形态特征及藻源有机质对改性粘土絮凝有害藻华生物效率的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
改性粘土技术是当前国内外最受关注的有害藻华应急治理方法,多次的现场成功应用证明了该技术和方法的有效性和可行性。如何进一步提高改性粘土消除藻华生物的效率仍是当前改性粘土研究的重点,而开展粘土与藻华生物的分形絮凝机制研究将为提高粘土/改性粘土对有害藻华生物絮凝效率提供理论指导。现阶段研究粘土絮凝去除藻华的传统理论,一方面将颗粒简化为规则的几何图形,忽略了颗粒形态特征的影响;另一方面也没有考虑藻华水体内大量微藻产生的藻源有机质对絮凝过程的影响。而大量研究已证明,水体中的颗粒形态及有机大分子对于颗粒的絮凝过程有重要影响。
     本文基于分形和吸附的相关理论,研究了改性粘土絮凝有害藻华生物过程中各种颗粒物的形态学特征,考察了藻源有机质在改性粘土上的吸附特性及藻源有机质对微藻细胞、改性粘土颗粒、微藻-粘土絮体形态特征的影响;利用图像分析法,测定了絮凝体的分形维数,并借助分形维数半定量化分析了絮凝体的形态学特征;进而分析了粘土-微藻絮凝体的分形变化特征及其影响因素;获得了粘土颗粒絮凝有害藻华生物的关键影响因子,为进一步提高改性粘土治理有害藻华的絮凝效率提供理论依据。本研究的主要结果如下:
     改性粘土及藻华生物形态学特征研究。PAC改性剂浓度、pH和离子强度对粘土絮凝体的形态特征具有重要影响。PAC改性剂能有效提高粘土絮凝体的分形维数,最佳改性比例是粘土/改性剂为10:1;最佳絮凝pH范围为6-7;离子强度可以提高絮凝体的分形维数和致密性。絮凝体分形维数能够较为准确得到絮凝体形态的即时变化特征,是深入了解絮凝体的生长机制的较为理想的形态学指标。不同藻华生物在不同生长期有不同的形态特征和分形维数;指数期的东海原甲藻、中肋骨条藻和稳定期的赤潮异弯藻细胞的分形维数较大,分别为1.6785,1.7766和1.6757。
     藻源有机质对改性粘土絮凝效率的影响。分别以海藻酸钠、氨基酸为藻源有机质不同组分的模式化合物,考察了藻源有机质与改性粘土的相互作用机制及其影响因素。结果表明:藻源有机质在改性粘土上的吸附是一个自发的、复杂的、同时受膜扩散吸附和粒子内部扩散吸附控制的过程,其受到改性剂浓度、pH和离子强度的重要影响;其中,改性剂最佳改性比例为5%。藻源有机质在改性粘土上的吸附动力学符合伪二阶动力学模型(pseudo-second order model),而热力学研究表明海藻酸钠在改性粘土上的吸附符合Freundlich和Langmuir吸附等温线,氨基酸在改性粘土的吸附等温线属于C型等温线。藻源有机质对改性粘土絮凝速率及絮凝体特征具有显著的影响,当海藻酸钠浓度在10-100mg/L范围内时,可以提高改性黏土絮凝的速率,絮凝体的分形维数、絮凝体强度呈现出先增大后减小的规律;其中,最佳浓度为50mg/L,其最大絮凝速率达到44.13%、分形维数为1.6823。低浓度(<10mg/L)组海藻酸钠不利于改性粘土颗粒间的絮凝,高浓度的(>100mg/L)海藻酸钠能促进改性粘土的絮凝效率,但促进作用呈现减小的趋势。对于氨基酸化合物,改性粘土颗粒絮凝体分形维数均大于未改性粘土组;在一定浓度范围内,氨基酸化合物促粘土颗粒形成较为致密、空隙率较低的絮凝体;表现为分形维数增大。
     粘土-微藻絮凝特征及其影响因素研究。粘土-微藻絮凝体分形维数、粘土絮凝去除藻华生物的能力均随着改性剂比例的增大呈现出逐渐增大的趋势;絮体分形维数与去除率RE相关性分析表明,粘土-微藻絮凝体分形维数的变化对絮凝效率的变化具有较好的指示作用。不同生物学特征的3种微藻的藻细胞形态特征、藻液内不同大小有机颗粒物对改性粘土絮凝速率有不同的影响。改性粘土对不同生长期的塔玛亚历山大藻液、藻细胞再悬浮液表现出不同的去除能力:对于藻液的去除率为迟滞期>衰亡期>稳定期>指数期;对于藻细胞再悬浮液,指数期的去除率最小,但各个时期的差异性没有藻液显著。藻液中的有机质TON/TOP/TOC随着塔玛亚历山大藻的生长呈现出不同的变化趋势。有机质浓度与藻细胞再悬浮液和藻液二者之间的去除率差值dRE的相关性分析表明,TON与dRE之间没有明显的相关关系;低浓度的TOC(≤1.0mmolC/L)与dRE呈现出较好的正相关性,表明较低浓度的TOC可以降低改性粘土对有害藻华生物的絮凝去除效率。
Modified clay was a promising method for mitigation of harmful algalblooms.The morphology of flocs and algal orianic materials (AOMs) were key factorsaffecting the removal efficiency (RE) of modified clays for HAB organisms. Thisstudy was conducted to investigate the effects of morphology of aggregates andAOMs on HAB cells removal using modified clays. Kaolinite modified withpolyaluminium chloride (PAC) was used as modified clay model substances. REs ofdifferent HAB species were determined and the fractal dimensions of HAB cell,clay-clay and algae-clay units, were assessed by non-intrusive optical sampling anddigital image analysis techniques, in different experiments, respectively. Experimentswere also carried out to study the mutual effect between AOMs and modified calys,for better understanding of the mechanisms and factors affecting the adsorption ofAOMs onto modified clays and the effect of AOMs on the coagulation rate and flocsformation of modified clays. Furthermore, the relation between the fractal dimensionsand REs, AOMs and REs, were analyzed, respectively. The main results were asfollows:
     The morphological characteristics of clay and algal cell were studied in this test.The results showed that the fractal dimensions of clay-clay flocs were affectedmarkedly by modifier dosage, pH and ionic strength. Compared with original clay, theflocs of modified clay was with a higher fractal dimension, which reflected the morecompact flocs. The optimum mass ratio between clay and modifier was10:1. Theflocs fractal dimension increased with increasing ionic strength, where the similartrend was found at pH<7, but the opposite was true above pH7. Thus, the optimumpH range for clay-clay aggregation was6-7. Furthermore, the fractal dimension was abetter indicater of the instant variation of flocs morphology. The fractal dimension ofalgal cell was determined by the algal species and its growth phase, e.g. the cells of P.donghaiense and S.costatum with a higher fractal dimension were in theirexponential phase, while H.akshiwo was in its stable phase, and the values were1.6785,1.7766and1.6757, respectively.
