活化煤矸石及其胶砂混凝土对钢筋腐蚀行为的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矸石作为煤炭行业排放量最大的固体废弃物,其综合利用已经成为亟待解决的重要问题。其中利用煤矸石制备硅铝基胶凝材料是实现其大规模综合利用的有效途径。作为一种合格的胶凝材料仅仅满足其活性,是远远不够的。耐久性尤其是钢筋腐蚀性能也是决定其能否大规模综合利用的重要指标,本文以北京房山煤矸石为研究对象,在研究其活性优化规律的基础上,揭示了活化煤矸石对钢筋腐蚀行为的影响规律和影响机理。
     本文研究了简单热活化及复合热活化对北京房山煤矸石胶凝活性的影响规律,优化了其火山灰活性,并揭示了煤矸石活性提高的机理。在核磁共振(NMR)分析的基础上,提出采用相对桥氧数(RBO)指标来表征活化煤矸石中[SiO_4]聚合度,发现煤矸石的硅氧多面体聚合度在活化过程中明显降低,而水化过程则聚合度升高,并且[SiO_4]聚合度与胶凝活性之间存在较好的负相关性。
     通过对比研究普通水泥以及活化煤矸石硬化体中模拟孔溶液的成分差异,并通过模拟不同孔溶液的离子种类及浓度特点,有针对性的研究了钢筋在模拟孔溶液中的腐蚀行为,揭示了不同离子对钢筋腐蚀行为的影响规律。钢筋在煤矸石胶凝材料硬化体中的腐蚀电位明显高于普通水泥,表明其耐腐蚀性能较好。ACI分析表明煤矸石胶凝材料中表征混凝土的电阻R_c明显增加是导致其腐蚀电位升高的主要原因。
     活化煤矸石能够显著提高胶凝材料在水化过程中的氯离子固化能力,并且氯离子的固化率随着煤矸石掺量的增加而有所增加;在煤矸石活化过程中加入少量磷酸盐,可以与体系中的氯离子结合,生成难溶于水的氯代磷灰石,从而进一步提高对原料中原有的氯离子的固化量。(31)~P的NMR分析表明,(31)~P在水化过程中可以与体系中的硅氧多面体和铝氧多面体一起形成超磷酸盐结构,这有利于形成稳定的架状结构。孔结构仍然是影响氯离子的迁移速率的主要因素,但煤矸石自身对氯离子的良好固化性能有利于降低氯离子的扩散系数。
     利用传统的水泥生产线开展了煤矸石胶凝材料的工业化生产试验,生产出了3000吨煤矸石胶凝材料。并利用煤矸石胶凝材料,对房山双山水泥厂的道路进行硬化,为煤矸石的大规模工业化应用,提供借鉴。
Coal gangue is a complex industrial solid waste of coal industry. Comprehensive utilization of coal gangue has already become an important problem to be solved urgently. Gangue is used for preparation construction materials which have good prospects for comprehensive utilization. Current research is focused mainly on improving cementitious activity. However, the cementitious activity is currently insufficient for these materials to qualify as suitable for use in construction. Durability problems, especially the corrosion of reinforcement steel, limit the large-scale application of this byproduct in construction materials. Coal gangue from Beijing Fangshan was studied in this paper. Pozzolanic activity of coal gangue and reinforcement corrosion behavior in coal gangue-based mortars was analyzed to provide a reference for further extensive utilization of gangue in the field of building cementitious materials.
     In order to optimize the pozzolanic activity of coal gangue, the influence of simple calcination and co-calcination method on pozzolanic activity of coal gangue was studied, and pozzolanic activity optimization was achieved. Mechanism of activity optimization was investigated. Based on MAS NMR analysis technology, we proposed the concept of relative number of bridging oxygen (RBO) to evaluate [SiO_4] polymerization. It is found that [SiO_4] polymerization of coal gangue decreased during the aactivation process, while increase during the hydration process. There is obvious inverse correlation between RBO and cementitious activity.
     According to the difference of pore solution component between OPC and coal gangue based pastes, the corrosion behavior of steel bar in simulated pore solution was studied. The influence of ions in pore solution on corrosion behavior was analyzed. It is shown that the corrosion potential of reinforcement in coal gangue cementitious mortar is much higher than that in OPC which is mainly due to higher concrete resistance R_c from ACI analysis.
