminobenzene complex[J].Anal Chem, 1997, 69(3): 514-520.
    [141] 魏永巨,李克安.童沈阳.蛋白白质-铬天青 S 体系的弹性散射及其初步分析应用[J].化学学报,1998,56: 290-297.
    [142] Ma C Q, Li K A, Tong S Y. Rayleigh light scattering spectroscopy application to the determination of proteins using bromophrogallol red[J].Bull Soc Jpn, 1997, 70: 129-133.
    [143] Guo Z X, Shen H X. Sensitive and simple determination of protein by resonance Rayleigh scattering with 4-azochromotropic acid phenylfluorone[J].Anal Chim Acta, 2000, 408:177-182.
    [144] 刘绍璞,范莉,胡小莉,刘忠芳,陈粤华.某些氨梭络合型染料与蛋白质相互作用的共振瑞利散射研究[J].化学学报, 2004, 62(17):1635-1640.
    [145] Huang C Z, Yang C X, Li Y F. Determination of proteins with ponceau G by compensating for the molecular absorption decreased resonance light scattering signals [J].Anal Lett, 2003, 36: 1557-1571.
    [146] 蒋治良,邹节明,王力生.蛋白质与三氯乙酸相互作用的共振散射光谱研究及其分析应用,分析化学,2003,31:70.
    [147] 袁伟恩,蒋治良,潘宏程.HAS-磷钼杂多酸缔合纳米微粒体系荧光猝灭机理研究,光谱学与光谱分析[J].2004, 24(3):970-974.
    [148] 梁爱惠,蒋治良,覃爱苗.钼杂多酸与蛋白质相互作用的共振散射光谱研究[J].应用化学, 2002,19(8):768.
    [149] Huang C Z, Li Y F, Mao J G, Tan D G. Determination of proteins by their enhancement effects on the preresonance light-scattering of α, β, γ, δ-Tetrakis (5-sulfothienyl) porphine [J].Analyst, 1998, 123:1401-1406.
    [150] Liu R T, Yang J H, Sun C X, Xia W, Li L, Li Z M. Resonance light-scattering method for the determination of BSA and HSA with sodium dodecyl benzene sulfonate or sodium lauryl sulfate[J].Anal Bioanal Chem, 2003, 377: 375-379.
    [151] Jia R P, Dong L J. A highly sensitive assay for protein with dibromochloro-arsenazo-Al3^ using resonance light scattering technique and its application [J]. Talanta, 2002, 57: 693-700.
    [152] Liu S P, Zhang Z Y, Luo H Q, Kong L. Resonance rayleigh-scattering method for the determination of vitamin B, with methyl orange[J].Anal Sci, 2002, 18: 971-976.
    [153] Liu S P, Hu X L, Luo H Q. Resonance Rayleigh scattering measurement of aminoglycoside antibiotics with Evans blue [J].Anal Sci, 2003, 19: 927-932.
    [154] Liu S P, Hu X L, Li N B, Resonance Rayleigh scattering method for the determination of aminoglycoside antibotics with trypan blue [J].Anal Lett, 2003, 36: 2805-2821.
    [155] Hu X L, Liu S P, Li N B. Resonance rayleigh scattering spectra for studying the interaction of aminoglycoside antibiotics with pontamine sky blue and their analyticalapplications [J].Anal Bioanal Chem, 376: 42-48.
    [156] 胡小莉,刘绍璞,罗红群.曲利本红与氨基糖苷类抗生素相互作用的共振瑞利散射光谱及其分析应用[J].化学学报,2003,61:1287-1293.
    [157] Zhang S Z, Zhao F L, Li K A, Tong S Y. Determination of glycogen by rayleigh light scaterring [J].Anal Chim Acta, 2001, 431:133-139.
    [158] Zhang S Z, Zhao F L, Li K A, Tong S Y. A study on the interacting between concanavalin A and glycogen by light scattering technique and its analytical application[J].Talanta, 2001, 54:333-342.
