低温低水化热固井水泥浆体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深水海域地区的天然气水合物资源丰富,加快天然气水合物开采是世界各国能源发展的重要规划,我国中长期科学和技术发展规划中将天然气水合物开发技术作为前沿技术单独提出。但由于天然气水合物仅在低温高压条件下稳定存在,如何避免固井时天然气水合物层失稳的安全开采对固井提出了新要求,而我国在天然气水合物固井技术研究方面还很薄弱。本研究是为适应深水水合物层固井要求而进行的前沿性应用基础研究。针对天然气水合物固井面临的低温、天然气水合物失稳、浅层水-气流动等问题,论文开展了低水化热水泥外掺料、对水泥浆水化热影响小的促凝剂、低水化热水泥的吸热剂、降失水剂、防气窜剂等研究。
     依据硅酸盐水化机理、胶凝材料的微集料效应、形态效应以及火山灰反应等原理,通过在G级油井水泥中引入具有低水化热性能的胶凝材料稀释水泥体系中具有高水化热的熟料成分,从而达到降低水泥体系整体水化热的目的。在水泥熟料的水化机理和低水化热胶凝材料水化及活化理论指导下,优选了用于深水水合物层固井的低水化热胶凝材料,评价分析了低水化热胶凝材料对水泥水化热、水泥浆稠化时间、流变性及水泥石强度等性能的影响,得出了单独加入低水化热胶凝材料的水泥组成配方。两种或两种以上胶凝材料同时加入水泥可获得性能上的优势互补。因此,将优选的低水化热胶凝材料(矿渣、粉煤灰)同时加入水泥,形成的低水化热水泥配方LHC-3:矿渣、粉煤灰各15%、胜维G级水泥70%,其浆体生成的纤维状放射型C-S-H凝胶数目最多,更大限度的填充和密实了水泥石微空隙,增强了水泥石强度,且LHC-3水泥体系的浆体温度比G级水泥原浆的温度低12℃。
     LHC-3水泥配方虽然性能具有更大的优势,但其水泥石强度尚无法完全满足深水水合物层固井要求,论文研究探讨了LHC-3体系中低水化热胶凝材料潜在活性激发问题及体系水泥石强度改善情况。单独使用或复合使用碱性激活剂、硫酸盐激活剂、有机激活剂都可不同程度的激发低水化热胶凝材料的潜在活性,并具有一定的促凝早强作用,有利于水泥石获得较高的早期强度。但它们发热量大,不利于水合物的稳定。优选的(1.0%CaO+1.5%Na_2SO_4+0.03%TEA)无机有机复合激活剂在激发水泥活性的同时,还可兼顾水泥石强度的改善和降低水泥水化热之间的平衡。
     深水低温环境导致施工水泥浆凝固缓慢,延长了建井周期。依据曼尼希反应原理,将含有羟基官能团的胺类进行氨甲基化对称反应制备了四羟基有机曼尼希碱促凝剂DWGZ-1。该促凝剂加量小,质量百分含量仅为0-0.05%,而传统促凝剂加量在1.0-3.0%之间;对低水化热水泥体系促凝早强效果明显且能使水泥浆成直角稠化(传统促凝剂做不到);对水泥浆体系水化热影响小,加入该促凝剂水泥浆温度变化与不加的基本相同,而传统促凝剂可使水泥浆温度多升高20℃左右。因此,DWGZ-1促凝剂与同类产品比较,可更好地适应深水低温固井要求。
     依据无机盐类的结晶水合物在失去结晶水时会吸收环境热量的原理,以乙基纤维素作为囊壁材料,KAl(SO_4)_2·12H_2O或CaSO_4·2H_2O结晶水合物作为囊芯材料,利用微胶囊包裹技术对带结晶水的无机盐类物质实施微胶囊包裹,成功研制了低水化热水泥吸热剂DWGCX。该剂吸收热量具有温度选择性,吸收温度高于60℃的环境热量,可使水泥浆的温度保持在60℃左右,既不影响水泥浆正常水化升温,又可避免深部地热对水合物的影响。
     针对深水水合物层固井的特殊性和低温低水化热固井水泥的适应性,开发研究了低水化热固井水泥浆体系配套外加剂。成膜型低水化热水泥降失水剂DWGJ-2低温下具有较好的降失水性能,并对低温下的水泥浆稠化时间影响较小。防气窜剂DWGJR的胶乳微颗粒和成膜性能使其具有良好的防气窜性能还能强化降失水剂的降失水效果,改善水泥石渗透率,提高水泥石的抗腐蚀能力。
     形成的低温低水化热固井水泥浆体系DWGC很好的控制了浆体水化放热,具有良好的流动性能,稠化时间可调,静胶凝强度过渡时间短,可以减少水-气窜发生的几率;在配套外加剂的作用下,水泥石强度和耐腐蚀性得到改善,为深水水合物层固井技术的基础性研究打下了一定的基础。
Resources of gas hydrate are rich in deep sea region. Speeding up the exploitation of gas hydrates are important energy development planning around the world. The development technology of natural gas hydrate as cutting-edge technology is separately advanced in China's medium and long-term development plan of science and technology. Stability existence of gas hydrate is only at a certain scope. How to avoid instability when cementing the gas hydrate layer and safe exploitation of natural gas hydrate resources are a new request of cementing. Our country in natural gas hydrate layer cementing technology research is still a zero. In order to meet the development strategy of China's oil and gas resources, basic research of cutting-edge applications, this is carried out in this study. Gas hydrate cementing is faced with the low temperature, instability of gas hydrates, shallow water-gas flow problem. Thesis is the first to conduct research about the low hydration heat of cement system, the small heat-affected cement accelerator, the low hydration heat cement endothermic agent, fluid loss agent, anti-gas channeling agent, etc.