     In order to investigate the mutual effect between AOMs and modified calys, weused sodium alginate and amino acid as AOMs different component model substances.The adsorption of AOMs on modified clays was studied as a function of modifierdosage, contact time, solution pH and ionic strength through batch adsorptionexperiments. Kinetics revealed that the AOMs adsorption rate was described well by apseudo-second order model. Modifier effectively enhanced the adsorption capacity ofkaolinite and increased the adsorption rate, and the optimum additive amount ofmodifier was5%. The adsorption thermodynamics for AOMs onto modified clayssuggests that AOMs adsorption is a spontaneous process. The experimental data fittedboth the Freundlich and Langmuir adsorption equations well for alginate and was welldescribed by C isotherm curve for amino acid. The adsorption of AOMs ontomodified clays was highly dependent on pH and ionic strength. The effect of AOMson the coagulation rate and flocs formation of modified clay was also investigated.The flocculation kinetics of modified clay particles at various concentrations ofsodium alginate solutions were studied. And the flocs fractal dimension wascalculated by image analysis software. Our results indicate that the coagulation rate ofmodified clay and the fractal dimension of flocs were lower than that of control whenthe concentration of sodium alginate is below10mg/L. In the range of10-100mg/L,sodium alginate can improve the coagulation rate of modified clay; the flocs fractaldimension and flocs strength increased steadily to a peak and then decreased. Theoptimum concentration of sodium alginate was50mg/L, along with the maximumcoagulation rate of44.13%and the flocs dimension of1.6823respectively. However,the flocs fractal dimension and coagulation rate decreased when the concentration ofsodium alginate was higher than100mg/L, resulting in subsequent increase of theflocs voidage. For amino acid, in a certain concentration rang, the fractal dimensionsof flocs increased with the concentration of amino acid increasing, which reflectedmore compact and lower voidage flocs. In addition, the fractal dimension of modifiedclay was higer than original clay’s.
     Finally, the morphology of algae-clay and its effect on the RE of HAB organisms,the variation characteristics of AOMs in algal growth phase and its effect on REs,were studied. The fractal dimensions of algae-clay and REs were both increase with the increase of modifier dosage. The relation between the fractal dimensions and REssuggested that the fractal dimension can effectively indicate the variation of REs. Theimpacts of different component of algal suspensions were different. The REs ofA.tamarense cell in suspensions by modified clays in different growth pahse were: lagphase> decline phase>stable phase>exponential phase. For cell resuspensions, thelowest RE was in exponential phase, however, there was no significant differencebetween the phases. The different component of AOMs, such as TON, TOP, TOC,showed different trend with A.tamarense growth. The relation between AOMs and dRE,which was the difference between REs of algal cell resuspension and algal suspension,was analysed and the result showed that there was no significant relation betweenTON and dRE, but a stronger positive correlation between the lower concertration ofTOC (≤1.0mmolC/L) and dRE. It indicated that a lower concertration of TOC wouldreduce the flocculation effect of modified clay on HAB organisms.
引文
1. Adachi Y. Dynamic aspects of coagulation and flocculation. Advances in Colloidand Interface Science.1995,56:1-31.
    2. Alldredge A L, McGillivary P. The attachment probabilities of marine snow andtheir implications for particle coagulation in the ocean. Deep Sea Research Part A.Oceanographic Research Papers.1991,38(4):431-443.
    3. Alldredge A L, Silver M W. Characteristics, dynamics and significance of marinesnow. Progress in oceanography.1988,20(1):41-82.
    4. Anderson D M. Turning back the harmful red tide–Commentary. Nature.1997,388(6642):513-514.
    5. Anderson D M. Approaches to monitoring, control and management of harmfulalgal blooms (HABs). Ocean&Coastal Management.2009,52(7):342-347.
    6. Anderson D M, Andersen P, Bricelj V M, Cullen J J, Rensel J J. Monitoring andmanagement strategies for harmful algal blooms in coastal waters. Unesco.2001.
    7. Anderson D M, Glibert P M, Burkholder J M. Harmful algal blooms andeutrophication: nutrient sources, composition, and consequences. Estuaries andCoasts.2002,25(4):704-726.
    8. Archambault M C, Bricelj V M, Grant J, Anderson D. Effects of suspended andsedimented clays on juvenile hard clams, Mercenaria mercenaria, within thecontext of harmful algal bloom mitigation. Marine Biology.2004,144(3):553-565.
    9. Azizian S. Kinetic models of sorption: a theoretical analysis. Journal of Colloidand Interface Science.2004,276(1):47-52.
    10. Banerjee K, Cheremisinoff P N, Cheng S L. Adsorption kinetics of O-xylene byflyash. Water Research.1997,31(2):249-261.
    11. Beaulieu S E, Sengco M R, Anderson D M. Using clay to control harmful algalblooms: deposition and resuspension of clay/algal flocs. Harmful Algae.2005,4(1):123-138.
    12. Bernhardt H, Hoyer O, Schell H, Lusse B. Reaction-Mechanisms Involved in theInfluence of Algogenic Organic-Matter on Flocculation. Zeitschrift Fur WasserUnd Abwasser Forschung-Journal for Water and Wastewater Research.1985,18(1):18-30.
    13. Bernhardt H, Schell H, Hoyer O, Lfsse O. Influence of algogenic organicsubstances on flocculation and filtration. WISA,1991.1:41-57.
