猪肺炎支原体和猪鼻支原体的基因组测序与比较基因组学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
支原体是一类缺少细胞壁的原核微生物,宿主范围十分广泛,具有高接触性、高传染性和高发病率的特性,而且对常用的作用于细胞壁的抗生素(如p-内酰胺酶类抗生素等)不敏感,因此临床控制十分困难。随着养殖业的快速发展,集约化程度越来越高,国际贸易日趋频繁,动物支原体的危害也逐渐显现,并且形势越来越严峻。由猪肺炎支原体(Mycoplasma hyopneumoniae,Mhp)引起的猪气喘病是严重危害全球养猪业的重大疫病。现已证实,猪肺炎支原体感染导致猪呼吸道纤毛损伤、脱落,从而引起肺炎。由于缺乏有效的遗传操作工具,人们对猪肺炎支原体致病机制方面的研究还相对滞后。目前,猪肺炎支原体毒力因子的研究主要集中在粘附因子方面,其中P97蛋白是最早被证实具有粘附作用的粘附因子,随后为数不多的粘附因子如P102、P146、P159和P216等相继报道,猪肺炎支原体是否存在其他与致病相关的毒力因子尚不明确。本研究以具有明晰进化历程的猪肺炎支原体168亲本株和疫苗株为切入点,通过系统的比较基因组学分析,从核苷酸碱基序列差异、整合性结合元件、引起基因组全长差异的因素、代谢途径差异以及氨基酸水平上的差异对粘附因子、被膜蛋白、蛋白分泌系统、免疫原性蛋白、转运蛋白的影响等方面,开展了猪肺炎支原体在实验室连续传代培养过程中毒力减弱的分子机制研究,为阐明猪肺炎支原体的致病机制提供理论依据。猪鼻支原体和猪肺炎支原体都被划分为猪支原体病的病原,但猪鼻支原体却表现出多样的寄生方式,具有侵染实验室多种细胞(来源于不同物种)的能力。猪肺炎支原体专性定植于呼吸道,而猪鼻支原体能定位于机体中多种组织,能在多种疾病的污染物中分离得到,而且有报道指出猪鼻支原体的长期感染能够诱导癌症的发生。相对于猪肺炎支原体,猪鼻支原体表现出了多样的生活方式,从基因组学层面剖析猪鼻支原体多样的生活方式会加深人们对猪鼻支原体的了解。本课题主要研究内容包括:
     1.猪肺炎支原体、猪鼻支原体的全基因组测序与生物信息学分析
     采用Solexa Genome Analyzer Ⅱx、Roche GS FLX和ABI3730测序系统相结合的优化方案,分别对猪肺炎支原体168亲本株和疫苗株、猪鼻支原体HUB-1株的全基因组序列进行了测定,并利用Multiplex-PCR和ABI Sequencing方法填补基因组序列空缺。在完成了全基因组序列的测定后,通过基因组ORFs的预测.编码区起点终点的校正、基因注释、功能基因分类、IS序列等分析,最终绘制了基因组完成图,其中HUB-1株的全基因组序列是国际上测定并公布在GenBank上的第一株猪鼻支原体全基因组序列。
     根据猪肺炎支原体的基因组信息,开展了基因组共线性分析、IS插入元件分析、膜相关蛋白分析和代谢分析,发掘了与病原菌生长、代谢相关的基因,重建了猪肺炎支原体的代谢通路,一共包括八大代谢门类,依次分别是核苷酸代谢、糖代谢、聚糖的生物合成和代谢、其它氨基酸的代谢、脂质代谢、辅因子和维生素代谢、氨基酸代谢和能量代谢。进一步分析发现猪肺炎支原体的碳源和能量主要来源于糖酵解途径,而在分析糖酵解途径时,猪肺炎支原体不能利用淀粉蔗糖代谢产生的α-D-Glucose-1P,其碳源几乎全部来源于外源葡萄糖的摄取。
     2.猪肺炎支原体亲本株、疫苗株的比较基因组学分析
     比较基因组学的分析主要从核苷酸碱基序列差异、整合性结合元件、引起基因组全长差异的因素、代谢途径差异和氨基酸水平上的差异对粘附因子、被膜蛋白、蛋白分泌系统、免疫原性蛋白、转运蛋白的影响等方面展开。猪肺炎支原体168亲本株和疫苗株基因组全长分别为925576bp和921093bp,两菌株基因组中基因的组成和顺序高度保守。通过对核苷酸碱基序列差异的系统分析,最终挖掘到了330个遗传变异位点(其中包括227个SNVs,60个插入和43个缺失)。有意义的是,目前国际上已报道的猪肺炎支原体毒力相关基因(如:P97, P102, P146, P159, P216等)和主要免疫原性基因(如:P36,P46,P65等)几乎全部包含在这330个遗传变异位点内。深入分析后发现,P97中的氨基酸突变发生在串联重复的短肽序列AAKPV/E中,而AAKPV/E功能域被证明与P97的粘附能力密切相关。P146中的谷氨酰胺的插入发生在[Q]n[(P/S)Q]m串联重复区,脯氨酸和谷氨酰胺富集区会形成polyproline Ⅱ helix的螺旋结构,这一螺旋结构在粘附过程中也十分重要。P216中四个氨基酸(poly Q)的缺失位于poly Q的重复区域,poly Q功能域在维持P216C端P85片段定位于细胞表面起着十分重要的作用,而P85具有粘附能力。P159中的错义突变发生在(S)(S)G(G)S重复区域中。
     进一步从氨基酸水平上分析了遗传变异对转运蛋白的影响。支原体拥有最低程度的新陈代谢以及最小的基因组冗余,为了适应寄生生活,支原体丢失了许多与代谢相关的基因,其营养物质的补给大部分来源于对外源物质的摄取。与此对应,支原体需要许多转运系统,猪肺炎支原体有两套转运系统:一种是磷酸转移酶系统(PTS);一种是ABC transporter转运系统。磷酸转移酶系统在168亲本株传代过程中并没有受到影响。ABC转运系统中MHP168L_394(ABC transporter permeaseprotein)和MHP168L_413(ATP-binding protein)发生了突变,而它们在Mhp体内感染过程中的表达量相对于体外生长时是上调的,提示MHP168L_394和MHP168L_413在猪肺炎支原体感染的过程中发挥着某种作用,转运蛋白的突变很可能影响支原体在宿主细胞内的生存和增殖。对168亲本株和疫苗株的代谢途径进行了差异分析,经鉴定差异基因主要分布在7条代谢通路中,依次分别为糖酵解途径、嘌呤代谢途径、嘧啶代谢途径、甘油磷脂代谢途径、氨酰基tRNA生物合成途径以及磷酸戊糖途径。综上所述,似乎正是这些遗传变异在粘附、免疫、代谢等功能基因中不断地积累,造成了基因功能的改变,最终导致了菌株毒力的差异。
     3.支原体比较基因组学分析
     以支原体科20株支原体的完整基因组序列为研究材料,首先通过BLAST方法进行基因预测、Inparanoid程序寻找直系同源基因对,并采用Tribe MCL方法完成了20株支原体直系同源群的聚类化分析。随后进行了核心基因组学分析,确定了整个支原体科的核心基因。结合核心基因组与已报道的随机转座突变实验结果,系统分析了支原体赖以生存所必须的保守基因,指出在随机转座实验中干扰掉的wecA、 recU、uvrA、uvrB、mutM等基因可能在支原体野外的长期生存中是必须的,而它们在转座实验后短暂的生存能力可能是因为其对IS元件插入的暂时性耐受。通过对核心基因组和猪鼻支原体蛋白功能聚类的比较分析,发现支原体中与氨基酸合成、糖类运输和防御功能相关的蛋白急剧减少,指出了支原体在进化过程中功能基因丢失的趋势。将支原体的196个核心基因分别比对,并将比对结果串联,根据串联基因的比对结果,使用Tree-puzzle,在GTR+gamma+I模型下进行最大相似度拟合,计算支原体菌株间的距离矩阵,最终绘制了支原体科的超级进化树。在进化树的基础上,用Branch-Site方法评估了各分支上支原体在进化过程中自然选择压力的分布情况,发现猪鼻支原体的oriC(复制起始位点)区域受到了显著的自然选择,这很可能与猪鼻支原体拥有广泛的细胞侵染能力有着一定的联系。
Mycoplasmas are widespread in nature as parasites of humans, mammals, reptiles, fish, arthropods, and plants. As conditional pathogenic organism, they associate with various diseases, including pneumonia, arthritis, meningitis and chronic urogenital tract disease. Since Mycoplasmas are total lack of a cell wall, they are not sensitive to β-lactamase drugs, which increases the difficulty of disease prevention and control. With the rapid development of breeding industry, the economic losses caused by Mycoplasmas are gradually revealed.
     Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia, which results in a mild, chronic pneumonia of swine. While progress has been made in understanding the molecular basis of some Mycoplasma diseases, advances in M. hyopneumoniae research have been hampered by its fastidious growth condition and the lack of genetic tools and transformation protocols. To date, few virulence determinants or virulence-associated determinants have been identified. Attachment to the respiratory epithelium is a prerequisite for host colonization and is mediated by the membrane protein P97. This protein is located on the outer membrane surface, and its role in adherence has been firmly established. Previous studies have revealed that P102, P146, P159and P216are also identified as virulence-associated determinants. Whether there is any other virulence factors contributed to M. hyopneumoniae pathogenesis remains largely unknown. In this study, we performed the first comprehensive analysis of M. hyopneumoniae strain168and its attenuated strain and made a preliminary survey of coding sequences (CDSs) that may be related to virulence. M. hyopneumoniae and M. hyorhinis are the causal agents of swine mycoplasmosis. The former causes a mild, chronic pneumonia of swine and results in deactivation of mucociliary functions. This agent is infective for a single host species. M. hyorhinis is generally considered a swine pathogen, yet is most commonly infect laboratory cell lines, implying that it can thrive among different species of cell lines. A strong link between M. hyorhinis and human cancer was reported recently. Interest has therefore shifted to questions of why M. hyorhinis exhibit high levels of functional diversity. The main researches are described as follows.1. Genome Sequencing and bioinformatics analysis of M. hyopneumoniae and M. hyorhinis
     Whole-genome sequencing was performed by combining GS FLX, ABI3730and Solexa paired-end sequencing technologies. Gaps were filled by local assembly of the Solexa/Roche454reads or sequencing PCR products using an ABI3730capillary sequencer. Open reading frames containing more than30amino acid residues were predicted using Glimmer3.0and verified by comparing with closely related genome sequences. This is the first complete genome sequence of M. hyorhinis, and its availability will provide a better defined genetic background for future studies of gene expression and regulation.
     We have constructed the metabolic network of M. hyopneumoniae, including eight metabolic pathways:Nucleotide Metabolism, Glycolysis, Glycan Biosynthesis and Metabolism, Lipid Metabolism, Metabolism of Cofactors and Vitamins, Amino Acid Metabolism, and Energy Metabolism。 Further analysis revealed that, the carbon source and energy are mainly produced by the glycolytic pathway. However, M. hyopneumoniae fails to utilize a-D-Glucose-1P, and almost all the carbon source comes from the uptake of exogenous glucose.
     2. Comparative genomic analyses of Mycoplasma hyopneumoniae pathogenic168strain and its high-passaged attenuated strain
     To gain new insight into the components that contribute to virulence and the mechanisms by which M. yopneumoniae causes disease, we sequenced the genomes of strains168and168-L. The168-L genome has a highly similar gene content and order to that of168, but is4,483bp smaller because there are60insertions nd43deletions in168-L. Besides these indels,227single nucleotide variations (SNVs) were identified. We further investigated the variants affected CDSs, and compared them to reported virulence determinants. Notably, almost all the reported virulence determinants are included in these variants affected CDSs, including mycoplasma adhesins (P97, P102, P146, P159, P216, and LppT), cell envelope roteins (P95), cell surface antigens (P36), secreted proteins and chaperone protein (DnaK), mutations in genes elated to metabolism and growth. Furthermore, many mutations were located in the previously described repeat motif, which may be of primary importance for irulence.
     As Mycoplasmas are dependent on the exogenous supply of many nutrients, it has been predicted that they may need many transport systems. M. hyopneumoniae has two transport systems, including PTS transporter system and ABC transporter system. No mutations were identified in this PTS transporter family. However, five missense mutations and one synonymous substitution were identified in ABC transporter family. These included an ABC transporter permease protein (MHP168L_394) and ABC transporter ATP-binding proteins (MHP168L_413). Interestingly, the expression of MHP168L_394and MHP168L_413was reported to be up-regulated in vivo during disease relative to in vitro-grown. The variability between strains168and168-L in multi-transport proteins indicates that they may affect growth and survival in different hosts or host tissues.
     3. Comparative genomics of Mycoplasma: analysis of conserved essential genes and diversity of the pan-Genome
     Mycoplasma, the smallest self-replicating organism with a minimal metabolism and little genomic redundancy, is expected to be a close approximation to the minimal set of genes needed to sustain bacterial life. This study employs comparative evolutionary analysis of twenty Mycoplasma genomes to gain an improved understanding of essential genes. By analyzing the core genome of mycoplasmas, we finally revealed the conserved essential genes set for mycoplasma survival. Further analysis showed that the core genome set has many characteristics in common with experimentally identified essential genes. Several key genes, which are related to DNA replication and repair and can be disrupted in transposon mutagenesis studies, may be critical for bacteria survival especially over long period natural selection. Phylogenomic reconstructions based on3,355homologous groups allowed robust estimation of phylogenetic relatedness among mycoplasma strains. To obtain deeper insight into the relative roles of molecular evolution in pathogen adaptation to their hosts, we also analyzed the positive selection pressures on particular sites and lineages. The oriC region was identified to be under positive selection in the HUB-1lineage. Previous studies have already demonstrated that replication may contribute to proliferation and efficiency of the colonization of hostile environments. Therefore, we suspected that selection pressure on oriC may be one of the reasons why M. hyorhinis can thrive among different species of cell lines.
引文
1.曹培丽,李媛,陈超,郭丹,辛九庆,李继昌.猪肺炎支原体p52蛋白的原核表达及抗血清制备.中国预防兽医学报,2009,(2)
    2.曹玉璞,叶元康主编.支原体与支原体病[M].北京:人民卫生出版社,2000,43-45.
    3.华蔚颖.应用454测序技术分析菌群结构的方法学研究[硕士论文].上海交通大学.2010.