    [159] Hou M, Sun S J, Jiang Z L. A New and Selective and Sensitive Nanogold-Labeled Immunoresoance Scattering Spectral Assay for Trace Prealbumin [J].Talanta, 2007, 72:463-467.
    [160] Liang A H, Huang Y J, Jiang Z L. A rapid and sensitive immunoresonance scattering spectral assay for microalbumine [J]. Clin Chim Acta, 2007, 383:73-77.
    [161] Jiang Z L, Huang W X, Liang A H, Chen B. A rapid and sensitive immunonanogold resonance scattering spectral probe for complement 3[J]. Talanta, 2007, 73:926-931.
    [162] Jiang Z L, Sun S J, Liang A H, Huang W X, Qin A M. Gold-labeled nanoparticle-based immunoresonance scattering spectral assay for trace apolipoprotein AI and apolipoprotein B [J]. Clin Chem, 2006, 52: 1389-1394.
    [163] Jiang Z L, Sun S J, Liang A H, Liu C J.A new immune resonance scattering spectral assay for trace fibrinogen with gold nanoparticle label [J]. Anal Chim Acta, 2006, 571:200-205.
    [164] Jiang Z L, Huang W X, Li J P, Li M S, Liang A H, Zhang S S, Chen B. Nanogold Catalysis-–Based Immunoresonance Immunoresonance-Scattering Spectral Assay for Trace Complement Component 3[J]. Clin. Chem, 2008, 54(1): 116-123.
    [165] Jiang Z L, Zou M J, Liang A H. An immunonanogold resonance scattering spectral probe for rapid assay of human chorionic gonadotrophin [J]. Clin Chim Acta, 2008, 387: 24-30.
    [166] Jiang Z L, Huang Y J, Liang A H. An immunonanogold resonance scattering-quenching probe for rapid and sensitive assay of microalbumin [J]. J. Fluoresc, 2008, 18:563-571.
    [167] Jiang Z L, Li Y, Liang A H, Qin A M. A sensitive and selective immunonanogold resonance scattering spectral method for the determination of trace penicillin G [J]. Luminescence, 2008, DOI:10.1002/bio.126.
    [168] 邓俊耀,孙双娇,蒋治良,梁爱惠.免疫球蛋白 G 的免疫共振散射光谱分析[J].光谱学与光谱分析,2006,26:1487-1489.
    [169] 蒋治良,陈媛媛,梁爱惠,陶慧林,唐宁莉,钟福新.痕量纤维蛋白原的银纳米标记免疫共振散射光谱分析[J].中国科学 B 辑,2006,36:419-424.
    [170] Wang K L, Qiu X, Dong C Q, Ren J C. Single-molecule technology for rapid detection of DNA hybridization based on resonance light scattering of gold nanoparticles [J]. ChemBioChem, 2007, 8: 1126-1129.
    [171] 吴 瑕,张兰威.采用试管扩散法检测牛乳中青霉素 G 残留量[J].食品与发酵工业,2005,31(7):110-112.
    [172] Montero A, Althaus R L, Molina A, Berruga I, Molina M P. Detection of antimicrobial agents by a specific microbiological method (Eclipse100?) for ewe milk [J]. Small Ruminant Res, 2005, 57:229-237.
    [173] Sorensen L K, Rasmussen B M, Boison J O, Keng L. Simultaneous determination of six penicillins in cows’ raw milk by a multiresidue high-peiformance liquid chromatographic method [J]. J Chromatagra B, 1997, 694:383-391.
    [174] Heller D N, Hgoh M A. Electrospray ionization and tandem ion trap mass spectrometry for the confirmation of seven beta-lactamantibiotics in bovine milk [J]. Rapid Commun Mass Spectrom, 1998, 12:2031-2040.
    [175] Benito-Pena E, Moreno-Bondi M C,Orellana G, Maquieira ángel, Amerongen A V. Development of a novel and automated fluorescent immunoassay for the analysis of beta-lactamantibiotics [J]. J Agric Food Chem, 2005, 53(17):6635-6642.