    14. Boyen C, Kloareg B, Polne-Fuller M, Gibor A. Preparation of alginate lyasesfrom marine molluscs for protoplast isolation in brown algae. Phycologia.1990,29(2):173-181.
    15. Bratby J. Coagulation and flocculation in water and wastewater treatment.International Water Assn. London.2006:279-327.
    16. Chen J, Pan G. Harmful algal blooms mitigation using clay/soil/sand modifiedwith xanthan and calcium hydroxide. Journal of Applied Phycology.2012,24(5):1183-1189.
    17. De Boer D H. An evaluation of fractal dimensions to quantify changes in themorphology of fluvial suspended sediment particles during baseflow conditions.Hydrological processes.1997,11(4):415-426.
    18. De Boer D H, Stone M. Fractal dimensions of suspended solids in streams:comparison of sampling and analysis techniques. Hydrological processes.1999,13(2):239-254.
    19. Divakaran R, Sivasankara P V. Flocculation of algae using chitosan. Journal ofApplied Phycology.2002,14(5):419-422.
    20. Doucette G J. Interactions between bacteria and harmful algae: a review. Naturaltoxins.2006,3(2):65-74.
    21. Draget K, Skj k B G, Smidsr d O. Alginic acid gels: the effect of alginatechemical composition and molecular weight. Carbohydrate Polymers.1994,25(1):31-38.
    22. Elimelech M, Nagai M, Ko C H, Ryan J N. Relative insignificance of mineralgrain zeta potential to colloid transport in geochemically heterogeneous porousmedia. Environmental Science&Technology.2000,34(11):2143-2148.
    23. Farley K J, Morel F M. Role of coagulation in the kinetics of sedimentation.Environmental Science&Technology.1986,20(2):187-195.
    24. Flemming H, Wingender J. Relevance of microbial extracellular polymericsubstances (EPSs)–Part I: Structural and ecological aspects. Water science andtechnology.2001a,43(6):1-8.
    25. Flemming H, Wingender J. Relevance of microbial extracellular polymericsubstances (EPSs)-Part II: Technical aspects. Water Science and Technology.2001b,43(6):9-16.
    26. Fourest E, Volesky B. Alginate properties and heavy metal biosorption by marinealgae. Applied Biochemistry and Biotechnology.1997,67(3):215-226.
    27. Galambos J T. The reaction of carbazole with carbohydrates: I. Effect of borateand sulfamate on the carbazole color of sugars. Analytical Biochemistry.1967,19(1):119-132.
    28. Ghorai S, Pant K K. Equilibrium, kinetics and breakthrough studies foradsorption of fluoride on activated alumina. Separation and PurificationTechnology.2005,42(3):265-271.
    29. Glibert P, Burkholder J. The complex relationships between increases infertilization of the earth, coastal eutrophication and proliferation of harmful algalblooms. Ecology of Harmful Algae.2006:341-354.
    30. Glibert P M, Anderson D M, Gentien P, Graneli E, Sellner K G. The global,complex phenomena of harmful algal blooms. Oceanography.2005,18(2):136-147.
    31. Granéli E, Weberg M, Salomon P S. Harmful algal blooms of allelopathicmicroalgal species: The role of eutrophication. Harmful Algae.2008,8(1):94-102.
    32. Graneli E, Turner J. An introduction to harmful algae. Ecology of Harmful Algae.2006,189:3-7.
    33. Grasso D, Subramaniam K, Butkus M, Strevett K, Bergendahl J. A review ofnon-DLVO interactions in environmental colloidal systems. Reviews inEnvironmental Science and Biotechnology.2002,1(1):17-38.
    34. Greenland D, Laby R, Quirk J. Adsorption of amino-acids and peptides bymontmorillonite and illite. Part1.—Cation exchange and proton transfer. Trans.Faraday Soc.1965,61:2013-2023.
    35. Gregory J. The role of floc density in solid-liquid separation. Filtration&separation.1998,35(4):367-366.
    36. Gruber K, Sleytr U B. Influence of an S-layer on surface properties of Bacillusstearothermophilus. Archives of microbiology.1991,156(3):181-185.
    37. Guenther M, Bozelli R. Factors influencing algae–clay aggregation.Hydrobiologia.2004,523(1):217-223.
    38. Gupta V, Hampton M A, Stokes J R, Nguyen A V, Miller J D. Particle interactionsin kaolinite suspensions and corresponding aggregate structures. Journal ofColloid and Interface Science.2011,359(1):95-103.
    39. Gupta V, Miller J D. Surface force measurements at the basal planes of orderedkaolinite particles. Journal of Colloid and Interface Science.2010,344(2):362-371.
    40. Hagstr m J A, Granéli E. Removal of Prymnesium parvum (Haptophyceae) cellsunder different nutrient conditions by clay. Harmful Algae.2005,4(2):249-260.
    41. Hallegraeff G M. A review of harmful algal blooms and their apparent globalincrease. Phycologia.1993,32(2):79-99.
    42. Han M Y, Kim W. A theoretical consideration of algae removal with clays.Microchemical Journal.2001,68(2):157-161.
    43. Hansen J L S, Ki rboe T. Quantifying interspecific coagulation efficiency ofphytoplankton. Marine Ecology Progress Series.1997,159:75-79.
    44. Hedges J I, Hare P E. Amino-Acid Adsorption by Clay-Minerals in DistilledWater. Geochimica Et Cosmochimica Acta.1987,51(2):255-259.
    45. Heisler J, Glibert P, Burkholder J M, Anderson D, Cochlan W, Dennison W,Dortch Q, Gobler C, Heil C, Humphries E. Eutrophication and harmful algalblooms: A scientific consensus. Harmful Algae.2008,8(1):3-13.
    46. Henderson R, Parsons S A, Jefferson B. The impact of algal properties andpre-oxidation on solid–liquid separation of algae. Water Research.2008a,42(8):1827-1845.
    47. Henderson R K, Baker A, Parsons S A, Jefferson B. Characterisation of algogenicorganic matter extracted from cyanobacteria, green algae and diatoms. WaterResearch.2008b,42(13):3435-3445.
    48. Higgin R, Howe K J, Mayer T M. Synergistic behavior between silica andalginate: Novel approach for removing silica scale from RO membranes.Desalination.2010,250(1):76-81.