    4.金洪效,储静华,毛洪先,常运生,邵国青,樊素琴.猪气喘病弱毒菌株免疫研究.中国兽医科技,1989,(9)
    5.李继庚,王桂敏,丁庆猷,王绍华,周泰冲.猪喘气病弱毒疫苗的研究-猪肺炎霉形体兔化弱毒株的培育.中国农业科学.1989,(6)
    6.刘星,张丽芳,杨玉萍,李红.抗猪鼻支原体单克隆抗体的研制及双抗体夹心ELISA检测法的建立.中国比较医学杂志,2008,18(3):55-58.
    7.马华崇,马汉,张艳丽.胃癌组织中猪鼻支原体的分离培养与鉴定[J].中国人畜共患病杂志,2003,19:27-3.
    8.马华崇,马汉,寿成超.支原体感染与肿瘤的发生.中国肿瘤,2002,11(2):101-103.
    9.马丰英,邹浩勇,何启盖.表达猪肺炎支原体免疫原性基因的重组猪霍乱沙门氏菌对小鼠的免疫原性.微生物学报,2011,(3)
    10.马丰英,姚睿玉,邹浩勇,刘新军,何启盖.猪支原体肺炎亚单位疫苗的免疫应答.中国兽医学报,2012,(4)
    11.邵国青,刘茂军,靳岷.检测猪肺炎支原体抗体间接ELISA方法的建立.江苏农业学报,2007,23(5):437-441.
    12.邵国青,蔡宝祥.猪肺炎支原体的分子生物学研究进展.中国人兽共患病杂志,1999,(2)
    13.熊焰,孙霞,苟琳.猪肺炎支原体MY-99株膜蛋白SDS-PAGE分析及免疫原性研究.畜牧兽医学报,2004,35(1):74-78.
    14.杨玉萍,刘星,张丽芳,李红.猪鼻支原体感染免疫胶体金快速检测卡的研制.中国比较医学杂志,2007,17(2):84-87.
    15.姚睿玉,何启盖,周锐,陈焕春.猪肺炎支原体乳酸脱氢酶基因的克隆、表达、纯化及其间接elisa检测方法的建立.中国兽医学报,2007,(5)
    16.叶宝宏,杨柳.猪肺炎支原体的免疫学研究现状.榆林学院学报,2009,192.2.
    17.王华,张清,王君玮.猪支原体肺炎流行病学和诊断技术研究进展.动物医学进展,2009,30(9):73-77.
    18.肖国生,文心田,吕祖德.猪支原体肺炎诊断技术.中国兽药杂志,2003,37(7): 36-39.
    19.祝永琴,冯志新,刘茂军,吴叙苏,邵国青.猪肺炎支原体p36蛋白间接elisa检测方法的建立.江苏农业学报,2010,(3)
    20.周哲敏.比较基因组学的生物信息学分析方法建立及极端嗜酸甲烷氧化细菌V4、大肠杆菌055:H7菌株CB9615和K-12菌株BW2952及其5株衍生菌株的全基因组破译.[博士学位论文].南开大学,2010.
    21. Adams C, Pitzer J, Minion F C. In vivo expression analysis of the P97 and P102 paralog families of Mycoplasma hyopneumoniae. Infect Immun, 2005, 73: 7784-7787.
    22. Artiushin S, Stipkovits L, Minion F C. Development of polymerase chain reaction primers to detect Mycoplasma hyopneumoniae. Mol Cell Probes, 1993,7:381-385.
    23. Bairoch A, Apweiler R. The SWISS-PROT protein sequence data bank and its new supplement TREMBL. Nucleic Acids Res, 1996, 24:21-25.
    24. Bannantine J P, Baechler E, Zhang Q, Li L, Kapur V. Genome scale comparison of Mycobacterium avium subsp. paratuberculosis with Mycobacterium avium subsp. avium reveals potential diagnostic sequences. J Clin Microbiol, 2002, 40: 1303-1310.
    25. Bao Q, Tian Y, Li W, Xu Z, Xuan Z, Hu S, Dong W, Yang J, Chen Y, Xue Y, Xu Y, Lai X, Huang L, Dong X, Ma Y, Ling L, Tan H, Chen R, Wang J, Yu J. A complete sequence of the T. tengcongensis genome. Genome Res, 2002, 12:689-700.
    26. Bapteste E, Boucher Y, Leigh J, Doolittle W F. Phylogenetic reconstruction and lateral gene transfer. Trends Microbiol, 2004, 12:406-411.
    27. Baskerville A,Wright C L. Ultrastructural changes in experimental enzootic pneumonia of pigs. Res Vet Sci, 1973,14:155-160.
    28. Batzoglou S, Jaffe D, Stanley K, Butler J, Gnerre S, Mauceli E, Berger B, Mesirov J, Lander E. ARACHNE:a whole-genome shotgun assembler. Genome Res, 2002, 12: 177-189.
    29. Baumeister A K, Runge M, Ganter M, Feenstra A A, Delbeck F, Kirchhoff H. Detection of Mycoplasma hyopneumoniae in bronchoalveolar lavage fluids of pigs by PCR. J Clin Microbiol, 1998, 36:1984-1988.
    30. Belloy L, Vilei E M, Giacometti M, Frey J. Characterization of LppS, an adhesin of Mycoplasma conjunctivae. Microbiology, 2003,149:185-193.
    31. Bennett S. Solexa Ltd. Pharmacogenomics, 2004, 5:433-438.
    32. Benson D A, Karsch-Mizrachi I, Lipman D J, Ostell J, Rapp B A,Wheeler D L. GenBank. Nucleic Acids Res,2000,28:15-18.
    33. Bentley D R, Balasubramanian S, Swerdlow H P, Smith G P, Milton J, Brown C G, Hall K P, Evers D J, Barnes C L, Bignell H R, Boutell J M, Bryant J, Carter R J, Keira Cheetham R, Cox A J, Ellis D J, Flatbush M R, Gormley N A, Humphray S J, Irving L J. Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 2008,456:53-59.
    34. Bentley S D, Chater K F, Cerdeno-Tarraga A M, Challis G L, Thomson N R, James K D, Harris D E, Quail M A, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen C W, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 2002,417:141-147.
    35. Bentley S D, Parkhill J. Comparative genomic structure of prokaryotes. Annu Rev Genet,2004,38:771-792.
    36. Bereiter M, Young T F, Joo H S, Ross R F. Evaluation of the ELISA and comparison to the complement fixation test and radial immunodiffusion enzyme assay for detection of antibodies against Mycoplasma hyopneumoniae in swine serum. Vet Microbiol,1990,25:177-192.
    37. Blanchard B, Kobisch M, Bove J M, Saillard C. Polymerase chain reaction for Mycoplasma hyopneumoniae detection in tracheobronchiolar washings from pigs. Mol Cell Probes,1996,10:15-22.
    38. Blanchard B, Vena M M, Cavalier A, Le Lannic J, Gouranton J, Kobisch M. Electron microscopic observation of the respiratory tract of SPF piglets inoculated with Mycoplasma hyopneumoniae. Vet Microbiol,1992,30:329-341.
    39. Bogema D R, Deutscher A T, Woolley L K, Seymour L M, Raymond B B, Tacchi J L, Padula M P, Dixon N E, Minion F C, Jenkins C, Walker M J, Djordjevic S P. Characterization of cleavage events in the multifunctional cilium adhesin Mhp684 (P146) reveals a mechanism by which Mycoplasma hyopneumoniae regulates surface topography. MBio,2012,3.