     Based on the mechanism of hydration of Portland, micro-aggregate effect, morphological effect and pozzolanic reaction, the low heat performance foreign admixtures are introduced into the class G oil well cement in order to dilute the high hydration heat compositions of cement clinker, thus reducing the overall hydration heat of the cement system. Under the guidance of hydration mechanism of the cement clinker and activation theory of the low hydration heat materials, the thesis has optimized low hydration materials for deep water hydrate layer cementing, has evaluated hydration heat of materials with low hydration heat, cement slurry thickening time, rheology and strength of cement stone, etc. And a cement formulation of separately adding low hydration materials has been acquired.
     Two or more cementitious materials added into cement at the same time are available to the complementary performance advantages. Therefore, the low hydration heat preferred materials (slag, fly ash) simultaneously are added into cement, then forms an low hydration heat of cement formulation LHC-3: slag, fly ash of 15%, Shengwei class G cement 70%. Its fibrous actinomorphic generated C-S-H gel has the largest number, it can maximumly fill and compact the cement micro-gap, enhance the strength of cement paste, furthermore its strength is equivalent with slag - cement system. And the hydration heat of LHC-3 cement system is lower, Cement slurry temperature only rises 11℃than the initial temperature, in contrast G class increased by 23℃than the initial temperature of cement. Therefore, LHC-3 achieves a better optimization of performance advantages in cement strength and hydration heat of cement slurry.
     Although LHC-3 has a greater advantage of performance cement, its cement strength can not fully meet the requirements of deep water hydrate layer cementing. The dissertation has researched how to excite the potential activity of the low hydration heat materials and how to improve the cement strength. The separate use or the compositional use of alkaline activator, sulphate activator, organic activators can inordinately excite the potential activity of the low hydration heat materials, and they has early strength acceleration to make cement stone acquire higher early strength. But they their hydration heat are so high not conducive to the stability of hydrate.
     Deepwater low temperature causes the slow solidification of construction cement, and it can extend construction cycle of oil and gas well. In accordance with Mannich reaction principle, amine with Hydroxyl functional group has aminomethylation and generate the Mannich alkali accelerator DWGZ-1. The accelerator has a small dosage(0-0.05%), while the traditional accelerator is used between 1.0- 3.0% dosage; it has a strong accelerating effect for cement system of low hydration heat and makes cement slurry right-angle thickening(The traditional accelerator does not). DWGZ-1 has a small hydration heat impact on the cement slurry system. Therefore, DWGZ-1 has unparalleled advantages with similar accelerators, and it can better meet the requirements of deep water hydrate layer cementing.