     The solidification for chloride is higher in coal gangue cementitious mortar than in OPC mortar. The solidification rate of chloride ion increased with coal gangue admixture. Phosphate improve solidification rate of chloride ion consolidate further during the activation process of coal gangue which benefit from chlorapatite product. (31)~P NMR results showed that (31)~P combine with silicon-oxide polyhedron and aluminum-oxygen polyhedron to form super phosphate structure. This is helpful to stable frame structure construction in mortar.
     The principal factor which affects diffusion rate of chloride ion is pore structure. Coal gangue has good solidification properties for chloride ion,which is helpful to decline the diffusion coefficient of chloride ion.
     Commercial experiments on production of coal gangue cementitious materials by co-calcination method were carried out at a clinker production line with capacity of 1200 tons per day. The experimented products has been used in construction of road works.
引文
[1]国家经贸委,科技部.煤矸石综合利用技术政策要点.
    [2]李宇.煤矸石热蚀变机理及技术基础研究: [博士后出站报告].北京:清华大学, 2009.
    [3]马成理.浅谈自燃煤矸石砂及轻骨料在工程中的应用.山西建筑, 2002, 28(10): 67-68.
    [4] Huang Yuanjun, Zhao Zhongxing. Environmental Pollution and Control Measures in China. Ambio, 1987, 16 (5):257-261.
    [5]刘超.煤矸石的化工应用.化学工业与工程技术, 1998, 19(2): 440-450.
    [6]李耀华.用煤矸石生产微生物肥.江西煤炭科技, 1996, 4: 37-38.
    [7] 2008-2009年中国煤矸石产业研究咨询报告.
    [8]洪定海.混凝土中钢筋的腐蚀与保护.北京:中国铁道出版社. 1998.
    [9] Peter Pullar Strecker. Concrete reinforcement corrosion: from assessment to repair decisions. London: Thomas Telford Publishing, Tomas Telford Ltd,1 Heron Quay. 2002.
    [10]罗福午.建筑结构缺陷事故的分析及防止.北京:中国铁道出版社. 1998.
    [11] Zhang Ruijin, Arnaud Castel, Raoul Francois.The corrosion pattern of reinforcement and its influence on serviceability of reinforced concrete members in chloride environment. Cement and Concrete Research, 2009, 39(11):1077-1086.
    [12]陈驹.氯离子侵蚀作用下混凝土构件的耐久性研究: [硕士学位论文].浙江:浙江大学, 2002.
    [13] Melchers R E, Li C Q. Reinforcement corrosion initiation and activation times in concrete structures exposed to severe marine environments.Cement and Concrete Research, 2009, 39, (11):1068-1076.
    [14] Apostolopoulos C A, Papadakis V G. Consequences of steel corrosion on the ductility properties of reinforcement bar.Construction and Building Materials, 2008, 22(12): 2316-2324.
    [15] Zhang Fan, Pan Jinshan, Lin Changjian. Localized corrosion behaviour of reinforcement steel in simulated concrete pore solution. Corrosion Science, 2009, 51(9): 2130-2138.
    [16]樊云昌,曹兴国.混凝土中钢筋腐蚀的防护与修复.北京:中国铁道出版社. 2001.
    [17] Shamsad Ahmad. Reinforcement corrosion in concrete structures, its monitoring and service life prediction-a review. Cement&Concrete Composites, 2003, 25: 459-471.
    [18] Rasheeduzzafar. Influence of cement composition on concrete durability. ACI Materials Journal, 1992, 89(6): 574-86.
    [19]干伟忠.海砂对钢筋混凝土结构耐久性影响的试验研究.工业建筑, 2002, 32(2): 8-11.
    [20] Jaegermann C. Effect of water-cement ratio and curing on chloride penetration into concrete exposed to Mediterranean sea climate. ACI Materials Journal, 1990, 87(4): 333-339.
    [21] Ho DWS, Lewis R K. Carbonation of concrete and its prediction. Cement Concrete Research, 1987, 17: 489-504.
    [22] Kobayashi K, Suttoh K. Oxygen diffusivity of various cementitious materials. Cement Concrete Research, 1991, 21: 273-84.
    [23] Mozer J D. Corrosion of reinforcing bars in concrete. Journal of American Concrete Institute, 1965: 909-931.
    [24] Uhlig H H. Corrosion and corrosion control. New York: John Wiley and Sons,1983.
    [25] Berkely KGC, Pathmanaban S. Cathodic protection of reinforcement steel in concrete. London: Brtterworths&Co.Ltd., 1990.