    40. Burnett T A, Dinkla K, Rohde M, Chhatwal G S, Uphoff C, Srivastava M, Cordwell S J, Geary S, Liao X, Minion F C, Walker M J, Djordjevic S P. P159 is a proteolytically processed, surface adhesin of Mycoplasma hyopneumoniae:defined domains of P159 bind heparin and promote adherence to eukaryote cells. Mol Microbiol,2006,60:669-686.
    41. Burris J, Cook-Deegan R, Alberts B. The Human Genome Project after a decade: policy issues. Nat Genet,1998,20:333-335.
    42. Calcutt M J, Lewis M S, Wise K S. Molecular genetic analysis of ICEF, an integrative conjugal element that is present as a repetitive sequence in the chromosome of Mycoplasma fermentans PG18. J Bacteriol, 2002, 184:6929-6941.
    43. Calderon-Copete S P, Wigger Q Wunderlin C, Schmidheini T, Frey J, Quail M A, Falquet L. The Mycoplasma conjunctivae genome sequencing, annotation and analysis. BMC Bioinformatics, 2009, 10 Suppl 6:S7.
    44. Carver T, Berriman M, Tivey A, Patel C, Bohme U, Barrell B G, Parkhill J, Rajandream M A. Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics,2008,24:2672-2676.
    45. Chambaud I, Heilig R, Ferris S, Barbe V, Samson D, Galisson F, Moszer I, Dybvig K, Wroblewski H, Viari A, Rocha E P, Blanchard A. The complete genome sequence of the murine respiratory pathogen Mycoplasma pulmonis. Nucleic Acids Res, 2001,29: 2145-2153.
    46. Cheikh Saad Bouh K, Shareck F, Dea S. Monoclonal antibodies to Escherichia coli-expressed P46 and P65 membranous proteins for specific immunodetection of Mycoplasma hyopneumoniae in lungs of infected pigs. Clin Diagn Lab Immunol, 2003,10:459-468.
    47. Chen A Y, Fry S R, Forbes-Faulkner J, Daggard G E, Mukkur T K. Comparative immunogenicity of M. hyopneumoniae NrdF encoded in different expression systems delivered orally via attenuated S. typhimurium aroA in mice. Vet Microbiol, 2006,114: 252-259.
    48. Chen C, Tang J, Dong W, Wang C, Feng Y, Wang J, Zheng F, Pan X, Liu D, Li M, Song Y, Zhu X, Sun H, Feng T, Guo Z, Ju A, Ge J, Dong Y, Sun W, Jiang Y. A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. PLoS One, 2007, 2:e315.
    49. Chen J R, Liao C W, Mao S J, Weng C N. A recombinant chimera composed of repeat region RR1 of Mycoplasma hyopneumoniae adhesin with Pseudomonas exotoxin: in vivo evaluation of specific IgG response in mice and pigs. Vet Microbiol, 2001,80: 347-357.
    50. Chen Y L, Wang S N, Yang W J, Chen Y J, Lin H H, Shiuan D. Expression and immunogenicity of Mycoplasma hyopneumoniae heat shock protein antigen P42 by DNA vaccination. Infect Immun,2003,71:1155-1160.
    51. Ciprian A, Pijoan C, Cruz T, Camacho J, Tortora J, Colmenares G, Lopez-Revilla R, de la Garza M. Mycoplasma hyopneumoniae increases the susceptibility of pigs to experimental Pasteurella multocida pneumonia. Can J Vet Res, 1988,52:434-438.
    52. Conceicao F R, Moreira A N, Dellagostin O A. A recombinant chimera composed of R1 repeat region of Mycoplasma hyopneumoniae P97 adhesin with Escherichia coli heat-labile enterotoxin B subunit elicits immune response in mice. Vaccine, 2006, 24: 5734-5743.
    53. Dandekar T, Huynen M, Regula J T, Ueberle B, Zimmermann C U, Andrade M A, Doerks T, Sanchez-Pulido L, Snel B, Suyama M, Yuan Y P, Herrmann R, Bork P. Re-annotating the Mycoplasma pneumoniae genome sequence:adding value, function and reading frames. Nucleic Acids Res,2000,28:3278-3288.
    54. de Castro L A, Rodrigues Pedroso T, Kuchiishi S S, Ramenzoni M, Kich J D, Zaha A, Henning Vainstein M, Bunselmeyer Ferreira H. Variable number of tandem aminoacid repeats in adhesion-related CDS products in Mycoplasma hyopneumoniae strains. Vet Microbiol,2006,116:258-269.
    55. Delcher A L, Bratke K A, Powers E C, Salzberg S L. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics,2007,23:673-679.
    56. DeLong E E. Microbial community genomics in the ocean. Nature Reviews Microbiology, 2005,3:459-469.
    57. DeLong E F, Karl D M. Genomic perspectives in microbial oceanography. Nature, 2005,437:336-342.
    58. Djordjevic S P, Cordwell S J, Djordjevic M A, Wilton J, Minion F C. Proteolytic processing of the Mycoplasma hyopneumoniae cilium adhesin. Infect Immun, 2004, 72:2791-2802.
    59. Elkind E, Rechnitzer H, Vaisid T, Kornspan J D, Barnoy S, Rottem S, Kosower N S. Mycoplasma hyorhinis upregulates calpastatin and inhibits calpain-dependent proteolysis in SH-SY5Y neuroblastoma cells. FEMS Microbiol Lett, 2010, 304: 62-68.
    60. Emmert D B, Stoehr P J, Stoesser G, Cameron G N. The European Bioinformatics Institute (EBI) databases. Nucleic Acids Res,1994,22:3445-3449.
    61. Fagan P K, Walker M J, Chin J, Eamens G J, Djordjevic S P. Oral immunization of swine with attenuated Salmonella typhimurium aroA SL3261 expressing a recombinant antigen of Mycoplasma hyopneumoniae (NrdF) primes the immune system for a NrdF specific secretory IgA response in the lungs. Microb Pathog, 2001, 30:101-110.
    62. Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, Liu Y, Hu X, Jia P, Zhao Q, Ying K, Yu S, Tang Y, Weng Q, Zhang L, Lu Y, Mu J, Zhang L S. Sequence and analysis of rice chromosome 4. Nature, 2002, 420:316-320.
    63. Fitch W M. Distinguishing homologous from analogous proteins. Syst Zool, 1970, 19: 99-113.
    64. Fleischmann R D, Adams M D, White O, Clayton R A, Kirkness E F, Kerlavage A R, Bult C J, Tomb J F, Dougherty B A, Merrick J M,et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 1995,269: 496-512.
    65. Fournier P E, Drancourt M, Raoult D. Bacterial genome sequencing and its use in infectious diseases. Lancet Infect Dis,2007,7: 711-723.
    66. Fraser C M, Gocayne J D, White O, Adams M D, Clayton R A, Fleischmann R D, Bult C J, Kerlavage A R, Sutton G, Kelley J M, Fritchman R D, Weidman J F, Small K V, Sandusky M, Fuhrmann J, Nguyen D, Utterback T R, Saudek D M, Phillips C A, Merrick J M. The minimal gene complement of Mycoplasma genitalium. Science, 1995,270:397-403.