    49. Hillel D. Fundamentals of soil physics. London:Academic Press, Inc.Ltd.1980:1-78.
    50. Ho Y S, McKay G. Pseudo-second order model for sorption processes. ProcessBiochemistry.1999,34(5):451-465.
    51. Hoagland P, Anderson D, Kaoru Y, White A. The economic effects of harmfulalgal blooms in the United States: estimates, assessment issues, and informationneeds. Estuaries and Coasts.2002,25(4):819-837.
    52. Hoek E, Agarwal G K. Extended DLVO interactions between spherical particlesand rough surfaces. Journal of Colloid and Interface Science.2006,298(1):50-58.
    53. Hoyer O, Lusse B, Bernhardt H. Isolation and characterization of extracellularorganic matter (EOM) from algae. Zeitschrift für Wasser-undAbwasser-Forschung.1985,18(2):76-90.
    54. Jackson G A, Lochmann S. Modelling coagulation of algae in marine ecosystems.Environmental particles. Lewis Publ., Ann Arbor, Michigan.1993:387-414.
    55. Jackson G A, Logan B E, Alldredge A L, Dam H G. Combining particle sizespectra from a mesocosm experiment measured using photographic and apertureimpedance (Coulter and Elzone) techniques. Deep Sea Research Part II: TopicalStudies in Oceanography.1995,42(1):139-157.
    56. Jackson M. Aluminum bonding in soils: A unifying principle in soil science. SoilScience Society of America Journal.1963,27(1):1-10.
    57. Jarvis P, Jefferson B, Gregory J, Parsons S A. A review of floc strength andbreakage. Water Research.2005,39(14):3121-3137.
    58. Jermann D, Pronk W, Boller M. Mutual Influences between Natural OrganicMatter and Inorganic Particles and Their Combined Effect on UltrafiltrationMembrane Fouling. Environmental Science&Technology.2008,42(24):9129-9136.
    59. Jiang J, Kim C. Comparison of Algal Removal by Coagulation with Clays and Al‐based Coagulants. Separation Science and Technology.2008,43(7):1677-1686.
    60. Jiang Q, Logan B E. Fractal dimensions of aggregates determined fromsteady-state size distributions. Environmental Science&Technology.1991,25(12):2031-2038.
    61. Kang H A, Jeon G J, Lee M Y, Yang J W. Effectiveness test of alginate‐derivedpolymeric surfactants. Journal of Chemical Technology and Biotechnology.2002,77(2):205-210.
    62. Ketchum B H, Redfield A C. Some physical and chemical characteristics of algaegrowth in mass culture. Journal of Cellular and Comparative Physiology.1949,33(3):281-299.
    63. Kilps J R, Logan B E, Alldredge A L. Fractal dimensions of marine snowdetermined from image analysis of in situ photographs. Deep Sea Research Part I:Oceanographic Research Papers.1994,41(8):1159-1169.
    64. Kim H. Mitigation and controls of HABs. Ecology of Harmful Algae.2006,189:327-338.
    65. Kiorboe T, Hansen J L S. Phytoplankton Aggregate Formation–Observations ofPatterns and Mechanisms of Cell Sticking and the Significance of ExopolymericMaterial. Journal of Plankton Research.1993,15(9):993-1018.
    66. Kodama M, Doucette G, Green D. Relationships between bacteria and harmfulalgae. Ecology of Harmful Algae.2006,189:243-255.
    67. Lampitt R, Hillier W, Challenor P. Seasonal and diel variation in the open oceanconcentration of marine snow aggregates. Nature.1993a,362(6422):737-739.
    68. Lampitt R, Wishner K, Turley C, Angel M. Marine snow studies in the NortheastAtlantic Ocean: distribution, composition and role as a food source for migratingplankton. Marine Biology.1993b,116(4):689-702.
    69. Lee D G, Bonner J S, Garton L S, Ernest A N, Autenrieth R L. Modelingcoagulation kinetics incorporating fractal theories: a fractal rectilinear approach.Water Research.2000,34(7):1987-2000.
    70. Lee D G, Bonner J S, Garton L S, Ernest A N, Autenrieth R L. Modelingcoagulation kinetics incorporating fractal theories: comparison with observeddata. Water Research.2002,36(4):1056-1066.
    71. Lee S, Kim S, Cho J, Hoek E. Natural organic matter fouling due tofoulant–membrane physicochemical interactions. Desalination.2007,202(1):377-384.
    72. Leston S, Lilleb A, Pardal M. The response of primary producer assemblages tomitigation measures to reduce eutrophication in a temperate estuary. Estuarine,Coastal and Shelf Science.2008,77(4):688-696.
    73. Lewis M A, Dantin D D, Walker C C, Kurtz J C, Greene R M. Toxicity of clayflocculation of the toxic dinoflagellate, Karenia brevis, to estuarine invertebratesand fish. Harmful Algae.2003,2(4):235-246.
    74. Li X, Logan B E. Size distributions and fractal properties of particles during asimulated phytoplankton bloom in a mesocosm. Deep Sea Research Part II:Topical Studies in Oceanography.1995,42(1):125-138.
    75. Li X, Passow U, Logan B E. Fractal dimensions of small (15–200μm) particlesin Eastern Pacific coastal waters. Deep Sea Research Part I.1998,45(1):115-131.
    76. Liang C X, Hirabayashi K. Improvements of the physical properties of fibroinmembranes with sodium alginate. Journal of Applied Polymer Science.2003,45(11):1937-1943.
    77. Liang Y, Hilal N, Langston P, Starov V. Interaction forces between colloidalparticles in liquid: Theory and experiment. Advances in Colloid and InterfaceScience.2007,134:151-166.
    78. Lin M Y, Lindsay H M, Weitz D A, Ball R C, Klein R, Meakin P. Universality inColloid Aggregation. Nature.1989,339(6223):360-362.
    79. Lockhart N C. Electrical-Properties and the Surface Characteristics and Structureof Clays.2. Kaolinite–a Non-Swelling Clay. Journal of Colloid and InterfaceScience.1980,74(2):520-529.
