流化床燃煤固硫灰渣中无水石膏作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流化床燃煤固硫技术是符合节能环保发展方向的先进煤燃烧技术,但由于目前对其副产物,即流化床燃煤固硫灰渣(以下简称固硫灰渣)的特性了解有限,缺乏基础资料,导致这一技术的推广应用因固硫灰渣没有成熟和经济的综合利用途径而受到严重影响。
     固硫灰渣本质上是烧粘土质矿物,用于建材领域是其最重要的资源化利用途径之一,固硫灰渣中含有大量的固硫矿物——无水石膏,无水石膏既可以激发固硫灰渣的火山灰活性,又会带来无法控制的膨胀,使固硫灰渣具有很多独特的性能,阻碍了其建材资源化利用。本论文围绕固硫灰渣中的无水石膏展开,利用XRD、SEM和EDS等微观分析手段系统研究了固硫灰渣中无水石膏的微观形貌和分布规律;利用化学手段分析了无水石膏在固硫灰渣水化过程中的作用;在此基础上,研究了固硫灰渣中的无水石膏对其活性及活性行为的影响,提出了基于消除无水石膏影响的固硫灰渣活性评价方法;最后,研究了如何抑制固硫灰渣中无水石膏的膨胀,提出了建材资源化利用的方向。
     本论文有以下研究成果:(1)通过XRD和化学分析手段证明了固硫灰渣中含硫矿物几乎都以Ⅱ型无水石膏形式存在;(2)利用密度分离和筛分方法研究固硫灰渣中无水石膏的形貌和分布规律,发现无水石膏在固硫灰渣中分布不均匀,易富集在粒径小、密度大的固硫灰渣颗粒中;(3)通过SEM和EDS能谱分析发现固硫灰和固硫渣中都不同程度存在有致密和疏松的两种类型颗粒。固硫灰致密颗粒表面结晶较好的突出物主要是无水石膏及一定含量的粘土矿物,疏松颗粒主要是未燃烧的炭;固硫渣致密颗粒表面结晶较好的突出物主要是无水石膏,疏松颗粒表面结晶较好的柱状颗粒主要是粘土矿物,还吸附了少量的无水石膏;(4)通过反应速率常数K和溶解曲线的测试,表明850℃煅烧2h的无水石膏与固硫灰渣中的无水石膏溶解性能和反应活性相似,可以外掺入固硫灰渣以研究不同无水石膏含量对其性能的影响;(5)通过系统的pH值、钙矾石和化学结合水的定量测试,证明固硫灰渣中的无水石膏会积极参与并影响固硫灰渣中烧粘土矿物的水化,从而影响活性行为和膨胀性能;(6)固硫灰渣中的无水石膏含量对其火山灰活性的高低没有影响,但可以明显影响其活性行为。当无水石膏在系统中的含量在2~4% (以SO3含量计)范围内时,固硫灰渣的活性行为表现最好,小于这一范围,无水石膏对固硫灰渣的火山灰活性激发效果差,大于这一范围,过量的无水石膏会在水化后期生成延迟钙矾石和二水石膏,破坏已经形成的强度结构,都不利于固硫灰渣的活性行为表现;(7)提出的基于消除无水石膏影响的固硫灰渣活性评价方法,即“水泥熟料胶砂28d抗压强度比方法”,强调通过控制石膏含量来控制系统SO3含量,通过胶砂流动度来控制用水量,可以真实反映固硫灰渣可应用的火山灰活性。该方法要求固硫灰渣含硫量应在11.6%(以SO3含量计)以内,我国固硫灰渣平均含硫量为7.8%(以SO3含量计),绝大部分适用于此方法;(8)无水石膏是导致固硫灰渣水化膨胀的主要因素。试验表明选择能够促进无水石膏溶解和水化的外加剂可在一定程度上抑制固硫灰渣中无水石膏的膨胀,掺入1%的CaCl2或Na2CO3后,可使28d胶砂线性膨胀率降低约19%;控制固硫灰渣掺量和胶凝体系中的SO3含量,固硫灰渣可以作为水泥混凝土的混合材使用,选择SO3含量在11.6%以下的固硫灰渣,以30%的掺量与水泥熟料组成的胶凝材料自由线性膨胀率不超过基准水泥,28天抗压强度可达到基准水泥的90%,且安定性、凝结时间、抗冻融、抗碳化等性能均符合要求;(9)热养护能消除固硫灰渣中无水石膏的膨胀,用70%的固硫灰渣和30%的水泥熟料混合,通过蒸压养护后,固硫灰渣水泥熟料制品强度是自然养护条件下试件的2~3倍,28天胶砂抗压强度达到25MPa。蒸压后净浆水化产物中没有钙矾石生成,有托贝莫来石生成,水化产物结晶更完善,最大线性膨胀率仅为直接水中养护净浆的1/7左右,在5×10-4以下,且随龄期变化很小。
Fluidized bed combustion (FBC for short) technology is one of the advanced coal combustion technology that meets the demands of energy conversation and environmental protection. However, further application of this technology was blocked due to the basic research deficiency and limited understand to the characteristics of FBC ashes—the byproduct of the technology, leading to lack of effective ways to utilize the ashes.