    [176] Elliott C T, Baxter G A, Crooks S R H. The development of a rapid immunobiosensor screening method for the detection of residues of sulphadiazine [J]. Food Agr Immunol, 1999, 11(1):19-27.
    [177] GaudinV, Maris P. Development of abiosensor-based immunoassay for screening of chloramphenicol residues in milk[J]. Food Agr Immunol, 2001, 13(2):77-86.
    [178] Knecht B G, Strasser A, Dietrich R. Automated microarray system for the simultaneous detection of antibiotics in milk [J].Anal Chem, 2004,76(3):646-654.
    [179] Thavarungkul P, Dawan S, Kanatharana P, Asawatreratanakul P. Detecting penicillin G in milk with impedimetric label-free immunosensor [J]. Biosens Bioelectron, 2007, 23:688-694.
    [180] Gustavsson E, Bjurling P, ?se Sternesj?. Biosensor analysis of penicillin G in milk based on the inhibition of carboxypeptidase activity [J]. Anal Chim Acta, 2002, 468:153-159.
    [1] 郭文正.滥用抗生素,危险[M].天津:天津科技翻译出版公司.2004,p11.
    [2] 汪尔康.生命分析化学[M].北京:科学出版社,2006,p996.
    [3] Sorensen L K, Rasmussen B M, Boison J O, Keng L. Simultaneous determination of six penicillins in cows’ raw milk by a multiresidue high-peiformance liquid chromatographic method [J]. J Chromatagra B, 1997, 694:383-391.
    [4] Balizs G, Hewitt A. Determination of veterinary drug residues by liquid chromatography and tandem mass spectrometry [J]. Anal Chim Acta, 2003, 492:105-131.
    [5] Becker M, Zittlau E, Petz M. Residue analysis of 15 penicillins and cephalosporins in bovine muscle,kidney and milk by liquid chromatography–tandem mass spectrometry [J].Anal Chim Acta, 2004,520:19-32.
    [6] Heller D N, Hgoh M A. Electrospray ionization and tandem ion trap mass spectrometry for the confirmation of seven beta-lactamantibiotics in bovine milk [J]. Rapid Commun Mass Spectrom, 1998, 12:2031-2040.
    [7] Guilmi A M D, Mouz N, Pe′tillot Y, Forest E, Dideberg O, Vernet T. Deacylation kinetics analysis of streptococcus pneumoniae penicillin-binding protein 2x mutants resistant to β-Lactam antibiotics using electrospray ionization-mass spectrometry [J]. Anal Biochem, 2000, 284:240-246.
    [8] Goto T, Ito Y, Yamada S, Matsumoto H, Oka H. High-throughput analysis of tetracycline and penicillin antibiotics in animal tissues using electrospray tandem mass spectrometry with selected reaction monitoring transition [J]. J Chromatogr A, 2005, 1100:193-199.
    [9] Ghassempour A, Vaezi F, Salehpour P, Nasiri-Aghdam M, Adrangui M. Monitoring of enzymatic hydrolysis of penicillin G by pyrolysis-negative ion mass spectrometry [J]. J Pharmaceut Biomed, 2002, 29:569-578.
    [10] Benito-Pena E, Moreno-Bondi M C, Orellana G,Maquieira A, Amerongen A V. Development of a novel and automated fluorescent immunoassay for the analysis of β-Lactam antibiotics [J]. J Agric Food Chem, 2005, 53 (17): 6635-6642.
    [11] Knecht B G, Strasser A, Dietrich R. Automated microarray system for the simultaneous detection of antibiotics in milk [J]. Anal Chem, 2004, 76(3):6462654.
    [12] Montero A, Althaus R L, Molina A, Berruga I, Molina M P. Detection of antimicrobial agents by a specific microbiological method (Eclipse100?) for ewe milk [J]. Small Ruminant Res, 2005, 57:229-237.
    [13] 卢小玲,倪坤仪,屠 洁,贾沪宁,于清峰,王 磊. 胶束电动毛细管电泳法测定β-内酰胺类抗生素[J].分析化学,2006,34(2): 259-262.