    67. Frazer L. Organic electronics: a cleaner substitute for silicon. Environ Health Perspect, 2003,111:A288-291.
    68. Frey J, Haldimann A, Kobisch M, Nicolet J. Immune response against the L-lactate dehydrogenase of Mycoplasma hyopneumoniae in enzootic pneumonia of swine. Microb Pathog, 1994, 17:313-322.
    69. Futo S, Seto Y, Okada M, Sato S, Suzuki T, Kawai K, Imada Y, Mori Y. Recombinant 46-kilodalton surface antigen (P46) of Mycoplasma hyopneumoniae expressed in Escherichia coli can be used for early specific diagnosis of mycoplasmal pneumonia of swine by enzyme-linked immunosorbent assay. J Clin Microbiol, 1995, 33: 680-683.
    70. Gabaldon T. Large-scale assignment of orthology: back to phylogenetics? Genome Biol, 2008, 9:235.
    71. Galli V, Simionatto S, Marchioro S B, Fisch A, Gomes C K, Conceicao F R, Dellagostin O A. Immunisation of mice with Mycoplasma hyopneumoniae antigens P37, P42, P46 and P95 delivered as recombinant subunit or DNA vaccines. Vaccine, 2012,31:135-140.
    72. Gil R, Silva F J, Pereto J, Moya A. Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev, 2004,68:518-537.
    73. Glass J I, Assad-Garcia N, Alperovich N, Yooseph S, Lewis M R, Maruf M, Hutchison C A, 3rd, Smith H O, Venter J C. Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A, 2006,103:425-430.
    74. Glass J I, Lefkowitz E J, Glass J S, Heiner C R, Chen E Y, Cassell G H. The complete sequence of the mucosal pathogen Ureaplasma urealyticum. Nature, 2000, 407: 757-762.
    75. Haldimann A, Nicolet J, Frey J. DNA sequence determination and biochemical analysis of the immunogenic protein P36, the lactate dehydrogenase (LDH) of Mycoplasma hyopneumoniae. J Gen Microbiol, 1993,139:317-323.
    76. Himmelreich R, Hilbert H, Plagens H, Pirkl E, Li B C, Herrmann R. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res,1996,24:4420-4449.
    77. Hirsh A E, Fraser H B. Protein dispensability and rate of evolution. Nature, 2001,411: 1046-1049.
    78. Howard M B, Ekborg N A, Taylor L E, Hutcheson S W, Weiner R M. Identification and analysis of polyserine linker domains in prokaryotic proteins with emphasis on the marine bacterium Microbulbifer degradans. Protein Sci, 2004, 13:1422-1425.
    79. Hsu T, Minion F C. Identification of the cilium binding epitope of the Mycoplasma hyopneumoniae P97 adhesin. Infect Immun, 1998,66:4762-4766.
    80. Hsu T, Artiushin S, Minion F C. Cloning and functional analysis of the P97 swine cilium adhesin gene of Mycoplasma hyopneumoniae. J Bacteriol, 1997, 179: 1317-1323.
    81. Huang X C, Quesada M A, Mathies R A. DNA sequencing using capillary array electrophoresis. Anal Chem, 1992,64:2149-2154.
    82. Hughes D. Evaluating genome dynamics:the constraints on rearrangements within bacterial genomes. Genome Biol, 2000, 1:REVIEWS0006.
    83. Huson D H, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol,2006,23:254-267.
    84. Hutchison C A, Peterson S N, Gill S R, Cline R T, White O, Fraser C M, Smith H O, Venter J C. Global transposon mutagenesis and a minimal Mycoplasma genome. Science,1999,286:2165-2169.
    85. Jaffe D, Butler J, Gnerre S, Mauceli E, Lindblad-Toh K, Mesirov J, Zody M, Lander E. Whole-genome sequence assembly for mammalian genomes:Arachne 2. Genome Res,2003,13:91-96.
    86. Jaffe J D, Stange-Thomann N, Smith C, DeCaprio D, Fisher S, Butler J, Calvo S, Elkins T, FitzGerald M G, Hafez N, Kodira C D, Major J, Wang S, Wilkinson J, Nicol R, Nusbaum C, Birren B, Berg H C, Church G M. The complete genome and proteome of Mycoplasma mobile. Genome Res, 2004,14:1447-1461.
    87. Jensen R A. Orthologs and paralogs - we need to get it right. Genome Biol, 2001,2: INTERACTIONS 1002.
    88. Jin Q, Yuan Z, Xu J, Wang Y, Shen Y, Lu W, Wang J, Liu H, Yang J, Yang F, Zhang X, Zhang J, Yang G, Wu H, Qu D, Dong J, Sun L, Xue Y, Zhao A, Gao Y. Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and 0157. Nucleic Acids Res, 2002,30: 4432-4441.
    89. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment. Nucleic Acids Res,2008,36:D480-D484.
    90. Kay B K, Williamson M P, Sudol M. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J, 2000,14:231-241.
    91. Ketcham C M, Anai S, Reutzel R, Sheng S, Schuster S M, Brenes R B, Agbandje-McKenna M, McKenna R, Rosser C J, Boehlein S K. p37 Induces tumor invasiveness. Mol Cancer Ther, 2005, 4: 1031-1038.
    92. Kim M F, Heidari M B, Stull S J, McIntosh M A, Wise K S. Identification and mapping of an immunogenic region of Mycoplasma hyopneumoniae p65 surface lipoprotein expressed in Escherichia coli from a cloned genomic fragment. Infect Immun,1990,58:2637-2643.
    93. Koonin E V, Makarova K S, Aravind L. Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol, 2001,55:709-742.
    94. Kosiol C, Vinar T, da Fonseca R R, Hubisz M J, Bustamante C D, Nielsen R, Siepel A. Patterns of positive selection in six Mammalian genomes. PLoS Genet, 2008, 4: e1000144.
    95. Koski L B, Golding G B. The closest BLAST hit is often not the nearest neighbor. J Mol Evol,2001,52:540-542.
    96. Kumar S, Tamura K, Nei M. MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers. Comput Appl Biosci, 1994, 10:189-191.
    97. Kunst F, Ogasawara N, Moszer I, Albertini A M, Alloni G, Azevedo V, Bertero M G, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell S C, Bron S, Brouillet S, Bruschi C V, Caldwell B, Capuano V. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, 1997,390:249-256.
    98. Kurtz S, Phillippy A, Delcher A L, Smoot M, Shumway M, Antonescu C, Salzberg S L. Versatile and open software for comparing large genomes. Genome Biol, 2004, 5: R12.
    99. Kuznetsova E, Proudfoot M, Sanders S A, Reinking J, Savchenko A, Arrowsmith C H, Edwards A M, Yakunin A F. Enzyme genomics: Application of general enzymatic screens to discover new enzymes. FEMS Microbiol Rev, 2005,29:263-279.
    100. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009,25:1754-1760.
    101. Li L, Stoeckert C J, Jr., Roos D S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res, 2003,13:2178-2189.
    102. Li Y Z, Ho Y P, Chen S T, Shiuan D. Proteomic analysis of the interactions between Mycoplasma hyopneumoniae and porcine tracheal ciliated cells. Appl Biochem Biotechnol,2010,160:2248-2255.
    103. Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M. Comparison of next-generation sequencing systems. J Biomed Biotechnol,2012:251364.