    [26]汪鹰,史苑芗.用XPS研究钢筋钝化膜和Clˉ对钝化膜的影响.中国腐蚀与防护学报, 1998, 18(2): 107-112.
    [27]储炜,史苑芗.模拟混凝土孔溶液中钢筋钝化膜的光电化学方法研究.电化学, 1995, 1(3): 291-296.
    [28] Oh B H, Jang S Y. Experimental investigation of the threshold chloride concentration for corrosion initiation in reinforced conerete structures. Magazine of Concrete Research. 2003, 55(2): 117-124
    [29] Page C L, Short N R, Holden W R. The influence of different cements on chloride induced corrosion of reinforcing steel. Cement and Conerete Researeh, 1986, 16(l): 79-56.
    [30] Laura Mammoliti, Carolyn M. Hansson. Influence of cation on corrosion behavior of reinforcing steel in high?pH sulfate solutions. ACI Materials Journal, 2005(8): 279-285.
    [31] Kitowski C J, Wheat H G. Effect of chlorides on reinforcing steel exposed to simulated concrete solutions. Corrosion, 1997, 53(3): 216-226.
    [32] Novokshchenov V. Brittle fractures of prestressed bridge steel exposed to chloride-bearing environments caused by corrosion-generated hydrogen. Corrosion, 1994, 50(6): 477-485.
    [33] Ki Yong Ann, Song Ha Won. Chloride threshold level for corrosion of steel in concrete. Corrosion Science, 2007, 49(11):4113-4133.
    [34] Evnas U R.金属材料的耐腐蚀性.北京:科学出版社, 1968, 68-70.
    [35]谭伟,徐滨士,韩文政.水陆装甲车车体锈层分析.腐蚀科学与防护技术, 2003, 15(2), 113-116.
    [36] North N A, Pearson C. Alkaline sulfite reduction restatement of marine iron. ICOM Committee for Conservation, Venice, 1975.
    [37] North N A, Pearson C. Thermal decomposition of FeOCl and marine iron corrosion pr oducts. Studies in Conservation, 1977, 22: 146-157.
    [38] Argo J. On the nature of ferrous corrosion Products on marine iron. Studies in Conservation,1981, 26:42-44.
    [39]张恒金,郭殿勇.出土铁器的结构组成及劣化机理.内蒙古文物考古, 1994, (l): 129-132.
    [40] Refait P H, Abdelmoula M,Genin J. Mechanisms of formation and structure of green rust one in aqueous corrosion of iorn in the presence of chloride ions. Corrosion Science, 1998, 40: 1547-1560.
    [41] Argo J. On the nature of ferrous corrosion products on marine. Iron Studies in Consevration, 1981, 26: 42-44.
    [42] Sei J O, Cook D C, Townsed H E. Amtospheric corrosion of different steels in marine rural and industrial environment. Corrosion Science, 1998, 41:1687-1702.
    [43]王蕙贞,朱虹.秦汉铁器锈蚀机理探讨及保护方法研究.文物保护与考古科学, 2003, 15(l), 7-11.
    [44] Dhir R K, Byars E A. PFA concret: chloride diffusion rates. Magazine of Concrete Research, 1993,45 (162): 1-9.
    [45] Gjorv, Tang Kefeng, Zhang Minhong. Diffusivity of chloride from seawater into high- strength lightweight concrete. ACI Material Journal, 1994, 91(5): 447-452.
    [46] Page C L, Short N R, Tarrs A E. Diffusion of chloride ions in harden cement paste. Cement and Concrete Research, 1981, 11(3): 395-406.
    [47] Dhir R K, Kel M A, Dyer T D. Chloride binding in GGBS concrete. Cement and Concrete Research, 1996, 26(12): 1767-1773.
    [48]罗睿,蔡跃波,王昌义.磨细矿渣净浆和砂浆结合外渗氯离子的性能.建筑材料学报, 2001, 4(2): 148-153.
    [49] Suryavanshi A K, Scantlebury J D. The binding of chloride ions by sulphate resist Portland cement. Cement and Concrete Research, 1995, 25(3): 581-592.
    [50]高相东.水泥-粉煤灰-矿渣复合胶凝体系耐氯离子侵蚀性能的研究[博士学位论文].上海:同济大学, 2001.
    [51]管学茂,水泥基材料在氯盐环境中的服役行为及机理研究[博士后出站报告].北京:中国建筑材料科学研究院, 2005.