    80. Ma J, Liu W. Effectiveness and mechanism of potassium ferrate (VI) preoxidationfor algae removal by coagulation. Water Research.2002,36(4):871-878.
    81. Mahramanlioglu M, Kizilcikli I, Bicer I O. Adsorption of fluoride from aqueoussolution by acid treated spent bleaching earth. Journal of Fluorine Chemistry.2002,115(1):41-47.
    82. Mandelbrot B B. How long is the coast of Britain. Science.1967,156(3775):636-638.
    83. Mandelbrot B B, Van Ness J W. Fractional Brownian motions, fractional noisesand applications. SIAM review.1968,10(4):422-437.
    84. Matilainen A, Vepsalainen M, Sillanpaa M. Natural organic matter removal bycoagulation during drinking water treatment: A review. Advances in Colloid andInterface Science.2010,159(2):189-197.
    85. Mi rner H, Johansson G, Kronvall G. Lipoteichoic acid is the major cell wallcomponent responsible for surface hydrophobicity of group A streptococci.Infection and immunity.1983,39(1):336-343.
    86. Missana T, Adell A. On the applicability of DLVO theory to the prediction of claycolloids stability. Journal of Colloid and Interface Science.2000,230(1):150-156.
    87. Molnar J L, Gamboa R L, Revenga C, Spalding M D. Assessing the global threatof invasive species to marine biodiversity. Frontiers in Ecology and theEnvironment.2008,6(9):485-492.
    88. Moss N, Dymond B. Flocculation: theory and application. Mine and QuarryJournal, May1978:1-9.
    89. Myers D,吴大成,朱谱新,王罗新,高绪珊.表面,界面和胶体——原理及应用.北京:化学工业出版社.2005:60-189.
    90. Nguyen M L, Westerhoff P, Baker L, Hu Q, Esparza-Soto M, Sommerfeld M.Characteristics and reactivity of algae-produced dissolved organic carbon.Journal of Environmental Engineering.2005,131(11):1574-1582.
    91. Olphen H V. An introduction to clay colloid chemistry, for clay technologists,geologists, and soil scientists. Wiley-Interscience, New York.(US).1977:10-318.
    92. Pan G, Zhang M M, Chen H, Zou H, Yan H. Removal of cyanobacterial blooms inTaihu Lake using local soils. I. Equilibrium and kinetic screening on theflocculation of Microcystis aeruginosa using commercially available clays andminerals. Environmental Pollution.2006a,141(2):195-200.
    93. Pan G, Zou H, Chen H, Yuan X. Removal of harmful cyanobacterial blooms inTaihu Lake using local soils III. Factors affecting the removal efficiency and an insitu field experiment using chitosan-modified local soils. EnvironmentalPollution.2006b,141(2):206-212.
    94. Parker N, Munn C. Increased cell surface hydrophobicity associated withpossession of an additional surface protein by Aeromonas salmonicida. FEMSmicrobiology letters.1984,21(2):233-237.
    95. Passow U. Production of transparent exopolymer particles (TEP) by phyto-andbacterioplankton. Marine Ecology Progress Series.2002a,236:1-12.
    96. Passow U. Transparent exopolymer particles (TEP) in aquatic environments.Progress in oceanography.2002b,55(3):287-333.
    97. Passow U, Alldredge A. Distribution, size and bacterial colonization oftransparent exopolymer particles(TEP) in the ocean. Marine ecology progressseries.1994,113(1):185-198.
    98. Passow U, Alldredge A L. Aggregation of a diatom bloom in a mesocosm: Therole of transparent exopolymer particles (TEP). Deep Sea Research Part II:Topical Studies in Oceanography.1995,42(1):99-109.
    99. Pierce R H, Henry M S, Higham C J, Blum P, Sengco M R, Anderson D M.Removal of harmful algal cells (Karenia brevis) and toxins from seawater cultureby clay flocculation. Harmful Algae.2004,3(2):141-148.
    100.Pitcher G, Figueiras F, Hickey B, Moita M. The physical oceanograp hy ofupwelling systems and the development of harmful algal blooms. Progress inoceanography.2010,85(1):5-32.
    101.Pivokonsky M, Kloucek O, Pivokonska L. Evaluation of the production,composition and aluminum and iron complexation of algogenic organic matter.Water Research.2006,40(16):3045-3052.
    102.Rebhun M, Lurie M. Control of Organic-Matter by Coagulation and FlocSeparation. Water Science and Technology.1993,27(11):1-20.
    103.Schofield O, Grzymski J, Bissett W P, Kirkpatrick G J, Millie D F, Moline M,Roesler C S. Optical monitoring and forecasting systems for harmful algalblooms: possibility or pipe dream? Journal of Phycology.2002,35(6):1477-1496.
    104.Sellner K G, Doucette G J, Kirkpatrick G J. Harmful algal blooms: causes,impacts and detection. Journal of industrial microbiology&biotechnology.2003,30(7):383-406.
    105.Sengco M R, Anderson D M. Controlling Harmful Algal Blooms Through ClayFlocculation. Journal of Eukaryotic Microbiology.2004,51(2):169-172.
    106.Sengco M R, Li A S, Tugend K, Kulis D, Anderson D M. Removal of red-andbrown-tide cells using clay flocculation. I. Laboratory culture experiments withGymnodinium breve and Aureococcus anophagefferens. MarineEcology-Progress Series.2001,210:41-53.
    107.Shammas N K. Coagulation and flocculation. Physicochemical treatmentprocesses.2005,3:103-139.
    108.Sharp E, Jarvis P, Parsons S, Jefferson B. Impact of fractional character on thecoagulation of NOM. Colloids and Surfaces A: Physicochemical and EngineeringAspects.2006,286(1):104-111.
    109.Silver M W, Shanks A L, Trent J D. Marine snow: microplankton habitat andsource of small-scale patchiness in pelagic populations. Science.1978,201(4353):371-373.
    110.Singh T S, Pant K K. Equilibrium, kinetics and thermodynamic studies foradsorption of As(III) on activated alumina. Separation and PurificationTechnology.2004,36(2):139-147.
    111.Sondi I, Pravdic V. The colloid and surface chemistry of clays in natural waters.Croatica Chemica Acta.1998,71(4):1061-1074.