    [14] Pasternack R F, Bustamante C, Collings P J, Giametto A, Gibbs E J. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique [J]. J Am Chem Soc, 1993, 115 (13):5393-5399.
    [15] Liang A H, Zhou S M, Jiang Z L. A simple and sensitive resonance scattering spectral method for determination of hydroxyl radical in Fenton system using rhodamine S and its application to screening the antioxidant [J]. Talanta, 70: 444-448.
    [16] Huang C Z, Li K A, Tong S Y. Determination of nucleic acids by a resonance light-scattering technique with α,β,γ,δ- Tetrakis [4 -(trimethylammoniumyl) phenyl] porphine [J]. Anal Chem, 1996, 68(13):2259-2264.
    [17] Huang C Z, Li K A, Tong S Y. Determination of nanograms of nucleic acids by their enhancement effect on the resonance light scattering of the Cobalt(Ⅱ ) /4- [5-Chloro-a-pyridylazo]-1,3-diaminobenzene complex [J]. Anal Chem,1997,69 (3):514-520.
    [18] Jiang Z L, Feng Z W, Li T S, Li F, Zhong F X, Xie J Y, Yi X H. Resonance scattering spectroscopy of gold nanoparticle[J]. Sci China Ser B, 2001, 44(2): 175-181.
    [19] 胡小莉, 刘绍璞, 罗红群. 曲利本红与氨基糖苷类抗生素相互作用的共振瑞利散射光谱及其分析应用[J]. 化学学报,2003,61(8): 1287-1293.
    [20] Jiang Z L, Zhou S M, Liang A H, Kang C C, He X C. Resonance scattering effect of rhodamine dye association nanoparticles and its application to respective determination of trace ClO2 and Cl2 [J]. Environ Sci Technol, 2006, 40: 4286-4291.
    [21] 蒋治良, 邹明静,梁爱惠,沈星灿.硫酸软骨素-阳离子表面活性剂缔合物微粒体系的共振散射光谱研究及分析应用[J]. 化学学报,2006,64:111.
    [22] Zou J M, Jiang Z L, Wang L S, Li T S, Liu Q Y. Spectral properties of the association nanoparticle system of ciprofloxacin-phloxine and its application to fluorescence analysis [J]. Anal Sci, 2004,20(6):967.
    [23] Jiang Z L, Huang G X. Resonance scattering spectra of micrococcus lysodeikticus and its application to assay of lysozyme activity [J]. Clin Chim Acta, 2007,376:136-141.
    [24] Jiang Z L, Sun S J, Liang A H, Huang W X, Qin A M. Gold-labeled nanoparticle-based immunoresonance scattering spectral assay for trace apolipoprotein AI and apolipoprotein B [J]. Clin Chem, 2006, 52: 1389-1394.
    [25] Jiang Z L , Sun S J, Liang A H, Liu C J. A new immune resonance scattering spectral assay for trace fibrinogen with gold nanoparticle label [J]. Anal Chim Acta, 2006, 571:200-205.
    [26] Hou M, Sun S J, Jiang Z L. A New and selective and sensitive nanogold-labeled immunoresoance scattering spectral assay for trace prealbumin [J]. Talanta, 2007,72:463.
    [27] 朱立平,陈学清.免疫学常用实验方法[M].北京:人民军医出版社,2000,426-430.
    [28] 蒋治良.纳米粒子与共振散射光[M].桂林:广西师范大学出版社,2003,90.
    [29] Moats W A. Determination of penicillin G in milk by high-performance liquid chromatography with automated liquid chromatographic cleanup [J]. J Chromatogr, 1990, 507: 177-185.
    [1] 庄无忌.各国食品和饲料农药兽药残留限量大全[M].中国对外经济贸易出版社:北京,1995,982-1014.