    [52] Arya C, Buenfeld N R, Newman J B. Factors influencing chloride binding in concrete. Cement and Concrete Research, 1990, 20(2): 291-300.
    [53] Rasheeduzzafar, Al saadoun S S, Al gahtani A S. Effect of tricalcium aluminate content of cement on corrosion of reinforcing steel in concrete. Cement and Concrete Research, 1990, 20(5): 723-738.
    [54] Nevillae A. Chloride attack of reinforced concrete: an overview. Materials and Structures, 1995, 28: 63-70.
    [55]王绍东,黄煜镔,王智.水泥组分对混凝土固化氯离子能力的影响.硅酸盐学报, 2000,28(6): 571-574.
    [56] Arya C, Newman J B. An Assessment of four methods of determining the free chloride content of concrete. Materials and Structure, 1990, 23(4): 319-330.
    [57]王绍东,黄煜镔,王智.水泥组分对混凝土固化氯离子能力的影响.硅酸盐学报, 2000. 28(6): 570-574.
    [58] Li Shi gun, Roy, Della M. Relations between porosity, pore structure, and Cl~ˉdiffusion of fly ash and blended cement pastes. Cement and Concrete Research. 1986, 16(5): 749-59.
    [59] Page C L. Diffusion of chloride ions in hardened cement pastes. Cement and Concrete Research, 1981, 11(3): 395-406.
    [60] Nagesh M, Bishwajit Bhattacharjee. Model of chloride diffusion in concrete and determination of diffusion coefficients, ACI Materials Journal, 1998, 95(2): 113-120.
    [61]胡红梅,马保国.矿物功能材料对混凝土氯离子渗透性的影响.武汉理工大学学报, 2004, 26(3): 19-22.
    [62] Pa Pa Win, Makiko Watanabe, Atsuhiko Machida. Penetration profile of chloride ion in cracker reinforced concrete. Cement and Concrete Research, 2004, 34(7): 1073-1079.
    [63] Gjorv O E, Kashino N. Durability of a 60-year old reinforced concrete pier in Olso Harbor, Materials Performance, 1986, 25(2): 18-26.
    [64] Poon C S, Kou S C, Lam L. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Construction and Building Materials, 2006, 20(10): 858-865.
    [65] Maher A, Bader. Performance of concrete in a coastal environment. Cement and Concrete Composites, 2003, 25(4-5):539-548.
    [66]郭成举.混凝土的物理和化学.北京:中国铁道出版社, 2004.
    [67] Zhang J Z, Li JianYun. Measurement and modelling of membrane potentials across OPC mortar specimens between 0.5M NaCl and simulated pore solutions. Cement and Concrete Composites, 2002(24): 451-455.
    [68] Zhang Tiewie, Odd E.Gjorv. Diffusion behaviour of chloride ions in concrete. Cement and Concrete Composites,1996, 26(6):907-917.
    [69] Buenfeld N R, Newman J B. Examination of three methods for studying ion diffusion in cement pastes mortar sand concrete. Material and structures, 1987, 20(115): 3-10.
    [70] Mange P S, Molloy B T. Prediction of long term chloride coneentration in conerete.Materials and Structures, 1994, 27(170): 338-346.
    [71] Boddy A, Bentz E, Thomas M D A, Hooton R D. An overview and sensitivity study of a Multimechanistic Chloride TransPort Model. Cement and Conerete Research, 1999, 29(6): 827-837.
    [72] Nilsson L O. Penetration of chloride into conerete struetures an introduction and somedefinitions, Nordic Mini-seminar on chloride penerration into conerete structures. Chalmers University of Technology, Sweden, 1993: 7-17.
    [73] Anna V Saetta, Roberto V Scotta, Renato V.Vitaliani. Analysis of chloride diffusion into partially saturated concrete, ACI Materials Journal, 1993, 90(5): 441-451.
    [74] Tang L, Nilsson L. Chloride binding capacity and binding isotherms of OPC pastes and mortars. Cement and Concrete Research, 1993, 23(2): 247-253.
    [75] Maruya T. Simulation of Chloride movement in hardened concrete. Concrete Library of JSCE, 1992, 20(4): 57-70.
    [76] Mc Carter W J, Brousseau R. The A.C. response of hardened cement paste. Cement and Concrete Research,1990, 20(6): 89-95.
    [77] Brantervik K, Niklasson G A. Circuit models for cement based materials obtained from impedance spectroscopy. Cement and Concrete Research, 1991, 21(4): 496-450.