    112.Spicer P T, Pratsinis S E. Coagulation and fragmentation: Universal steady stateparticle size distribution. AIChE Journal.1996a,42(6):1612-1620.
    113.Spicer P T, Pratsinis S E, Trennepohl M D, Meesters G H. Coagulation andfragmentation: the variation of shear rate and the time lag for attainment of steadystate. Industrial&Engineering Chemistry Research.1996b,35(9):3074-3080.
    114.Sterling Jr M C, Bonner J S, Ernest A N, Page C A, Autenrieth R L. Applicationof fractal flocculation and vertical transport model to aquatic sol–sedimentsystems. Water Research.2005,39(9):1818-1830.
    115.Sun X X, Han K N, Choi J K, Kim E K. Screening of surfactants for harmfulalgal blooms mitigation. Marine pollution bulletin.2004,48(9):937-945.
    116.Sutherland D N. Comments on Vold’s simulation of floc formation. Journal ofColloid and Interface Science.1966,22(3):300-302.
    117.Sutherland D N. A theoretical model of floc structure. Journal of Colloid andInterface Science.1967,25(3):373-380.
    118.Swartzen A S L, Matijevic E. Surface and colloid chemistry of clays. ChemicalReviews.1974,74(3):385-400.
    119.Tambo N, Wang X C. The mechanism of pellet flocculation in a fluidized-bedoperation. Jour Water SRT-Aqua.1993,42(2):67-76.
    120.Tambo N, Watanabe Y. Physical aspect of flocculation process—I: Fundamentaltreatise. Water Research.1979a,13(5):429-439.
    121.Tambo N, Watanabe Y. Physical characteristics of flocs—I. The floc densityfunction and aluminium floc. Water Research.1979b,13(5):409-419.
    122.Thomas D, Judd S, Fawcett N. Flocculation modelling: a review. Water Research.1999,33(7):1579-1592.
    123.Tiller C L, O’Melia C R. Natural organic matter and colloidal stability: Modelsand measurements. Colloids and Surfaces A: Physicochemical and EngineeringAspects.1993,73:89-102.
    124.Vanbenschoten J E, Edzwald J K. Chemical Aspects of Coagulation UsingAluminum Salts.1. Hydrolytic Reactions of Alum and Polyaluminum Chloride.Water Research.1990,24(12):1519-1526.
    125.Verspagen J M, Visser P M, Huisman J. Aggregation with clay causessedimentation of the buoyant cyanobacteria Microcystis spp. Aquatic microbialecology.2006,44(2):165-174.
    126.Walker H W, Bob M M. Stability of particle flocs upon addition of naturalorganic matter under quiescent conditions. Water Research.2001,35(4):875-882.
    127.Wang D S, Sun W, Xu Y, Tang H X, Gregory J. Speciation stability of inorganicpolymer flocculant-PACl. Colloids and Surfaces a-Physicochemical andEngineering Aspects.2004,243(1-3):1-10.
    128.Wang H, Yu Z, Cao X, Song X. Fractal dimensions of flocs between clay particlesand HAB organisms. Chinese Journal of Oceanology and Limnology.2011,29(3):656-663.
    129.Wang X, Tambo N. Kinetic Study of Fluidized Pellet Bed Processes: II.Development of a Mathematical Model. Jour Water SRT-Aqua.1993a,42(3):155-165.
    130.Wang X, Tambo N, Matsui Y. Kinetic Study of Fluidized Pellet Bed Processes: I.Characteristics of Particle Motions. Jour Water SRT-Aqua.1993b,42(3):146-154.
    131.Wang Y, Yu Z M. Biological strategies in controlling or mitigating marineharmful algal blooms (HABs). Acta Phytoecologica Sinica.2005,29(4):665-671.
    132.Wotton R S. The essential role of exopolymers (EPS) in aquatic systems.Oceanography and Marine Biology: An Annual Review,2004a,42:57-94.
    133.Wotton R S. The ubiquity and many roles of exopolymers (EPS) in aquaticsystems. Scientia Marina.2004b,68:13-21.
    134.Wu X Q, Xiao B D, Li R H, Wang C B, Huang J T, Wang Z. Mechanisms andFactors Affecting Sorption of Microcystins onto Natural Sediments.Environmental Science&Technology.2011,45(7):2641-2647.
    135.Yang M, Neubauer C, Jennings H. Interparticle potential and sedimentationbehavior of cement suspensions: Review and results from paste. AdvancedCement Based Materials.1997,5(1):1-7.
    136.Yariv A, Yeh P. Optical waves in crystals. Wiley New York.1984.
    137.Yotsumoto H, Yoon R-H. Application of extended DLVO theory: I. Stability ofrutile suspensions. Journal of Colloid and Interface Science.1993a,157(2):426-433.
    138.Yotsumoto H, Yoon R-H. Application of extended DLVO theory: II. Stability ofsilica suspensions. Journal of Colloid and Interface Science.1993b,157(2):434-441.
    139.Yu J, Wang D, Ge X, Yan M, Yang M. Flocculation of kaolin particles by twotypical polyelectrolytes: A comparative study on the kinetics and floc structures.Colloids and Surfaces A: Physicochemical and Engineering Aspects.2006,290(1):288-294.
    140.Yu Z, Sengco M R, Anderson D M. Flocculation and removal of the brown tideorganism, Aureococcus anophagefferens (Chrysophyceae), using clays. Journalof Applied Phycology.2004,16(2):101-110.
    141.Yu Z, Sun X, Song X, Zhang B. Clay surface modification and its coagulation ofred tide organisms. Chinese science bulletin.1999,44(7):617-620.
    142.Yu Z M, Zou J Z, Ma X N. Application of clays to removal of red tide organismsI. Coagulation of red tide organisms with clays. Chinese Journal of Oceanologyand Limnology.1994a,12:193-200.
    143.Yu Z M, Zou J Z, Ma X N. Application of clays to removal of red tide organismsII. Coagulation of different species of red tide organisms with montmorilloniteand effect of clay pretreatment. Chinese Journal of Oceanology and Limnology.1994b,12:316-324.
    144.Yu Z M, Zou J Z, Ma X N. Application of clays to removal of red tide organismsIII. The coagulation of kaolin on red tide organisms. Chinese Journal ofOceanology and Limnology.1995,13:62-70.