     Based on the principles which the inorganic salts with crystal water will absorb environmental heat when hydrate is losing its crystal water, with ethyl cellulose as the wall material and KAl(SO_4)_2·12H_O or CaSO_4·2H_2O as capsule-core, The use of microencapsulation technology has packaged the inorganic salts with crystal water, and successfully prepare the cement endothermic agent DWGCX of a low heat hydration. Absorption heat of the agent has a temperature selection, it can absorb heat of the Environment which the temperature is higher than 60℃. It will enable the slurry to maintain the temperature at around 60℃, without affecting the normal hydration of cement slurry, also avoiding the deep geothermal impact on the hydrate.
     In connection with particularity of deepwater hydrate layer cementing and adaptability of low temperature and low hydration heat cement, matched additive system of low temperature and low hydration heat has been researched and developed. Under low temperature Filmformed fluid loss agent DWGJ-2 has good low temperature performance and reducing fluid loss performance, and it does not affect the thickening time of cement slurry. The latex micro- particles and film-forming properties of anti-gas channeling agent DWGJR make it have good anti-gas channeling performance. It can strengthen the reducing fluid loss performance of fluid loss agent, it can improve cement penetration, and it can improve the corrosion resistance of cement.
     The low temperature and low hydration heat cement slurry system DWGC can better control exothermic hydration heat of the slurry, have good flow properties. Its thickening time can adjust according to cementing requirement. Its transition time of static gel strength is short and the probability of gas or water channeling occurrence will be decreased. Under the effects of the matched additives, cement strength and corrosion resistance got improved, it will help extend the life of oil wells. DWGC system can well adapt to the requirements of deep water hydrate layer cementing.
引文
[1] 赵政璋,赵贤正.国外海洋深水油气勘探发展趋势及启示[J].中国石油勘探,2005,6:71-78
    [2] 石海.国家海洋石油资源开发前景[J].中国远洋航务公告,2005,11:18-19
    [3] 钱伯章,朱建芳.天然气水合物:巨大的潜在能源[J].天然气与石油,2008,26(4):47-52
    [4] 雷怀彦,王先彬.天然气水合物研究现状与未来挑战[J].沉积学报,1999,17(3):493-498
    [5] 陈多福,姚伯初.美国天然气水合物研究概况及我国的研究对策[J].海洋地质,2002,2:1-6
    [6] 潘继平,张大伟,岳来群.全球海洋油气勘探开发状况与发展趋势[J].国土资源情报,2006,(7):1-4
    [7] 连琏,孙清,陈宏民.海洋油气资源开发技术发展战略研究[J].中国人口·资源与环境,2006,16(1):66-70