    [78] Gu Ping, Xie Ping, Beaudoin J J. AC impedance spectroscopy I: a new equivalent circuit model for hydrating cement paste. Cement and Concrete Research, 1992, 22(5): 833-887.
    [79] Bertocci U, Huet F. Noise analysis applied to electrochemical systems. Corrosion, 1995, 51: 131-136.
    [80] Iverson W P. Transient voltage changes produced in corroding metals and alloys. Journal of Electrochemical Society, 1968, 115: 617-622.
    [81] Chan Jin Parka, Hyuk SangKwon. Electrochemical noise analysis of localized corrosion of duplex stainless steel aged at 475℃. Materials Chemistry and Physics, 2005, 91(2-3): 355-341.
    [82] Manian L, Surkein M. Remediation of a new reinforcing steel cathodic protection system during construction. Materials Performance, 1999, 38(5): 30-35.
    [83] Hassanein A M, Glass G K, Buenfeld N R. Protection current distribution in reinforced concrete cathodic protection systems. Cement and Concrete Composites, 2002, 24(1): 159-167.
    [84] Saricimen H. Effect of Inhibitors and Coatings on Rebar, Corrosion Materials Performance, 1998, 5, 32-38.
    [85] Hansson C M, Mammoliti L, Hope B B. Corrosion inhibitors in concrete-part I: the principles. Cement and Concrete Research, 2003, 28:1775-1781.
    [86]张智强,袁润章.高岭石脱OHˉ过程及其结构变化的研究.硅酸盐通报, 1993, 6: 37-41.
    [87] Zhang Changsen. Pozzolanic Activity of Burned Coal Gangue and Its Effects on Structure of Cement Mortar. Journal of Wuhan University of Technology (Materials Science), 2006, 21(4): 150-153.
    [88]蔡序晰,张相红,马国民.煅烧煤矸石的火山灰活性.硅酸盐通报, 1996, 15(3): 56-60.
    [89]杨南如.碱胶凝材料形成的物理化学基础.硅酸盐学报, 1996, 24 (2): 209-215.
    [90] Sabir B B, Wild S, Bai J. Metakaolin and calcined clays as pozzolans for concrete: a review. Cement and Concrete Composites, 2001, 23(6): 441-454.
    [91]张长森.低温烧煤矸石的火山灰活性研究.硅酸盐通报, 2003 (5): 112-115.
    [92]宋旭艳,李东旭.煤矸石活化过程的力学性能和结构特性研究-煤矸石活化过程的力学性能研究. 2003年硅酸盐学术会议论文集: 348-353.
    [93]黄伯龄.矿物差热分析鉴定手册.北京:科学出版社, 1987: 505-508.
    [94]杨雅秀.绿泥石族矿物热力学性质的研究.矿物学报, 1992, 12(1): 36-44.
    [95] Feng Qi, Wang Peiming. Infra-red spectrum analysis of thermal activation of coal-gangue and hydration of cement. Journal of Building Materials, 2005, 8(3): 215-221.
    [96]杨南如.充分利用资源,开发新型胶凝材料.建筑材料学报, 1998, 1(1): 19-25.
    [97]袁润章,高琼英.矿渣结构特征对水硬活性的影响.武汉建材学院学报, 1982, 1: 7-13.
    [98]李化建.煤矸石热活化和胶凝化过程中硅铝的配位.清华大学学报(自然科学版), 2006, 46(12): 2015-2018.
    [99] Ulrich P Strauss, Edward H Smith, Philip L Wineman. Polyphosphates as polyelectrolytes. I. light scattering and viscosity of sodium polyphosphates in electrolyte solutions. American Chemical Society. 1953, 8: 3935-3940.
    [100] Chen Xiaolan, Wang Zhanwen, Yang Nanru. A Study on the polymeric distribution of [SiO_4]~(4-) tetrahedron in silicate glass part I: analytic method of trimethylsily- lation gas chromatography. Journal of the Chinese Ceramic Society. 1987, 15(1): 84-89.
    [101] Engelhardt G, Luger S, Buhl J C. 29Si MAS NMR of aluminosilicate sodalites correlations between chemical shifts and structure parameters. Zeolites, 1989, 9(3): 182-186.
    [102] Lippmaa E, Magi M, Samoson A, Engelhardt G. Structural studies of silicates by solid - state high-resolution (29)~Si NMR. Journal of the American Chemical Society, 1980, 102: 4889-4893.