    [2] Sorensen L K, Rasmussen B M, Boison J O, Keng L. Simultaneous determination of six penicillins in cows’ raw milk by a multiresidue high-peiformance liquid chromatographic method [J]. J Chromatagra B, 1997, 694:383-391.
    [3] Benito-Pena E, Moreno-Bondi M C, Orellana G,Maquieira A , Amerongen A V. Development of a novel and automated fluorescent immunoassay for the analysis of β-Lactam antibiotics [J]. J Agric Food Chem, 2005, 53(17):6635-6642.
    [4] Montero A, Althaus R L, Molina A, Berruga I, M Molina P. Detection of antimicrobial agents by a specific microbiological method (Eclipse100?) for ewe milk [J]. Small Ruminant Res, 2005, 57:229-237.
    [5] 李俊锁,邱月明,王 超.兽药残留分析[M].上海:上海科学技术出版社,2002,P308-309.
    [6] Pasternack R F, Bustamante C, Collings P J, Giametto A, Gibbs E J. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique [J]. J Am Chem Soc, 1993, 115(13): 5393-5399.
    [7] Arena G, Scolaro L M, Pasternack R F, Synthesis R R, Characterization and interaction with DNA of the novel 2’,6’,2’’- tripyridine ) methylplatinum(Ⅱ) [J]. Anal Chem, 1995, 34: 2994-3002.
    [8] Hang C Z, Li K A, Tong S Y. Determination of nucleic acids by a resonance light-scattering technique with α,β,γ,δ-Te trakis [4 -(trimethylammoniumyl) phenyl] porphine [J]. Anal Chem, 1996, 68(13):2259-2264.
    [9] Hang C Z, Li K A, Tong S Y. Determination of nanograms of nucleic acids by their enhancement effect on the resonance light scattering of the Cobalt(Ⅱ)/4- [5-Chloro-a-pyridylazo] -1,3-diaminobenzene complex [J]. Anal Chem, 1997, 69 (3):514-520.
    [10] Jiang Z L, Feng Z W, Li T F, Li F, Zhong F X, Xie J Y, Yi X H. Resonance scattering spectroscopy of gold nanoparticle [J]. Sci China Ser B, 2001, 31(2):181-183.
    [11] 胡小莉, 刘绍璞, 罗红群. 曲利本红与氨基糖苷类抗生素相互作用的共振瑞利散射光谱及其分析应用[J]. 化学学报,2003,61(8): 1287-1293.
    [12] Jiang Z L, Zhou S M, Liang A H, Kang C C, He X C. Resonance scattering effect of rhodamine dye association nanoparticles and its application to respective determination of trace ClO2 and Cl2 [J]. Environ Sci Technol, 2006, 40: 4286-4291.
    [13] 蒋治良, 邹明静,梁爱惠,沈星灿.硫酸软骨素-阳离子表面活性剂缔合物微粒体系的共振散射光谱研究及分析应用 [J]. 化学学报,2006,64:111.
    [14] Zou J M, Jiang Z L, Wang L S, Li T S, Liu Q Y. Spectral properties of the association nanoparticle system of ciprofloxacin-phloxine and its application to fluorescence analysis [J]. Anal Sci, 2004, 20(6):967.
    [15] Jiang Z L, Huang G X. Resonance scattering spectra of micrococcus lysodeikticus and its application to assay of lysozyme activity [J]. Clin Chim Acta, 2007, 376:136-141.
    [16] Jiang Z L, Sun S J, Liang A H, Huang W X, Qin A M. Gold-labeled nanoparticle-based immunoresonance scattering spectral assay for trace apolipoprotein AI and apolipoprotein B [J]. Clin Chem, 2006, 52: 1389-1394.
    [17] Jiang Z L, Sun S J, Liang A H, Liu C J. A new immune resonance scattering spectral assay for trace fibrinogen with gold nanoparticle label [J]. Anal Chim Acta, 2006, 571:200-205 .
    [18] Hou M, Sun S J, Jiang Z L. A new and selective and sensitive nanogold-labeled immunoresoance scattering spectral assay for trace prealbumin [J]. Talanta, 2007,72:463.