    [8] 何家雄,夏斌,施小斌等.世界深水油气勘探进展与南海深水油气勘探前景[J].天然气地球科学,2006,17(6):747-752
    [9] 梅平,刘华荣, 陈武等.天然气水合物的勘探开采及环境效应研究进展[J].化学与生物工程,2007,24(10)1-3
    [10] 吴传芝,赵克斌,孙长青等.天然气水合物开采研究现状[J].地质科技情报,2008,27(1):47-51
    [11] 徐文世,于兴河,刘妮娜等.天然气水合物开发前景和环境问题[J].天然气地球科学,2005,16(5):680-683
    [12] 高兴军,段鸿彦.天然气水合物勘探开发技术浅析及研究策略[J].断块油气田,2001,8(3):6-7
    [13] 叶建良,殷琨,蒋国盛等.天然气水合物钻井的关键技术与对策[J].探矿工程,2003,(5):45-48
    [14] 李清平.我国海洋深水油气开发面临的挑战[J].中国海上油气,2006,18(2):130-133
    [15] 阳连丰,彭艳.我国海洋油气开发面临的历史机遇[J].中国造船,2006,47(11):27-30
    [16] 王成文,王瑞和,卜继勇等.深水固井面临的挑战和解决方法[J].钻采工艺,2006,29(3):11-14
    [17] Kris Ravi ,Seth Moor. Cement Slurry Design to Prevent Destabilization of Hydrates in Deepwater Environment[R]. SPE 113631
    [18] 李湘洲.国外生态水泥工业发展的若干动向[J].中国建材,2002,(9):35-36
    [19] 隋同波,文寨军.低能源资源消耗、低环境负荷和高性能水泥——高贝利特水泥[J].中国 建材,2003,(9):61-63
    [20]Kenneth Hampshire, Mike McFadyen-Overcoming deepwater cementing challenges in South China Sea, East Malaysia[R]. SPE 88012, 2004
    [21]Jim O Leary, Juan Carlos Flores, Paulo Rubinstein,et al·Cementing deepwater, low- temperature Gulf of Mexico Formations prone to shallow flows [R]. SPE 87161, 2004
    [22] 李金玉,彭小平,隋同波等.HBC 低热高抗裂大坝混凝土的开发研究[J].水力发电,2003,29(3):58-62
    [23] 李发堂,罗青枝,王德松等.贝利特水泥的优势及研究现状[J].河北工业科技,2003,20(4):57-61
    [24] 阳运霞,李明泽.低热硅酸盐水泥强度影响因素分析[J].四川水泥,2003,(1):45-47
    [25] 杨华全,李文伟,王迎春等.低热硅酸盐水泥在三峡工程中的应用[J].人民长江,2007,38(1):10-13
    [26] 王晓钧,杨南如,钟白茜等.低温贝利特水泥形成过程中粉煤灰显微结构的变化[J].硅酸盐通报,1995,(5):46-50
    [27] 赵平,刘克忠,隋同波等.粉煤灰对高贝利特水泥和混凝土的工作性、强度及水化热的影响[J].水泥,2002,(3):1-4
    [28] 李华,吴笑梅,樊粤明.低热水泥的研究现状及展望[J].广东建材,2006,(5):24-26
    [29] 王晶,文寨军,隋同波等.高贝利特水泥的性能及其水化机理的研究[J].建材发展导向,2004,(1):45-49
    [30] 李金玉,彭小平,曹建国等.高贝利特水泥低热高抗裂大坝混凝土性能的研究[J].硅酸盐学报,2004,32(3):364-371
    [31] 文寨军,隋同波,范磊等.高贝利特水泥高性能混凝土力学性能的研究[J].混凝土,2002,(12):49-52
    [32] 隋同波,文寨军,王晶等.高贝利特水泥高性能混凝土性能的研究[J].应用研究,2004,(10):59-64
    [33] 彭小平,李金玉,隋同波等.高贝利特水泥混凝土的力学性能的研究[J].水利学报,2003,(11):85-89
    [34] 王政,巴恒静,张玉珍.高贝利特水泥混凝土的耐久性[J].低温建筑技术,2006,(1):6-8
    [35] 郭随华,张洪滔,林震等.高贝利特水泥熟料出窑颗粒度、显微结构组成和水泥性能关系的研究[J].硅酸盐学报,2002,30(4):417-422
    [36] 王晶,隋同波,文寨军等.高贝利特水泥熟料与硅酸盐水泥熟料复合体系的性能研究[J].建材技术与应用,2004,(4):3-5
    [37] 张巨松,李好新,隋智通.高硅贝利特-硫铝酸盐水泥的热分析实验研究[J].沈阳建筑工程学院学报,2003,19(2):143-147
    [38] 赵平,刘克忠,隋同波等.粉煤灰对高贝利特水泥和混凝土的工作性、强度及水化热的影响[J].水泥,2002,(3):1-4
    [39] K. (?)imit (?)ZEL & (?)zgun CINAR. LOW HEAT CEMENT PRODUCTION TO THE MARMARAY- ISTANBUL RAILWAY PROJECT. [EB/OL]. http://www.oyakcimento.com/english/marmarayarticle.pdf
    [40] Uchigawa H.Effect of blending components on hydration and structure formation[C].Proc.of the 8th International Cement Chemistry Conference.Rio de Janeiro, Ⅰ : 1986.249-280