    [103] Engelhardt G. High-resolution Solid-state NMR of Silicates and Zeolites. Central Institute of Physical Chemistry Academy of Sciences of the GDR, Berlin: German Democratic Republic, 1987.
    [104]宋旭艳.煤矸石作为辅助性胶凝组分的活化研究[博士学位论文].南京:南京工业大学, 2004.
    [105] Qian W X, Cai Y B. NMR research on silicon oxide polyhedron structure in activated fly ash. Journal of Materials Science and Engineering, 2004, 22(4): 561-563.
    [106]蒲心诚.应用比强度指标研究活性矿物掺料在水泥与混凝土中的火山灰效应.混凝土与水泥制品, 1997, 3(6): 6-14.
    [107]袁润章.胶凝材料学.武汉:武汉工业大学出版社, 1996:179-180.
    [108] Swamy R N. Cement replacement materials [M]. Surrey: Surrey University Press, 1986: 11-13.
    [109]袁润章,朱颉安,章丽云.评定粉煤灰的火山灰活性方法的研究.武汉建材学院学报, 1982, (2): 169-176.
    [110]廉慧珍,张志龄,王英华.火山灰质材料活性的快速评定方法.建筑材料学报, 2001, 4 (3): 299-303.
    [111]郭伟,李东旭,陈建华,杨南如.煤矸石火山灰活性的快速评价方法,硅酸盐学报, 2007, 35(4): 439-494.
    [112]郭伟,李东旭,杨南如.煅烧煤矸石在碱溶液中的离子溶出特性极其结构.硅酸盐学报, 2004, 32(10): 1229-1234.
    [113] Jawed I, Skalny J. Surface phenomena during tricalcium silicate hydration. Journal of Colloid and Interface Science, 1982, 85(1): 235-243.
    [114]罗兴华,袁润章.胶凝材料颗粒表面活性的XPS研究.真空科学与技术, 1985, 5(2): 30-32.
    [115]李化建,孙恒虎,铁旭初,肖雪军.热处理煤矸石活性评价方法的研究.煤炭学报, 2006, 31(5): 654-658.
    [116] Wheat H G, Eliezer Z. Some electrochemical aspects of corrosion of steel in concrete. Corrosion(NACE), 1985, 41(11): 640-645.
    [117] Berkely KGC, Pathmanaban S. Cathodic protection of reinforcement steel in concrete. London: Brtterworths&Co.Ltd., 1990.
    [118] Mammoliti L T, Brown L C, Hansson C M, Hope B B. The influence of surface finish of reinforcing steel and ph of the test solution on the chloride threshold concentration for corrosion initiation in synthetic pore solutions. Cement and Concrete Research, 1996, 26(4): 545-550.
    [119] Saremi M, Mahullati E. A study on chloride-induced depassivation of mild steel in simulated concrete pore solution. Cement and concrete research, 2002,32: 1915-1921.
    [120] Page C L, K. Treadaway W J . Aspects of the electrochemistry of steel in concrete. Nature, 1982, 297: 109-115.
    [121] Page C L. Mechanism of corrosion protection in reinforced concrete marine structure. Nature, 1975, 258: 514-515.
    [122] Berkely K G C, Pathmanaban S. Cathodic protection of reinforcement steel in concrete. London: Brtterworths&Co.Ltd., 1990.
    [123] Hausmann D A. Steel corrosion in concrete:how does it occur. Materials Protection, 1967, 6(11):19-23.
    [124]丁晖,余刚.硫化钠对铝合金在3.5%NaCl溶液中腐蚀行为的影响.表面技术, 2001, 30(6): 37-39.
    [125]廖家兴,蒋益明.含Cl~ˉ溶液中SO_4~(2-)对316不锈钢临界点蚀温度的影响.金属学报, 2006, 42(11): 1187-1190.
    [126] Li L, Sagues A A. Chloride corrosion threshold of reinforcing steel in alkaline solutions- open- circuit immersion tests. Corrosion, 2001, 57(1): 19-28.
    [127]魏宝明.金属腐蚀理论及应用.北京:化学工业出版社, 1984.
    [128]梁成浩.金属腐蚀学导论.北京:机械工业出版社, 1999.
    [129] Radhakrishna G Pillai, David Trejo. Surface condition effects on critical chloride threshold of steel reinforcement. ACI Materials Journal, 2005, 102(2): 103-109.