    [19] Liu Z D, Huang C Z, Li Y F, Long Y F. Enhanced plasmon resonance light scattering signals of colloidal gold resulted from its interactions with organic small molecules using captopril as an example [J]. Anal Chim Acta, 2006, 577: 244-249.
    [20] Li Z P, Duan X R, Liu C H, Du B A. Selective determination of cysteine by resonance lightscattering technique based on self-assembly of gold nanoparticles [J]. Anal Biochem, 2006, 351:18-25.
    [21] Lyon L A, Musick D M, Natan M J. Colloidal Au-enhanced surface plasmon resonance immunosensing [J]. Anal Chem, 1998, 70: 5177-5183.
    [22] Liu C H, Li Z P, Du B A, Duan X R, Wang Y C. Silver nanoparticle-based ultrasensitive chemiluminescent detection of DNA hybridization and singe-nucleotide polymorphisms [J]. AnalChem, 2006, 78: 3738-3744.
    [23] Jiang Z L, Li Y, Sun S J, Chen B. A new nanogold-labeled immunoresonance scattering spectral probe for determination of trace IgG[J]. Chin J Chem, 2007, 25:1282-1287.
    [24] Ma Z F, Sui S F. Naked-eye sensitive detection of immunoglubulin G by enlargement of Au nanoparticles in vitro [J]. Angew Chem Int Ed, 2002, 41: 2176.
    [25] 朱立平,陈学清.免疫学常用实验方法[M].北京:人民军医出版社,2000,pp426-430.
    [26] 韩维屏.催化化学导论[M].北京:科学出版社,2004,pp120.
    [27] 蒋治良.纳米粒子与共振散射光[M].桂林:广西师范大学出版社,2003,PP90.
    [28] Park S J, Talon T A, Mirkin C A. Array-based electrical detection of DNA with nanoparticle probes [J]. Science 2002, 295, 1503-1506.
    [29] Salisbury C D C, Rigby C E, Chan W. Determination of antibiotic residues in canadian slaughter animals by thin-layer chromatography- bioautography [J]. J Agric Food Chem, 1989, 37 (1):105-108.
    [30] Moats W A. Determination of penicillin G in milk by high-performance liquid chromatography with automated liquid chromatographic cleanup [J]. J Chromatogr, 1990,507:177-185.
    [31] Terada H, Sakabe Y. Studies on residual antibacterials in foods. IV. Simultaneous determination of penicillin G, penicillin V and ampicillin in milk by high-performance liquid chromatograph [J]. J Chromatogr, 1985,348(2):379-387.
    [32] Petz M. Analysis of antibiotic residuces in food products of animal origin [M].New York, NY: Plenum Press.1992, 147.
    [33] Boison J O, Salisbury C D C, Chan W. Determination of penicillin G residues in edible animal tissues by liquid chromatography [J]. J Assoc Off Anal Chem, 1991, 74(3): 497-501.
    [34] Hutchins J E, Tyczkowska K, Araonson A. Liquid chromatographic determination of aflatoxin M1 in milk [J]. J Assoc Off Anal Chem, 1984, 81 (4): 709 -713.
    [1] Liu C H, Liao K T, Huang H J. Amperometric immunosensors based on protein a coupled polyaniline-perfluorosulfonated ionomer composite electrodes [J]. Anal Chem, 2000, 72: 2925–2929.
    [2] Tang T C, Deng A P, Huang H J. Immunoassay with a microtiter plate incorporated multichannel electrochemical detection system[J]. Anal Chem, 2002, 74 : 2617– 2621.
    [3] Nistor C, Oubina A, Marco M P, Barcelo D, Emnesu D J. Competitive flow immunoassay with fluorescence detection for determination of 4-nitrophenol [J]. Anal Chim Acta, 2001, 426: 185–195.
    [4] Loescher F, Boehme S, Martin J, Seeger S. Counting of single protein molecules at interfaces and application of this technique in early-stage diagnosis [J]. Anal Chem, 1998, 70:3202–3205.