     FBC ashes can be widely used in building materials for they are one kind of incinerated-clay minerals essentially. Nonetheless, FBC ashes containing a lot of solid sulfides—anhydrite, which can not only activate the pozzalanic activity of FBC ashes, but also cause expansion out of control, adding many special characteristics to the ashes that hampered their utilization as building materials.
     This thesis is focus on anhydrite solidified in FBC ashes. Micro-morphology and particle distribution of anhydrite were investigated by X-ray diffraction (XRD), electron scanning microscope (SEM) and energy dispersive scanning (EDS); the function that anhydrite played during hydration of FBC ashes was studied by chemical analysis.
     Based on which, the influence on activity and activation behavior of FBC ashes with the change of anhydrite were studied and a method to evaluate activation of FBC ashes was proposed aimed at eliminating disadvantage influence of anhydrite. Besides, the restraint of anhydrate expansion in FBC ashes was studied and a way of their utilization as building materials was put forward.
     The results are listed as follows: (1) XRD and chemical analysis results testified that the sulphates mineral solidified in FBC ashes is mainlyⅡ-anhydrite. (2) Micro-morphology and particle distribution of anhydrite in FBC ashes was studied through new methods of density-separation and sieving. The anhydrite in FBC ashes are concentrated in particles of FBC ashes with small size and high density. (3) SEM and EDS analysis results showed that the compacted and loose particles are co-existed both in FBC fly ashes and bed ashes. The protrudent crystals on the surface of compacted particles of FBC fly ashes are mainly anhydrite and some clay minerals while loose particles are mainly unburnt carbon; and for FBC bed ashes, the protrudent crystals on the surface of compacted particles are mainly anhydrite while the column crystals on the surface of loose particles are clay minerals as well as some absorbed anhydrite. (4) The results of reaction rate constant K and dissolution curve showed that the reactive activity and dissolution capability of anhydrite calcined at 850℃for 2h are similar to that of anhydrite solidified in FBC ashes. Anhydrite calcined at 850℃for 2h can be added to FBC ashes to investigate the influence on anhydrite properties of FBC ashes with different dosage. (5) The results of pH value and content of ettringite and chemical combined water indicated that anhydrite takes part in the hydration process and effects the hydration of FBC ashes as well as activation behavior and expansion properties. (6) Although the content of anhydrite had no effect on the degree of FBC ashes’activity, it obviously influenced the activation behavior of FBC ashes. When the content of anhydrite was at the range of 2~4% (SO3), the pozzolanic activity of FBC ashes was most effectively activated. While content of anhydrate was below this rage, the activating effect became worse, and if anhydrite was excessive, the delay-ettringite and dihydrate gypsum formed at later age would reduce the strength because of uncontrolled expansion. (7) A method aimed at eliminating disadvantage influence of anhydrite was proposed to evaluate activation of FBC ashes, namely the 28d compressive strength ratio of cement clinker mortar. This new method can value activity of available FBC ashes objectively, in which the content of SO3 and water content were respectively controlled by gypsum content and mortar fluidity. This method is adapted to FBC ashes with content of SO3 below 11.6%. The average content of SO3 in domestic FBC ashes is 7.8%, which meets the sulphur content demand mentioned above. (8) Anhydrite was the main factor that leads to expansion of FBC ashes during hydration. Additives can restrain the expansion through promoting the dissolution and hydration of anhydrite, such as CaCl2 and Na2O3. The linear expansion ratio of FBC ashes mortar can reduce by 19% after adding 1% of CaCl2 or Na2CO3.The results also showed that, FBC ashes can be used as additive for cement and concrete under restricted amount. (9) The expansion of anhydrite was eliminated by way of autoclave curing, which explored a new way for utilization of FBC ashes. The linear expansion ratio of FBC ashes pastes was below 5×10-4 after autoclave curing. There was tobermorite formed when FBC ashes pastes being autoclave cured, and no ettringite can be found.