    145.Zhou Y, Franks G V. Flocculation mechanism induced by cationic polymersinvestigated by light scattering. Langmuir.2006,22(16):6775-6786.
    146.Zou H, Pan G, Chen H, Yuan X. Removal of cyanobacterial blooms in Taihu Lakeusing local soils II. Effective removal of Microcystis aeruginosa using local soilsand sediments modified by chitosan. Environmental Pollution.2006,141(2):201-205.
    147.曹西华,宋秀贤,俞志明.改性粘土去除赤潮生物及其对养殖生物的影响.环境科学.2004,25(5):148-152.
    148.曹西华,宋秀贤,俞志明,王奎.有机改性粘土去除赤潮生物的机制研究.环境科学.2006,27(8):1522-1530.
    149.曹西华,俞志明.季铵盐类化合物灭杀赤潮异弯藻的实验研究.海洋与湖沼.2003a,34(2):201-207.
    150.曹西华,俞志明.有机改性粘土去除有害赤潮藻的研究.应用生态学报.2003b,14(7):1169-1172.
    151.常颖,张金松,王宝贞,汪义强,黄晓东,赫俊国.强化絮凝工艺中絮凝体特征参数分析与研究.给水排水.2005,31(3):33-36.
    152.陈灏,潘纲,张明明.藻细胞不同生长阶段的海泡石凝聚除藻性能.环境科学.2004,25(006):85-88.
    153.冯志刚,周宏伟.图像的分形维数计算方法及其应用.江苏理工大学学报(自然科学版).2001,22(6):92-95.
    154.高强,徐耀,吴东,孙予罕.氨基酸在固体表面的吸附化学进展.2007,19(6):1016-1025.
    155.高咏卉,俞志明,宋秀贤,曹西华.改性粘土絮凝法对太平洋牡蛎(Crassostrea gigas)稚贝的影响.海洋通报.2007a,26(3):53-60.
    156.高咏卉,俞志明,宋秀贤,曹西华.有机改性粘土对海水中营养盐及主要水质因子的影响.海洋科学.2007b,31(8):30-37.
    157.龚良玉,李雁宾,祝陈坚,王修林,曲宝涵.生物法治理赤潮的研究进展.海洋环境科学.2010(001):152-158.
    158.胡文容,刘培启. O3和ClO2杀藻作用特征与机理分析.科学通报.2003,48(5):429-434.
    159.黄娟,刘洁生,谭绍早,杨维东,曾晓红,李宏业.季铵阳离子改性黏土对两种赤潮藻的去除作甩.暨南大学学报:自然科学与医学版.2009,30(3):339-342.
    160.霍文毅,俞志明.胶州湾中肋骨条藻赤潮与环境因子的关系.海洋与湖沼.2001,32(3):311-318.
    161.蒋展鹏,涂方祥.粘土颗粒的形态对胶体稳定性的影响.中国给水排水.1993,9(2):8-12.
    162.蒋展鹏,尤作亮.混凝形态学的研究进展.给水排水.1998,24(10):70-75.
    163.金鹏康,曹宇.絮凝体的物理特性.西安建筑科技大学学报:自然科学版.2001,33(4):316-320.
    164.金鹏康,王晓昌,郭坤.絮凝体的DLA分形模拟及其分形维数的计算方法.环境化学.2007,26(1):5-9.
    165.李冬梅,谭万春,黄明珠,金同轨.絮凝体的分形特性研究.给水排水.2004,30(5):5-10.
    166.李全生,俞志明.用改性粘土去除赤潮生物的优化条件研究.海洋与湖沼.1998,29(3):313-317.
    167.刘效兰,张正斌.氨基酸在粘土高岭石上吸附等温线的研究.海洋科学.2002,26(9):1-4.
    168.栾兆坤,汤鸿霄.聚合铝的凝聚絮凝特征及作用机理.环境科学学报.1992,12(2):129-137.
    169.罗岳平,马剑敏,李益健,严国安.小球藻表面疏水性的研究.应用与环境生物学报.1999,5(5):491-495.
    170.梅卓华,张哲海,赵春霞,徐敏,李敏.南京玄武湖蓝藻水华治理后水质和浮游植物的动态变化.湖泊科学.2010(1):44-48.
    171.缪锦来,石红旗.赤潮灾害的发展趋势,防治技术及其研究进展.安全与环境学报.2002,2(3):40-44.
    172.潘克厚,姜广信.有害藻华(HAB)的发生,生态学影响和对策.中国海洋大学学报:自然科学版.2004,34(5):781-786.
    173.宋微波,徐奎栋.纤毛虫原生动物形态学研究的常用方法.海洋科学.1994,6(1):6-8.
    174.宋秀贤,俞志明,孙晓霞.粘土—MMH体系絮凝赤潮生物的动力学研究.海洋与湖沼.2000,31(4):434-440.
    175.孙军.海洋中的凝集网与透明胞外聚合颗粒物.生态学报.2005,25(5):1191-1198.
    176.孙晓霞,宋秀贤,张波,俞志明.粘土-MMH体系对赤潮生物的絮凝作用机制研究.海洋科学.1999,21(2):46-49
    177.孙晓霞,张波,俞志明.赤潮防治剂对中国对虾的毒性研究.海洋环境科学.2000,19(4):6-8.
    178.汤鸿霄.无机高分子絮凝剂的基础研究.环境化学.1990,9(3):1-12.
    179.汤鸿霄.羟基聚合氯化铝的絮凝形态学.环境科学学报.1998,18(1):1-10.
    180.汤鸿霄,栾兆坤.聚合氯化铝与传统混凝剂的凝聚—絮凝行为差异.环境化学.1997,16(6):497-505.
    181.汤忠红,蒋展鹏.混凝形态学——一条研究混凝过程的新路子.中国给水排水.1987,3(5):4-8.
    182.涂方祥,蒋展鹏.无机混凝剂的形态对混凝的影响.中国给水排水.1996,12(4):4-6.
    183.王东升,栾兆坤,汤鸿霄.分形理论在混凝研究中的应用与展望.工业水处理.2000,21(7):16-19.