    104. Liu W, Fang L, Li S, Li Q, Zhou Z, Feng Z, Luo R, Shao G, Wang L, Chen H, Xiao S. Complete genome sequence of Mycoplasma hyorhinis strain HUB-1. J Bacteriol, 2010,192:5844-5845.
    105. Lorenz P, Eck J. Metagenomics and industrial applications. Nat Rev Microbiol,2005, 3:510-516.
    106. Lowe T M, Eddy S R. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res, 1997, 25:955-964.
    107. Madsen M L, Nettleton D, Thacker E L, Edwards R, Minion F C. Transcriptional profiling of Mycoplasma hyopneumoniae during heat shock using microarrays. Infect Immun,2006,74:160-166.
    108. Madsen M L, Nettleton D, Thacker E L, Minion F C. Transcriptional profiling of Mycoplasma hyopneumoniae during iron depletion using microarrays. Microbiology, 2006,152:937-944.
    109. Madsen M L, Oneal M J, Gardner S W, Strait E L, Nettleton D, Thacker E L, Minion F C. Array-based genomic comparative hybridization analysis of field strains of Mycoplasma hyopneumoniae. J Bacteriol,2007, 189:7977-7982.
    110. Madsen M L, Puttamreddy S, Thacker E L, Carruthers M D, Minion F C. Transcriptome changes in Mycoplasma hyopneumoniae during infection. Infect Immun,2008,76:658-663.
    111. Maes D, Segales J, Meyns T, Sibila M, Pieters M, Haesebrouck F. Control of Mycoplasma hyopneumoniae infections in pigs. Vet Microbiol, 2008,126:297-309.
    112. Maione D, Margarit I, Rinaudo C D, Masignani V, Mora M, Scarselli M, Tettelin H, Brettoni C, Iacobini E T, Rosini R, D'Agostino N, Miorin L, Buccato S, Mariani M, Galli G, Nogarotto R, Nardi-Dei V, Vegni F, Fraser C, Mancuso G Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science, 2005, 309:148-150.
    113. Mardis E R. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet,2008,9:387-402.
    114. Margulies M, Egholm M, Altman W E, Attiya S, Bader J S, Bemben L A, Berka J, Braverman M S, Chen Y J, Chen Z, Dewell S B, Du L, Fierro J M, Gomes X V, Godwin B C, He W, Helgesen S, Ho C H, Irzyk G P, Jando S C. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005,437: 376-380.
    115. Mattsson J G, Bergstrom K, Wallgren P, Johansson K E. Detection of Mycoplasma hyopneumoniae in nose swabs from pigs by in vitro amplification of the 16S rRNA gene. J Clin Microbiol,1995,33:893-897.
    116. Maxam A M, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A,1977,74:560-564.
    117. Maxam A M,Gilbert W. A new method for sequencing DNA. 1977. Biotechnology, 1992,24:99-103.
    118. Meyns T, Maes D, Calus D, Ribbens S, Dewulf J, Chiers K, de Kruif A, Cox E, Decostere A, Haesebrouck F. Interactions of highly and low virulent Mycoplasma hyopneumoniae isolates with the respiratory tract of pigs. Vet Microbiol, 2007, 120: 87-95.
    119. Minion F C, Adams C, Hsu T. R1 region of P97 mediates adherence of Mycoplasma hyopneumoniae to swine cilia. Infect Immun, 2000, 68:3056-3060.
    120. Minion F C, Lefkowitz E J, Madsen M L, Cleary B J, Swartzell S M, Mahairas G G The genome sequence of Mycoplasma hyopneumoniae strain 232, the agent of swine mycoplasmosis. J Bacteriol, 2004,186: 7123-7133.
    121. Mongodin E F, Nelson K E, Daugherty S, Deboy R T, Wister J, Khouri H, Weidman J, Walsh D A, Papke R T, Sanchez Perez G, Sharma A K, Nesbo C L, MacLeod D, Bapteste E, Doolittle W F, Charlebois R L, Legault B, Rodriguez-Valera F. The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci U S A, 2005,102: 18147-18152.
    122. Morelli G, Song Y, Mazzoni C J, Eppinger M, Roumagnac P, Wagner D M, Feldkamp M, Kusecek B, Vogler A J, Li Y, Cui Y, Thomson N R, Jombart T, Leblois R, Lichtner P, Rahalison L, Petersen J M, Balloux F, Keim P, Wirth T. Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet, 2010,42:1140-1143.
    123. Morowitz H J, Tourtellotte M E. The smallest living cells. Sci Am, 1962, 206: 117-126.
    124. Namiki K, Goodison S, Porvasnik S, Allan R W, Iczkowski K A, Urbanek C, Reyes L, Sakamoto N, Rosser C J. Persistent exposure to Mycoplasma induces malignant transformation of human prostate cells. PLoS One, 2009, 4:e6872.
    125. O'Brien K P, Remm M, Sonnhammer E L. Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res, 2005, 33:D476-480.
    126. Ochman H, Moran N A. Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science, 2001,292:1096-1099.
    127. Oelschlaeger T A, Hacker J. Impact of pathogenicity islands in bacterial diagnostics. APMIS,2004,112:930-936.
    128. Ogawa Y, Oishi E, Muneta Y, Sano A, Hikono H, Shibahara T, Yagi Y, Shimoji Y. Oral vaccination against mycoplasmal pneumonia of swine using a live Erysipelothrix rhusiopathiae vaccine strain as a vector. Vaccine, 2009,27: 4543-4550.
    129. Okamba F R, Arella M, Music N, Jia J J, Gottschalk M, Gagnon C A. Potential use of a recombinant replication-defective adenovirus vector carrying the C-terminal portion of the P97 adhesin protein as a vaccine against Mycoplasma hyopneumoniae in swine. Vaccine,2010,28:4802-4809.
    130. Oneal M J, Schafer E R, Madsen M L, Minion F C. Global transcriptional analysis of Mycoplasma hyopneumoniae following exposure to norepinephrine. Microbiology, 2008,154:2581-2588.
    131. Ouzounis C, Kyrpides N. The emergence of major cellular processes in evolution. FEBS Lett,1996,390:119-123.
    132. Ozsolak F, Platt A R, Jones D R, Reifenberger J G, Sass L E, McInerney P, Thompson J F, Bowers J, Jarosz M, Milos P M. Direct RNA sequencing. Nature, 2009,461:814-818.
    133. Papazisi L, Gorton T S, Kutish G, Markham P F, Browning G F, Nguyen D K, Swartzell S, Madan A, Mahairas G, Geary S J. The complete genome sequence of the avian pathogen Mycoplasma gallisepticum strain R(low). Microbiology, 2003,149: 2307-2316.
    134. Park S C, Yibchok-Anun S, Cheng H, Young T F, Thacker E L, Minion F C, Ross R F, Hsu W H. Mycoplasma hyopneumoniae increases intracellular calcium release in porcine ciliated tracheal cells. Infect Immun, 2002, 70:2502-2506.
    135. Parkhill J, Dougan G, James K D, Thomson N R, Pickard D, Wain J, Churcher C, Mungall K L, Bentley S D, Holden M T, Sebaihia M, Baker S, Basham D, Brooks K, Chillingworth T, Connerton P, Cronin A, Davis P, Davies R M, Dowd L. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature,2001,413:848-852.