    [41] Smolczyk H G.Slag structure and identification of slags[C].Proc.of the 7th International Cement Chemistry Conference.Paris,France, Ⅰ ,Ⅲ:1980.1,3-17
    [42] Feldman R F,Carette G G and Malhotra V M. Studies on mechanism of development of physical and mechanical properties of high-volume fly ash concrete[J].Cement and Concrete Composites,1990(12):245-251
    [43] Berry E E,Hemmings R T and Cornelius B J.Mechanism of hydration reactions in high volume fly ash pastes and mortars[J].Cement and Concrete Composites,1990(12):253-261
    [44] Berry E E,Hemmings R T,Zhang M H,Cornelious B J and Golden D M.Hydration in high-volume fly ash concrete binders[J]. ACI Material Journal, 1994,91:382-389
    [45] Zhang M H.Microstructure,crack propagation and mechanical properties of cement pastes containing high volumes of fly ashes[J]. Cement and Concrete Research, 1995,25(6): 1165-1178
    [46] Xu A and Sarkar S.Microstructural development in high-volume fly ash cement system[J]. Journal of Materials in Civil Engineering,ASCE, 1994(6): 117-136
    [47] A. M. Sharara H. Ei-Didamony E. Ebied Abd EI-Aleem. Hydration Characterstics of β-C_2S in The Presence of Some Pozzolantic Materials[J]. Cement and ConcreteResearch. 1994, 24 (5):966-974
    [48] Phil Rae, Gino Di Lullo-Lightweight cement formulations for deep water cementing: Fact and fiction [J]. SPE91002, 2004·
    [49] Xiangdong Cong and R. James Kirkpatrick. ~(17)O and ~(29)Si MAS NMR Study of β-C_2S Hydration and The Structure of Calcium-Silicate Hydrates[J]. Cement and Concrete Research. 1993, 23 (5): 1065-1077
    [50] K. Fukuda&H. Taguchi. Hydration of α_L-and β-Dicalcium Silicates with Inentical Concentration of Phosphorus Oxide[J]. Cement and Concrete Research. 1999,29(3): 503-506
    [51] I. Jelenic&A. Bezjak. On the Hydration Kinetics of a-andp-Modifictions of Dicalcium Silicate[J]. Cement and Concrete Research. 1981,11 (3): 467-471
    [52] J. Havlican&D. Doztoka. Hydration Kinetics of Calciumaluminate Phases in The Presence of Various of Ca~(2+) and SO_4~(2+) Ions in Liquid Phase[J]. Cement and Concrete Research. 1993, 23(2): 294-300
    [53] S. M. Bushnell-Watson&J. H. Sharp.The Effect of Temperature upon the Setting Behaviour of Refractory Calcium Aluminate Cements[J]. Cement and Concrete Research. 1986, 16 (6): 875-884
    [54] K. Nakagawa, I. Terashima, K. Asaga, M. Daimon. Influence of Ca(OH)2 and CaS04 .2Hz0 on Hydration Reaction of Amorphous Calcium Aluminate[J]. Cement and Concrete Research.1990, 20 (5):824-832