    184.王峰,李义久,倪亚明.分形理论发展及在混凝过程中的应用.同济大学学报.2003,31(5):614-618.
    185.王洪亮.颗粒物对藻华生物的絮凝作用及其分形数值模拟研究[博士学位论文].青岛:中国科学院海洋研究所.2010.
    186.王洪亮,曹西华,宋秀贤,俞志明.不同黏土对中肋骨条藻的絮凝去除研究.海洋科学.2011,35(12):15-20.
    187.王洪亮,俞志明,宋秀贤,曹西华.改性小麦秸秆去除赤潮异弯藻的实验研究.环境科学.2010,31(2):296-300.
    188.王丽媛,张莉,汪东风.磁性壳聚糖-稀土-粘土复合树脂对赤潮异湾藻的抑制作用.海洋环境科学.2012,31(6):808-812.
    189.王镜岩,朱圣庚,徐长法.生物化学(上).北京:高等教育出版社.2002:129-135.
    190.王晓昌,丹保宪仁.絮凝体形态学和密度的探讨(Ⅱ)——致密型絮凝体形成操作模式.环境科学学报.2000a,20(4):385-390.
    191.王晓昌,丹保宪仁.絮凝体形态学和密度的探讨(Ⅰ)——从絮凝体分形构造谈起.环境科学学报.2000b,20(3):257-262.
    192.王修林,孙培艳,高振会,韩秀荣,陈江麟.中国有害赤潮预测方法研究现状和进展.海洋科学进展.2003,21(1):93-98.
    193.王毅力,李大鹏,解明曙.絮凝形态学研究及进展.环境污染治理技术与设备.2003,4(10):1-9.
    194.王悠,俞志明,宋秀贤,张善东.大型海藻与赤潮微藻以及赤潮微藻之间的相互作用研究.环境科学.2006,27(2):274-280.
    195.吴萍.新型表面活性剂改性粘土治理赤潮研究[博士学位论文].青岛:中国海洋大学.2005.
    196.吴萍,俞志明.吉米奇表面活性剂改性粘土治理赤潮研究.环境科学.2007a,28(1):80-86.
    197.吴萍,俞志明.有机改性粘土对赤潮藻絮凝沉降的动力学研究.环境科学.2007b,28(7):1518-1523.
    198.吴萍,俞志明,宋秀贤.烷基多糖苷季铵盐改性粘土治理赤潮研究.环境科学.2006a,27(11):2164-2169.
    199.吴萍,俞志明,杨桂朋,宋秀贤.新型表面活性剂改性粘土去除赤潮藻研究.海洋與湖沼.2006b,37(6):511-516.
    200.萧能庚,余瑞元,袁明秀,陈丽蓉,陈雅蕙,陈来同,胡晓倩,周先碗.生物化学实验原理和方法.北京:北京大学出版社.2005:219-221.
    201.杨铁笙,李富根,梁朝皇.粘性细颗粒泥沙静水絮凝沉降生长的计算机模拟.泥沙研究.2005,4:14-20.
    202.杨铁笙,熊祥忠,詹秀玲,杨美卿.粘性细颗粒泥沙絮凝研究概述.水利水运工程学报.2003,2:65-77.
    203.俞志明.粘土矿物对尖刺拟菱形藻多列型生长和藻毒素产生的影响.海洋与湖沼.1998,29(1):47-52.
    204.俞志明,曹西华.“九五”期间中国沿海有害赤潮灾害状况及其防治对策.安全与环境学报.2002,2(6):15-17.
    205.俞志明,马锡年,谢阳.粘土矿物对海水中主要营养盐的吸附研究.海洋与湖沼.1995a,26(2):208-214.
    206.俞志明,宋秀贤,张波,孙晓霞.粘土表面改性及对赤潮生物絮凝作用研究.科学通报.1999,44(3):308-311.
    207.俞志明,邹景忠.一种去除赤潮生物更有效的粘土种类.自然灾害学报.1994a,3(2):105-109.
    208.俞志明,邹景忠.一种提高粘土矿物去除赤潮生物能力的新方法.海洋与湖沼.1994b,25(2):226-232.
    209.俞志明,邹景忠,马锡年,李全生.治理赤潮的化学方法.海洋与湖沼.1993,2(3):314-318.
    210.俞志明,邹景忠,马锡年,王利峡.粘土矿物去除赤潮生物的动力学研究.海洋与湖沼.1995b,26(1):1-6.
    211.张济忠.分形.北京:清华大学出版社.1995.
    212.张善东,宋秀贤,王悠,俞志明.大型海藻龙须菜与锥状斯氏藻间的营养竞争研究.海洋与湖沼.2005a,36(6):556-560.
    213.张善东,俞志明,宋秀贤,宋飞,王悠.大型海藻龙须菜与东海原甲藻间的营养竞争.生态学报.2005b,25(10):2676-2680.
    214.张悦周,吴耀国,胡思海,冯文璐.微生物絮凝剂的研究与应用进展.化工进展.2008,27(3):340-347.
    215.张哲海.玄武湖蓝藻水华应急治理成效分析.污染防治技术.2006,19(5):56-59.
    216.赵振国.氨基酸在固/液界面的吸附作用.化学研究与应用.2001,13(6):599-604.
    217.赵振国,金明钟,刘迎清.酪氨酸在活性炭/水界面上的吸附.高等学校化学学报.2000,21(12):1904-1907.
    218.周名江,于仁成.有害赤潮的形成机制,危害效应与防治对策.自然杂志.2007,29(2):72-77.
    219.周名江,朱明远.我国近海有害赤潮发生的生态学,海洋学机制及预测防治研究进展[J].地球科学进展.2006,21(7):673-679.
    220.朱建荣,王金辉,沈焕庭,吴辉.2003年6月中下旬长江口外海区冲淡水和赤潮的观测及分析.科学通报.2005,50(1):59-65.
    221.邹华,潘纲,陈灏.壳聚糖改性粘土对水华优势藻铜绿微囊藻的絮凝去除.环境科学.2004,25(6):40-43.
    222.邹琳,陈卫,汪德爟.水处理絮凝动力学模型研究与应用.河海大学学报(自然科学版).2006,34(5):497-501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700