    136. Parkhill J, Sebaihia M, Preston A, Murphy L D, Thomson N, Harris D E, Holden M T, Churcher C M, Bentley S D, Mungall K L, Cerdeno-Tarraga A M, Temple L, James K, Harris B, Quail M A, Achtman M, Atkin R, Baker S, Basham D, Bason N. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet, 2003,35:32-40.
    137. Perna N T, Plunkett G, 3rd, Burland V, Mau B, Glasner J D, Rose D J, Mayhew G F, Evans P S, Gregor J, Kirkpatrick H A, Posfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck E J, Davis N W, Lim A, Dimalanta E T. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature, 2001,409: 529-533.
    138. Pinto P M, Klein C S, Zaha A, Ferreira H B. Comparative proteomic analysis of pathogenic and non-pathogenic strains from the swine pathogen Mycoplasma hyopneumoniae. Proteome Sci, 2009, 7:45.
    139. Pinto PM, de Carvalho MO, Alves-Junior L, Brocchi M, Schrank IS:Molecular analysis of an integrative conjugative element, ICEH, present in the chromosome of different strains of Mycoplasma hyopneumoniae. Genet Mol Biol, 2007, 30:256-263.
    140. Pushkarev D, Neff N F, Quake S R. Single-molecule sequencing of an individual human genome. Nat Biotechnol, 2009, 27:847-850.
    141. Quail M A, Smith M, Coupland P, Otto T D, Harris S R, Connor T R, Bertoni A, Swerdlow H P, Gu Y. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics, 2012,13:341.
    142. Razin S. Molecular biology and genetics of mycoplasmas (Mollicutes). Microbiol Rev, 1985,49:419-455.
    143. Razin S, Yogev D, Naot Y. Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev, 1998, 62:1094-1156.
    144. Remm M, Storm C E, Sonnhammer E L. Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol Biol, 2001,314:1041-1052.
    145. Rosamond J, Allsop A. Harnessing the power of the genome in the search for new antibiotics. Science,2000,287: 1973-1976.
    146. Ross R F. Mycoplasmal Disease, Swine Diease,6th edition Iowa.1986: 496-483.
    147. Ross R F, Mycoplasmal disease, Disease of Swine ,8th edition, Iowastate university press. Ames, 1999, 495-509.
    148. Sanderson K E, Roth J R. Linkage map of Salmonella typhimurium, edition VII. Microbiol Rev,1988,52:485-532.
    149. Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A,1977,74:5463-5467.
    150. Sasaki Y, Ishikawa J, Yamashita A, Oshima K, Kenri T, Furuya K, Yoshino C, Horino A, Shiba T, Sasaki T, Hattori M. The complete genomic sequence of Mycoplasma penetrans, an intracellular bacterial pathogen in humans. Nucleic Acids Res,2002,30:5293-5300.
    151. Schafer E R, Oneal M J, Madsen M L, Minion F C. Global transcriptional analysis of Mycoplasma hyopneumoniae following exposure to hydrogen peroxide. Microbiology, 2007, 153:3785-3790.
    152. Schmidt H A, Strimmer K, Vingron M, von Haeseler A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics,2002,18:502-504.
    153. Schmidt J A, Browning G F, Markham P F. Mycoplasma hyopneumoniae p65 surface lipoprotein is a lipolytic enzyme with a preference for shorter-chain fatty acids. J Bacteriol,2004,186:5790-5798.
    154. Schubert S, Rakin A, Heesemann J. The Yersinia high-pathogenicity island (HPI): evolutionary and functional aspects. Int J Med Microbiol, 2004, 294:83-94.
    155. Schuster S C. Next-generation sequencing transforms today's biology. Nat Methods, 2008,5:16-18.
    156. Seymour L M, Jenkins C, Deutscher A T, Raymond B B, Padula M P, Tacchi J L, Bogema D R, Eamens G J, Woolley L K, Dixon N E, Walker M J, Djordjevic S P. Mhp182 (P102) binds fibronectin and contributes to the recruitment of plasmin(ogen) to the Mycoplasma hyopneumoniae cell surface. Cell Microbiol, 2012,14:81-94.
    157. Shapiro B J, Alm E J. Comparing patterns of natural selection across species using selective signatures. PLoS Genet, 2008,4:e23.
    158. Shimoji Y, Oishi E, Kitajima T, Muneta Y, Shimizu S, Mori Y. Erysipelothrix rhusiopathiae YS-1 as a live vaccine vehicle for heterologous protein expression and intranasal immunization of pigs. Infect Immun, 2002,70:226-232.
    159. Shimoji Y, Oishi E, Muneta Y, Nosaka H, Mori Y. Vaccine efficacy of the attenuated Erysipelothrix rhusiopathiae YS-19 expressing a recombinant protein of Mycoplasma hyopneumoniae P97 adhesin against mycoplasmal pneumonia of swine. Vaccine,2003,21:532-537.
    160. Simionatto S, Marchioro S B, Galli V, Brum C B, Klein C S, Rebelatto R, Silva E F, Borsuk S, Conceicao F R, Dellagostin O A. Immunological characterization of Mycoplasma hyopneumoniae recombinant proteins. Comp Immunol Microbiol Infect Dis,2012,35:209-216.
    161. Simionatto S, Marchioro S B, Maes D, Dellagostin O A. Mycoplasma hyopneumoniae:from disease to vaccine development. Vet Microbiol,2013,165: 234-242.
    162. Sirand-Pugnet P, Citti C, Barre A, Blanchard A. Evolution of mollicutes:down a bumpy road with twists and turns. Res Microbiol,2007, 158:754-766.
    163. Smith D R, Quinlan A R, Peckham H E, Makowsky K, Tao W, Woolf B, Shen L, Donahue W F, Tusneem N, Stromberg M P, Stewart D A, Zhang L, Ranade S S, Warner J B, Lee C C, Coleman B E, Zhang Z, McLaughlin S F, Malek J A, Sorenson J M. Rapid whole-genome mutational profiling using next-generation sequencing technologies. Genome Res, 2008, 18:1638-1642.
    164. Sorensen V, Ahrens P, Barfod K, Feenstra A A, Feld N C, Friis N F, Bille-Hansen V, Jensen N E, Pedersen M W. Mycoplasma hyopneumoniae infection in pigs: duration of the disease and evaluation of four diagnostic assays. Vet Microbiol, 1997, 54: 23-34.
    165. Stakenborg T, Vicca J, Maes D, Peeters J, de Kruif A, Haesebrouck F, Butaye P. Comparison of molecular techniques for the typing of Mycoplasma hyopneumoniae isolates. J Microbiol Methods, 2006,66:263-275.
    166. Stark K D, Nicolet J, Frey J. Detection of Mycoplasma hyopneumoniae by air sampling with a nested PCR assay. Appl Environ Microbiol, 1998, 64:543-548.
    167. Stemke G W. Gene amplification (PCR) to detect and differentiate mycoplasmas in porcine mycoplasmal pneumonia. Lett Appl Microbiol, 1997, 25:327-330.
    168. Stipkovits L, Nicolet J, Haldimann A, Frey J. Use of antibodies against the P36 protein of Mycoplasma hyopneumoniae for the identification of M. hyopneumoniae strains. Mol Cell Probes,1991,5:451-457.
    169. Stothard P, Wishart D S. Automated bacterial genome analysis and annotation. Curr. Opin. Microbiol, 2006, 9:505-510.