    [130] Hussain S E, Al Gahtani A S. Chloride threshold for corrosion of reinforcement in concrete. ACI Materials Journal, 1996, 94(6): 534-538.
    [131] Morris W, Vico A, Vázquez M. Chloride induced corrosion of reinforcing steel evaluated by concrete resistivity measurements. Electrochimica Acta, 2004, 49 (25): 4447-4453.
    [132] Rasheeduzzafar. Influence of cement composition on concrete durability. ACI Materials Journal, 1992, 89(6): 574-86.
    [133] Glass G K, Buenfeld N R. The presentation of the chloride threshold level for corrosion of steel in concrete. Corrosion Science, 1997, 39(5): 1001-1013.
    [134] Shi Meilun, Chen Zhi yuan. Study of AC Impedance on the porous structure of hardened cement paste. Journal of Building Materials, 1998, 1(1): 30-35.
    [135] Xu Zhong. Development in electrochemistry of cement and concrete science-AC impedance spectroscopy theory. Journal of The Chinese Ceramic Society, 1994, 22(2): 173-180.
    [136]邱富荣, Escalante E.混凝土中钢筋腐蚀的交流阻抗法测量.中国腐蚀与防护学报, 1989, 9(3): 214-219.
    [137]冯向鹏,赤泥基胶凝材料Na~+固化机理研究[博士学位论文].本京:清华大学, 2006.
    [138] Paul Virmani Y. Corrosion costs and preventive strategies in the United States, Supplement to Materials Performance. 2002, 493-3052.
    [139] Hussain S E, AlGahtani A S. Chloride threshold for corrosion of reinforcement in concrete. ACI Materials Journal, 1996, 94(6): 534-538.
    [140] Paul Chess. Protection of steel in concrete. E&FN, SPON, 1998. 169-185.
    [141] Maslehuddin M, Saricimen H, Al Mani. Effect of fly ash addition on the corrosion resisting characteristics of concrete. ACI Material Journal, 1987(2):79-86.
    [142] Montemor M, Simoes A M P, Salta MM. Effect of fly ash on concrete reinforcement corrosion studied by EIS. Cement and Concrete Composite, 2000, 22:175-85.
    [143] Rob B. Polder, Willy H A. Peelen. Characterization of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity. Cement andConcrete Composites, 2002, 24 (5): 427-435.
    [144] Sun W, Zhang Y, Lui S, Zhang Y. The influence of mineral admixtures on resistance to corrosion of steel bars in green high-performance concrete. Cement and Concrete Research, 2004, 34:1781-1785.
    [145] Ampadu K, Torii K. Chloride ingress and steel corrosion in cement mortars incorporating low-quality fly ashes. Cement and Concrete Research, 2002, 32: 893-901.
    [146] Arya C, Buenfeld N R, Newman J B. Factors influencing chloride-binding in concrete. Cement and Concrete Research, 1990, 20(2): 291-300.
    [147] Thomas M. Chloride threshold in marine concrete. Cement and Concrete Research, 1996, 26(4): 513-522.
    [148] Rengaswamy NS, Srinivasan S, Mohan P S. Durability of Portland-pozzolana concrete compared with ordinary portland cement concrete. In: Ferrocement corrosion, proceedings of the international correspondence symposium, Bangkok, Thailand; 1987:73-82.
    [149] Suryavanshi A K, Scantleburyb J D. Corrosion of reinforcement steel embedded in high water-cement ratio concrete contaminated with chloride. Cement and Concrete Composites, 1998, 20: 263-381.
    [150] Byfors K, Hansson C M, Tritthart J, Pore solution expression as a method to determining the influence of mineral additives on chloride binding. Cement and Concrete Research, 1986, 16: 760-770.
    [151] Tritthart J. Chloride binding in cement. Cement and Concrete Research, 1991, 21: 683-692.
    [152]王岩国,邹本三. Ca_2SiO_4的高分辨电镜研究.硅酸盐学报, 1988, 16(2): 104-109.
    [153]黄伯龄.矿物差热分析鉴定手册.北京:科学出版社, 1987: 441-446.
    [154] Weast R C. (Ed.), CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 1981.
    [155] Godbeer W C, Swaine D J. Fluorine in Australian Coals. Fuel, 1987, 66(6): 794-798.
    [156] Yanagisawa K, Rendon J C. Topotaxial replacement of chlorapatite by hydroxyapatite during hydrothermal ion exchange. American Mineralogist, 1999, 84: 1861-1869.