    [5] Taton T A, Mirkin C A, Letsinger R T. Scanometric DNA array detection with nanoparticle probes [J]. Science, 2000, 289:1757–1760.
    [6] Alexandre I, Hamels S, Dufour S, Collet J, Zammatteo N, Longueville F D, Gala J L, Remacle J. Colorimetric silver detection of DNA microarrays [J]. Anal Biochem, 2001, 295:1–8.
    [7] Elghanian R, Storhoff J J, Muclc R C, Letsinger R L, Mirkin C A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical property [J]. Science, 1997, 277:1078–1081.
    [8] Tu C Y, Kitamori T, Sawada T. Ultrasensitive heterogeneous immunoassay using photothermal deflection spectroscopy [J]. Anal Chem, 1993, 65: 3631–3635.
    [9] Cao Y C, Jin R, Mirkin C A. Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection [J].Science, 2002, 297:1536–1540.
    [10] Ni J, Lipert R J, Dawson G B, Porter M D. Immunoassay readout method using extrinsic raman labels adsorbed on immunogold colloids [J]. Anal Chem, 1999, 71: 4903–4908.
    [11] Wang J, Xu D, Polsky R. Magnetically-induced solid-state electrochemical detection of DNA hybridization [J]. J Am Chem Soc, 2002, 124: 4208–4209.
    [12] Dequaire M, Degrand C, Limoges B. An electrochemical metalloimmunoassay based on a colloidal gold label [J]. Anal Chem, 2000, 72: 5521–5528.
    [13] Jiang Z L, Sun S J, Liang A H, Huang W X, Qin A M. Gold-labeled nanoparticle-based immunoresonance scattering spectral assay for trace apolipoprotein AI and apolipoprotein B[J]. Clin Chem, 2006, 52: 1389-1394.
    [14] Jiang Z L, Sun S J, Liang A H, Liu C J. A new immune resonance scattering spectral assay for trace fibrinogen with gold nanoparticle label[J]. Anal Chim Acta, 2006, 571:200-205 .
    [15] Hou M, Sun S J, Jiang Z L. A new and selective and sensitive nanogold-labeled immunoresoance scattering spectral assay for trace prealbumin [J]. Talanta, 2007,72:463.
    [16] Liu Z D, Huang C Z, Li Y F, Long Y F. Enhanced plasmon resonance light scattering signals of colloidal gold resulted from its interactions with organic small molecules using captoprilas an example [J]. Anal Chim Acta, 2006, 577:244-249.
    [17] Li Z P, Duan X R, Liu C H, Du B A. Selective determination of cysteine by resonance light scattering technique based on self-assembly of gold nanoparticles [J]. Anal Biochem, 2006, 351:18-25.
    [18] Aiello R, Fiscus J E. Hydrogen production via the direct cracking of methane over Ni/SiO2: catalyst deactivation and regeneration [J].Applied Catalysis A: Genera, 2000,192(2):227.
    [19] 杜芳林,崔作林,张志琨. 负载型纳米非贵金属催化剂上 CO 的氧化行为-Ⅲ.纳米铜的制备、结构及催化性能[J].催化学报,1997,18:102-105.
    [20] Njoki P N, Jacob A, Khan B, Luo J, Zhong C J. Formation of gold nanoparticles catalyzed by platinum nanoparticles: assessment of the catalytic mechanism [J]. J Phys Chem B, 2006, 110:22503.
    [21] Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties[J]. Science, 1998 , 281:1647.
    [22] Park S J, Talon T A, Mirkin C A. Array-based electrical detection of DNA with nanoparticle probes [J]. Science, 2002, 295:1503-1506.
    [23] Holgate C S, Jackson P, Cowen P N, Bird C C. Immunogold-staining: new method of immunostaining with enhanced sensitivity [J]. J Histochem Cytochem, 1983, 31: 938 -944.
    [24] Lyon L A, Musick D M, Natan M J. Colloidal Au-enhanced surface plasmon resonance immunosensing [J]. Anal Chem, 1998, 70: 5177-5183.