    [55] Giorgio Baldini and Marco Pauri. The Effect of Pozzolanas on the Tricalcium Aluminate Hydration, Mario Collepardi[J]. Cement and Concrete Research. 1978, 8 (6): 741-752,
    [56] Glen Benge, David Poole. Use of Foamed Cement in Deep Water Angola[R]. SPE91662,2005
    [57] J. Romero, M. Loizzo. The Importance of Hydration Heat on Cement Strength Development for Deep Water Wells[R]. SPE: 62894-MS, 2000
    [58] Reddy Baireddy R, Crook Ronald J, etc. Cementing Casing Strings in Deep Wells[P]. EP:1123907,2001-08-16
    [59] Paul Wencil Brown, Ellen Francz, Geoffrey Frohnsdorff and H. F. W. Taylor.Analyses of the Aqueous Phase during early C,S Hydration[J]. Cement and Concrete Research. 1984, 14(1):257-262
    [60] P. Fierens and J.P. Verhaegen. Induction Period of Hydration of Tricalcium Silicate[J].Cement and Concrete Research. 1976, 6 (2): 287-292
    [61] Michael W. Grutzeck&A. R. Ramachandran. An Integration of Tricalcium Silicate Hydration Modela in Light of Recent Data[J]. Cement and Concrete Research. 1987, 17 (1): 164-170
    [62] Ellis M. Gartner. A Proposed Mechanism for The Growth of C-S-H during The Hydration of Tricalcium Silicate[J]. Cement and Concrete Research. 1997, 27(5): 665-672
    [63] Elks M. Gartner&Hamlin M. Jennings. Thermodynamics of Calcium Silicate Hydrates and Their Solutions[J]. Cement and Concrete Research. 1987, 70 (10): 743-749
    [64] J. Neubauer and H. Pollmann. Alinite Chemical Composition: Solid Solution And Hydration Behavior[J]. Cement and Concrete Research. 1994, 24 (8): 1413-1422
    [65] R. Berliner,M. Popovici,K. W. Herwig , M.Berliner , H. M. Jennings and J. J.Thomas. Quasi elastic Neutron Scattering Study of The Effect of Water-to-Cement Ratio on TheHydration Kinetics of Tricalcium Silicate[J]. Cement and Concrete Research. 1998, 28(2): 231-243
    [66] S. Long and Pure C. Liu and Y. Wu. Esca Study on the Early C_3S Hydration in NaOH Solution Water[J]. Cement and Concrete Research. 1998, 27 (2): 245-249
    [67] N. K. Katyal,S. C. Ahluwalia and Ram Parkash. Solid Solution and Hydration Behavior of Magnesium-Bearing Tricalcium Silicate Phase[J]. Cement and Concrete Research. 1998,28 (6): 867-875
    [68] L. Ben-Dor,C. Heitner-Wirguin and H. Diab. The Effect of Polymer on the Hydration of C_3S[J]. Cement and Concrete Research. 1985, 15 (4): 681-686
    [69] Anatoly A. Klyusov. 3CaO·SiO_2 Hydration under Decreased Temperature[J]. Cement and Concrete Research. 1994, 24 (1): 127-132