    170. Strasser M, Frey J, Bestetti G, Kobisch M, Nicolet J. Cloning and expression of a species-specific early immunogenic 36-kilodalton protein of Mycoplasma hyopneumoniae in Escherichia coli. Infect Immun, 1991,59:1217-1222.
    171. Szczepanek S M, Tulman E R, Gorton T S, Liao X, Lu Z, Zinski J, Aziz F, Frasca S, Jr., Kutish G F, Geary S J. Comparative genomic analyses of attenuated strains of Mycoplasma gallisepticum. Infect Immun, 2010, 78:1760-1771.
    172. Tang C M, Moxon E R. The impact of microbial genomics on antimicrobial drug development. Annu Rev Genomics Hum Genet, 2001,2:259-269.
    173. Tatusov R L, Natale D A, Garkavtsev I V, Tatusova T A, Shankavaram U T, Rao B S, Kiryutin B, Galperin M Y, Fedorova N D, Koonin E V. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res, 2001,29: 22-28.
    174. Tettelin H, Feldblyum T. Bacterial genome sequencing. Methods Mol Biol, 2009, 551:231-247.
    175. van Vliet A H. Next generation sequencing of microbial transcriptomes: challenges and opportunities. FEMS Microbiol Lett, 2010, 302:1-7.
    176. Vasconcelos A T, Ferreira H B, Bizarro C V, Bonatto S L, Carvalho M O, Pinto P M, Almeida D F, Almeida L G, Almeida R, Alves-Filho L, Assuncao E N, Azevedo V A, Bogo M R, Brigido M M, Brocchi M, Burity H A, Camargo A A, Camargo S S, Carepo M S, Carraro D M. Swine and poultry pathogens:the complete genome sequences of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae. J Bacteriol,2005,187:5568-5577.
    177. Vasconcelos A T R. Swine and poultry pathogens:the complete genome sequences of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae (vol 187, pg 5568,2005). Journal of Bacteriology, 2005,187:7548-7548.
    178. Venter J C, Adams M D, Myers E W, Li P W, Mural R J, Sutton G G, Smith H O, Yandell M, Evans C A, Holt R A, Gocayne J D, Amanatides P, Ballew R M, Huson D H, Wortman J R, Zhang Q, Kodira C D, Zheng X H, Chen L, Skupski M. The sequence of the human genome. Science, 2001,291:1304-1351.
    179. Venter J C, Levy S, Stockwell T, Remington K, Halpern A. Massive parallelism, randomness and genomic advances. Nat Genet, 2003,33 Suppl:219-227.
    180. Vezzi A, Campanaro S, D'Angelo M, Simonato F, Vitulo N, Lauro F M, Cestaro A, Malacrida G, Simionati B, Cannata N, Romualdi C, Bartlett D H, Valle G. Life at depth:Photobacterium profundum genome sequence and expression analysis. Science,2005,307:1459-1461.
    181.Voelker L L, Dybvig K. Sequence analysis of the Mycoplasma arthritidis bacteriophage MAV1 genome identifies the putative virulence factor. Gene, 1999, 233:101-107.
    182. Watanabe H, Fujiyama A, Hattori M, Taylor T D, Toyoda A, Kuroki Y, Noguchi H, BenKahla A, Lehrach H, Sudbrak R, Kube M, Taenzer S, Galgoczy P, Platzer M, Scharfe M, Nordsiek G, Blocker H B, Hellmann I, Khaitovich P, Paabo S. DNA sequence and comparative analysis of chimpanzee chromosome 22. Nature, 2004, 429:382-388.
    183. Weisburg W G, Tully J G, Rose D L, Petzel J P, Oyaizu H, Yang D, Mandelco L, Sechrest J, Lawrence T G, Van Etten J, et al. A phylogenetic analysis of the mycoplasmas:basis for their classification. J Bacteriol, 1989, 171:6455-6467.
    184. Westberg J, Persson A, Holmberg A, Goesmann A, Lundeberg J, Johansson K E, Pettersson B, Uhlen M. The genome sequence of Mycoplasma mycoides subsp. mycoides SC type strain PG1T, the causative agent of contagious bovine pleuropneumonia (CBPP). Genome Res, 2004,14:221-227.
    185. White O, Eisen J A, Heidelberg J F, Hickey E K, Peterson J D, Dodson R J, Haft D H, Gwinn M L, Nelson W C, Richardson D L, Moffat K S, Qin H, Jiang L, Pamphile W, Crosby M, Shen M, Vamathevan J J, Lam P, McDonald L, Utterback T. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science, 1999, 286:1571-1577.
    186. Wilton J, Jenkins C, Cordwell S J, Falconer L, Minion F C, Oneal D C, Djordjevic M A, Connolly A, Barchia I, Walker M J, Djordjevic S P. Mhp493 (P216) is a proteolytically processed, cilium and heparin binding protein of Mycoplasma hyopneumoniae. Mol Microbiol, 2009, 71:566-582.
    187. Woeste K, Grosse Beilage E. [Transmission of agents of the porcine respiratory disease complex (PRDC) between swine herds: a review. Part 2--Pathogen transmission via semen, air and living/nonliving vectors]. Dtsch Tierarztl Wochenschr,2007,114:364-366,368-373.
    188. Wolf M, Muller T, Dandekar T, Pollack J D. Phylogeny of Firmicutes with special reference to Mycoplasma (Mollicutes) as inferred from phosphoglycerate kinase amino acid sequence data. Int J Syst Evol Microbiol, 2004, 54: 871-875.
    189. Yang Z, Nielsen R. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol, 2002, 19:908-917.
    190. Yogev D, Watson-McKown R, Rosengarten R, Im J, Wise K S. Increased structural and combinatorial diversity in an extended family of genes encoding Vlp surface proteins of Mycoplasma hyorhinis. J Bacteriol, 1995,177: 5636-5643.
    191. Young T F, Thacker E L, Erickson B Z, Ross R F. A tissue culture system to study respiratory ciliary epithelial adherence of selected swine mycoplasmas. Vet Microbiol,2000,71:269-279.
    192. Yu J, Hu S, Wang J, Wong G K, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296:79-92.
    193. Zhang J, Nielsen R,Yang Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol, 2005, 22:2472-2479.
    194. Zhang Q, Young T F, Ross R F. Glycolipid receptors for attachment of Mycoplasma hyopneumoniae to porcine respiratory ciliated cells. Infect Immun, 1994, 62: 4367-4373.
    195. Zhang Q, Young T F, Ross R F. Identification and characterization of a Mycoplasma hyopneumoniae adhesin. Infect Immun, 1995, 63:1013-1019.
    196. Zhang R, Zhang C T. The impact of comparative genomics on infectious disease research. Microbes Infect,2006,8:1613-1622.
    197. Zielinski G C, Ross R F. Adherence of Mycoplasma hyopneumoniae to porcine ciliated respiratory tract cells. Am J Vet Res, 1993,54:1262-1269.
    198. Zielinski G C, Young T, Ross R F, Rosenbusch R F. Adherence of Mycoplasma hyopneumoniae to cell monolayers. Am J Vet Res, 1990, 51:339-343.
    199. Zou H Y, Liu X J, Ma F Y, Chen P, Zhou R, He Q G Attenuated Actinobacillus pleuropneumoniae as a bacterial vector for expression of Mycoplasma hyopneumoniae P36 gene. J Gene Med, 2011,13:221-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700