    [25] Liu C H, Li Z P, Du B A, Duan X R, Wang Y C. Silver nanoparticle-based ultrasensitive chemiluminescent detection of DNA hybridization and singe-nucleotide polymorphisms[J]. Anal Chem, 2006, 78: 3738-3744.
    [26] Mao X, Jiang J H, Luo Y, Shen G L, Yu R Q. Copper-enhanced gold nanoparticle tags for electrochemical stripping detection of human IgG [J]. Talanta, 2007, 73:420-424.
    [27] Grabar K C, Freeman R G, Hommer M B, Natan M J. Preparation and characterization of Au colloid monolayers [J].Anal Chem, 1995,67: 735–743.
    [28] Hodgkinson J L. Immunogold localization of the intermediate chain within the protein complex of cytoplasmic dynein [J]. J Struct Biol,1996, 117:227-235.
    [29] 韩维屏.催化化学导论[M].北京:科学出版社,2004,pp120.
    [30] Sorensen L K, Rasmussen B M, Boison J O, Keng L. Simultaneous determination of six penicillins in cows’ raw milk by a multiresidue high-peiformance liquid chromatographic method [J]. J Chromatagra B, 1997, 694:383-391.
    [31] Benito-Pena E, Moreno-Bondi M C, Orellana G,Maquieira A, Amerongen A V. Development of a novel and automated fluorescent immunoassay for the analysis of β-Lactam antibiotics[J]. J Agric Food Chem, 2 0 05, 53(17):6635-6642.
    [32] Montero A, Althaus R L, Molina A, Berruga I, M Molina P. Detection of antimicrobial agents by a specific microbiological method (Eclipse100?) for ewe milk [J]. Small Ruminant Res, 2005, 57:229-237.
    [33] Thavarungkul P, Dawan S, Kanatharana P, Asawatreratanakul P. Detecting penicillin G in milk with impedimetric label-free immunosensor [J]. Biosens Bioelectron, 2007, 23,688-694.
    [34] Gustavsson E, Bjurling P, ?se Sternesj?. Biosensor analysis of penicillin G in milk based on the inhibition of carboxypeptidase activity [J]. Anal Chim Acta, 2002, 468:153-159.
    [35] 田秋霖,张瑞,李宗清,赵薇,胡胜水. 碳电极阴极溶出法测定人尿中青霉素[J]. 分析化学, 1999,27:1114.
    [36] Ghassempour A, Vaezi F, Salehpour P, Nasiri-Aghdam M, Adrangui M. Monitoring of enzy- matic hydrolysis of penicillin G by pyrolysis-negative ion mass spectrometry [J]. J Pharm Biomed Anal, 2002, 29:569-578.
    [37] Salisbury C D C, Rigby C E, Chan W. Determination of antibiotic residues in canadian slaughter animals by thin-layer chromatography- bioautography [J]. J Agric Food Chem, 1989, 37 (1):105-108.
    [38] Moats W A. Determination of penicillin G in milk by high-performance liquid chromatography with automated liquid chromatographic cleanup [J]. J Chromatogr, 1990, 507:177-185.
    [39] Terada H, Sakabe Y. Studies on residual antibacterials in foods. IV. Simultaneous determination of penicillin G, penicillin V and ampicillin in milk by high-performance liquid chromatograph [J]. J Chromatogr, 1985, 348(2):379-387.
    [40] Petz M. Analysis of antibiotic residuces in food products of animal origin [M].New York, NY: Plenum Press.1992, 147.
    [41] Boison J O, Salisbury C D C, Chan W. Determination of penicillin G residues in edible animal tissues by liquid chromatography [J]. J Assoc off Anal Chem, 1991, 74(3): 497-501.
    [42] Hutchins J E, Tyczkowska K, Araonson A. Liquid chromatographic determination of aflatoxin M1 in milk [J]. J Assoc off Anal Chem, 1984, 81 (4): 709 -713.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700