    [70] R. Melzer and E. Eberhard. Phase Identification during Early and Middle Hydration of Tricalciumsilicate (Ca_3SiO_5)[J]. Cement and Concrete Research. 1989, 19 (3): 411-422
    [71] 蒋尔忠,崔源声.面向可持续发展的水泥工业[M].北京:化学工业出版社,2003,12,160-209
    [72] 袁润章,朱领安等.关于矿渣玻璃的结构及其特性的研究[J].武汉建材学院学报,1981,(3):33-43
    [73] Wei Fajun,Michael W.Grutzeck and Delia M.Roy.The retarding effects of fly ash upon the hydration of cement pastes:The first 24 hours. Cement and Concrete Research, 1985,15(1): 174-184
    [74] 张文生,陈益民.粉煤灰与水泥熟料共同水化硬化的基础研究进展及评述[J].硅酸盐学报,2000,28(2):160-164
    [75] 方泽锋,施惠生.粉煤灰对水泥浆体的水化及亚微观结构的影响[J].粉煤灰综合利用,2003,5:48-51
    [76] 孙家瑛,诸培南.矿渣在碱性溶液激发下的水化机理探讨[J]硅酸盐通报,1988,(8):16-24
    [77] 张永娟,张雄.水泥—矿粉颗粒级配与流变性能关系的研究[J].同济大学学报,2003,31(9):1059-1063
    [78] 孙超.矿渣_粉煤灰混合胶凝体系研究[D].大庆:大庆石油学院,2006
    [79] 沈燕华,张树青.高炉矿渣活性波动的原因分析及研究[J].粉煤灰,2007,(5):13-14
    [80] 梁慧.粉煤灰活性效应研究[D].广州:中南大学,2007
    [81] 杨南如.碱胶凝材料形成的物理化学基础[J].硅酸盐学报,1996,24(2):209-215
    [82] 梁松,杨医博,莫海鸿.三乙醇胺对水泥土强度影响的试验研究[J].四川建筑科学研究,2008,34(1):139-141
    [83] 马保国,许永和,董荣珍.三乙醇胺对水泥初始结构和力学性能的影响[J].建筑材料学报,2006,9(1):6-9
    [84] P. Barnes等著.吴兆琦,汪瑞芬等校译.水泥的结构和性能[M].北京:中国建筑工业出版社.1991年4月第一版
    [85] 袁润章主编.胶凝材料学[M].武汉:武汉工业大学出版社.1996年10月第二版
    [87] Aiqin Wang,Chengzhi Zhang and Wei Sun.Fly ash effects:Ⅲ.The microaggregate effect of fly ash[J]. Cement and Concrete Research,2004,34(11):2061-2066
    [88] 胡家国,古德生,郭力.粉煤灰胶凝性能的探讨[J].金属矿山,2003,(6):48-52
    [89] 徐亦冬,张利娟,陆云龙.粉煤灰、矿渣及硅灰对水泥胶砂流动性及早期强度的影响[J].混凝土,2005,9:39-41
    [90] 李仕群,孙凤金,刘飚等.高掺量粉煤灰水泥早期强度的研究[J].河南建材,1999,(1):15-18
    [91] Jin-Keun Kim, Sang Hun Han and Young Chul Song.Effect of temperature and aging on the mechanical properties of concrete:Part Ⅰ.Experimental results[J]. Cement and Concrete Research, 2002,32(7): 1087-1094
    [92] 龙广成,谢友均,王培铭.粉煤灰强度效应的研究[J].铁道科学与工程学报,2005,2(1):19-24
    [93] P.K.Mehta.Influence of fly ash characteristics on the strength of Portland-fly ash mixture[J]. Cement and Concrete Research,1985,15(4):669-674
    [94] 袁润章,高琼英.矿渣的结构特性对其水硬活性的影响[J].武汉建材学院学报,1982(1):7-12
    [95] 袁润章,高琼英.矿渣结构与水硬活性及其激发机理[J].武汉工业大学学报,1987,(3):297-303
    [96] 叶群山,梁文泉,何真.矿渣粉煤灰复合胶凝体系的试验研究[J].混凝土,2004(8):42-45
    [97] 周玲,单建军.提高矿渣水泥早期强度的研究[J].建材技术与应用 2004(2),3-5
    [90] 王瑾.低水灰比条件下碱矿渣水泥的水化硬化[J].山东建材,2002,3(4):13-13
    [98] 史非,王立久.高掺量粉煤灰矿渣水泥水化进程及水泥水化热的研究[J].建筑石膏与胶凝材料,2003(1):13-16
    [99] 李东旭.低钙粉煤灰在不同碱环境中的活化研究[J].材料导报,2000;14(11):59-61.
    [100] 袁桂芳,李建平,倪文等.炉矿渣胶凝材料抗压强度影响因素分析[J].矿产综合利用,2007(3):39-41.