    [157] Sheets D H. Phosphate bonding of refractory compositions.Refra J,1958,9(9):402-406.
    [158] Hu Jiashan, Roy M D. Studies of strength mechanism in newly developed chemically bonded ceramics in the system CaO-SiO2-P2O5-H2O. Cement and Concrete Research, 1988, 18(1): 103-108.
    [159] Hu Jiashan, Agrawal K D, Roy R. Investigation of hydration phases in the system CaO-SiO_2-P_2O_5-H_2O. Journal of Material Research, 1988, 3(6): 772-778.
    [160] Steinke A R, Silshee R M, Roy R. Development of chemically bonded ceramics in the system CaO-SiO_2-P_2O_5-H_2O. Cement and Concrete Research, 1991, 21(1): 66-72.
    [161]方永浩,施书哲,杨南如.高铝水泥磷酸盐CBC材料的初步研究.南京化工大学学报, 1998, 20(2): 21-25.
    [162] Theissing E M, Mebius Van De Laar T, De Wind. The Combining of sodium chloride and calcium chloride by the hardened portland cement compounds C3S ,C2S, C3A, C4AF. Proceedings of 8th International Symposium on Chemistry of Cement, Rio de Janeiro, 1986, 823-828.
    [163] Delargrave A, Marchand J, Ollivier. Chloride blending capacity of various hydrated cement paste System. Advances of Cement Base Materials, 1997, 6: 28-35.
    [164] Richard E Weyers. Service life model for concrete structures in chloride laden environments. ACI Materials journal, 1998, 95(4): 445-453.
    [165] Tognon G P, Cangiano S. Interface phenomena and durability of concrete. In: Proceeding of 7th International Congress on the Chemistry of Cement, Paris:Septima, 1980, 3:1133-l138.
    [166] Winslow D N, Liu D. The pore structure of paste in concrete. Cement and Concrete Research, 1990, 20(2): 227-235.
    [167]许仲梓.水泥混凝土电化学进展-交流阻抗谱理论.硅酸盐学报, 1994, 22(2): 173-180.
    [168] Gup,Xiep, Beaudoin J J. Microstructural charaeterization of the transition zone in cement systems by mean of A.C. impedance spectroscopy. Cement and Concrete Research, 1993, 23(3): 581-591.
    [169]唐国宝.水泥浆体-集料界面过渡区渗流结构及其对砂浆和混凝土性能的影响[博士学位论文].上海:同济大学材料学院, 2000.
    [170] Shane J D, Mason T O, Jennings H J. Conductivity and microstructure of the interfacial transition zone measured by impedance spectroscopy[A]. In: Alexander M G,Arliguie G. Engineering and Transport Properties of the Interfacial Transition Zone in Cementitious Composites[C].Rilem Report 20.Cachan:RILEM Publication SARL, 1999, 173-203.
    [171] Beaudoin J J, Marchand J. Pore strueture[A].In:Ramachandran V S, Beaudoin J J eds. Handbook of Analytical Techniques in Concrete Science and Technology; Principles, Techniques and Applications[M]. New York; Willian Andrew Publishing, 2001. 528-628.
    [172]贺鸿珠.掺粉煤灰水泥基材料水化机理及性能的电化学研究[博士学位论文].上海:同济大学, 2001.
    [173]曹楚南.腐蚀电化学原理.北京:化学工业出版社, 1985.
    [174]贺鸿珠,陈志源,史美伦.掺粉煤灰混凝土抗渗性和氯离子扩散性的交流阻抗研究.混凝土, 2000(9): 55-58.
    [175]王爱勤,杨南如,钟白茜.粉煤灰水泥的水化动力学.硅酸盐学报, 1997, 25(2): 123-129.
    [176] Wu Jinguang. Technology and application of modern fourier transform infraredspectroscopy. Beijing: Science and Technology Literature Press, 1998: 147.
    [177] Palomo A, Glasser F P. Chemically-bonded cementitious materials based on metakaolin. British Ceramic Transactions and Journal, 1992, 91: 107-112.
    [178] Palomo A, Blanco Varela M T, Granizo M L. Chemical stability of cementitious materials based on metakaolin. Cement and Concret Research, 1999, 29(6): 997-1004.
    [179] Lippmaa E., Magi M, Samoson A., Engelhardt G. Structural studies of silicates by solid-state high-resolution (29)~Si NMR. Journal of the American Chemical Society, 1980, 102: 4889-4893.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700