    [101] 谷章昭,乐美龙等.粉煤灰活性的研究[J].硅酸盐学报,1982(2):5-8
    [102] 孙抱真,贾传玖,水翠鹃.粉煤灰的颗粒形貌及其物理性质[J].硅酸盐学报,1982(1):23-27
    [103] 沈旦申.粉煤灰混凝土[M].北京:中国铁道出版社,1989,151-153
    [104] 王运泉,张建平,郑燕君.粉煤灰的组成特征及其系统分类[J].环境科学研 究,1998,11(6):1-4
    [105] Aiqin Wang,Chengzhi Zhang and Wei Sun.Fly ash effects:Ⅰ.The morphological effect of fly ash.Cem.Concr.Res.,2003,33(12):2023-2029
    [106]王瑞和,王成文,步玉环等.深水固井技术研究进展[J].中国石油大学学报(自然科学版),2008,32(1):76-81
    [107] Bernard Piot, Alain Ferri, etc. West Africa Deepwater Wells Benefit from Low-Temperature Cements[R]. SPE: 67774-MS, 2001
    [108] Willis C. Cunningham, Charles R. George, etc. Composition and Method for Cementing Wells in Low Temperature Formations[P]. USP:3891454,1975-06-24
    [109] L. F. Maier, M.A. Carter, etc. Cementing Materials for Cold Environments[R]. SPE2825, 1971
    [110] Stanley H. Shryock, Brea, Calif, etc. Method for Cementing Wells in Low Temperature Formations[P]. USP: 3937282, 1976-2-10
    [111] Robert A. Kunzi, EDWGArd F. Vinson, etc. Low Temperature Well Cementing Compositions and Methods[P]. USP:5346550, 1994-09-13
    [112] Robert A. Kunzi, EDWGArd F. Vinson, etc. Low temperature well cementing compositions and methods[P]. USP: 5447198, 1995-09-05
    [113] Virgilio C. Go Boncan. Low Temperature Well Cementing Compositions and Methods[P].USP:6626243, 2003-09-30
    [114] Hassan Kunbargi. Very early setting ultra-high strength cement[P]. USP: 7150786, 2006- 10-19
    [115] Jack Maberry, Greg Garrison, etc. Process of Well Cementing in Cold Environment[P].USP:6955220, 2005-10-18
    [116] Anatoly A. Klyusov, VNIIGAZ, etc. Cements and Gas Well Cementing in the Arctic Regions of Russia[R]. SPE:104335-MS, 2006
    [117] Ewout Biezen, Kris Ravi. Designing Effective Zonal Isolation for High-Pressure/ High-Temperature and Low Temperature Wells[R]. SPE:57583-MS, 1999
    [118] James E. Griffith; Patty L. Totten. Well cementing methods and compositions for use in cold environments[P]. USP:5571318
    [119] Nassima Mohammedi, Alain Ferri, Bernard Piot. Deepwater wells benefit from cold- temperature cements[J]. World Oil, 2001,222(4): 86-91
    [120] Hassan Kunbargi. Rapid hardening, ultra-high early strength Portland-type cement compositions, novel clinkers and methods for their manufacture which reduce harmful gaseous emissions[P].USP:6113684, 2000-09-05
    [121] 张运峰.复合油井水泥早强剂 SS-91 的研制及应用[J].钻井液与完井,1994,11(1):69-71
    [122] 赵福麟.采油用剂[M].东营:石油大学出版社,1997:120-127
    [123] 周明芳,倪红坚.聚乙烯醇胶乳油井水泥抗盐性能实验[J].油气地质与采收率,2007,14(1):100-102
    [124] 彭雷,房恩楼,张敬涛等.交联聚乙烯醇的防窜机理及应用[J].钻井液与完井液,2007,24(3):39-41,44
    [125] 陆屹,胡星琪,刘勇.一种新型油井水泥降失水剂的室内评价[J].钻井液与完井液,2005,22(6):19-21
    [126] 陈涓,赵艳.化学交联聚乙烯醇的交联度和降失水性能的关系[J].钻井液与完井液,2002,19(5):22-24
    [127] 黄柏宗,徐同来.国内外油井水泥和外加剂现状及发展趋势[J].钻井液与完井液,1995,12(6):53-72
    [128] 陈大钧,廖刚.四川深井塑性水泥体系研究与应用[J].天然气工业,2001,21(3):36-38
    [129] 郭志勤,赵庆等.固井水泥石抗腐蚀性能的研究[J].钻井液与完井液,2004,21(6):37-40
    [130] 廖刚,杨远光等.油井水泥腐蚀的能谱分析研究[J].西南石油学院学报,1998,20(3):72-74
    [131] 姚晓.二氧化碳对油井水泥的腐蚀及其防护措施[J].钻井液与完井液.1998,15(1):8-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700