引文
[1]中国行业研究网.2007年中国煤炭行业发展预测分析研究报告[R].深圳:中国行业研究网.2007:25-26
    [2]李剑阁,彼得·巴特尔穆斯.经济增长与环境课题组报告[R]. http://www.cciced.org/2008-06/24/content_15879985.htm.2007-11-8.
    [3]陈干锦.循环流化床锅炉在我国的发展[J].锅炉技术,2002,33(7):1-6.
    [4]侯天明.循环流化床锅炉环保技术[J].石油化工环境保护,2002,25(3):44-47.
    [5] Deschamps R J.Using FBC and stoker ashes as roadway fill: A case study[J].Geotechnical and Geoenvironmental Engineering,1998,124(11):1120–1127.
    [6] Shah N D.Fluidized bed combustion–a review[J].Chemical Engineering World,1985,20(11):37–45.
    [7] Fox E C,Krishnan R P,Daw C S,etal.A review of fluidized bed combustion technology in the United States[J].Energy,1986,11(11-12):1183–1200.
    [8] Topper J M,Cross P J I,Goldthorpe S H. Clean coal technology for power and cogeneration[J].Fuel,1994,73(7):1056–1063.
    [9] Beer J M.Combustion technology developments in power generation in response to environmental challenges[J].Progress in Energy and Combustion Science,2000,26(4-6):301–327.
    [10] Everett A S,Steven A B,John P H,etal.Review of advances in combustion technology and biomass cofiring[J].Fuel Processing Technology,2001,71(1-3):7–38.
    [11]刘妮,路春美,骆仲泱等.石灰石颗粒固硫反应特性的模型研究[J].环境科学学报, 2001,21(2):172–177.
    [12] Cille E,Belens L W.石灰[M].陆华,武洞明译.北京:中国建筑工业出版社,1981:151–160.
    [13]杨静.建筑材料[M].北京:中国水利水电出版社,2004:41–42.
    [14] Takada T,Hashimoto I,Tsutsumi K.Utilization of coal ash from fluidized bed combustion boilers as road base material[J].Resources Conservation and Recycling,1995,14(2): 69–77.
    [15] Pandey K K,Canty G A,Atalay A.Fluidized bed ash as a soil stabilizer in highway construction[J].Geotechnical Special Publications,1995,46(2):1422–1436.
    [16] Havlica J,Brandstetr J,Odler I.Possibilities of utilizing solid residues from pressured fluidized bed coal combustion (PSBC) for the production of blended cements[J].Cementand Concrete Research,1998,28(2):299–307.
    [17] Nader G,Garcia M C A.Compacted non-cement concrete utilizing fluidized bed and pulverized coal combustion by-products[J].ACI Materials Journal,1998,95(5):582–591.
    [18]闫维勇,高廷源,熊仁森.循环流化床锅炉固硫灰渣综合利用研究[J].洁净煤技术,2000,6(1):31–33,36.
    [19] Demir I,Hughes R E,DeMaris P J.Formation and use of coal combustion residues from three types power plants burning Illinois coals[J].Fuel,2001,80(11):1659–1673.
    [20]万百千,路新瀛.用固硫渣作土壤固化剂的可行性研究[J].粉煤灰综合利用,2002,(3): 21–22.
    [21]王文龙,施正伦,骆仲泱等.流化床固硫灰渣的特性与综合利用研究[J].电站系统工程, 2002,18(5):1–3.
    [22] Siriwardane H J,Ziemkiewicz P F,Kannan R S S.Use of waste materials for control of acid mine drainage and subsidence[J].Journal of Environmental Engineering,2003,129(10):910–915.
    [23] Rio S,Delebarre A.Removal of mercury in aqueous solution by fluidized bed plant fly ash[J].Fuel,2003,82(2):153–159.
    [24]郑洪伟,王智,董孟能.流化床燃煤固硫灰渣的综合利用[J].粉煤灰综合利用,2004,(4):53–56.
    [25]纪宪坤.流化床燃煤固硫灰渣性能研究和应用初探[D].重庆:重庆大学,2007:34-35.
    [26]宋远明.流化床燃煤固硫灰渣水化研究[D].重庆:重庆大学,2007:60-63.
    [27]史学峰,冯波,陆继东等.流化床煤燃烧中的脱硫研究综述[J].电站系统工程,1998,14(6):18-22.
    [28]王斌.循环流化床燃烧脱硫技术[J].煤炭工程,2002,(8):19-20.
    [29]侯宇.关于影响煤燃烧固硫反应的主要因素及其机理的研究进展[J].节能,2004,(6):27-30.
    [30]郝宇,齐庆杰,周新华等.燃煤过程中硫析出特性的影响因素研究[J].矿业快报,2005,436(10):16-19.
    [31] DEMIR I.,HUGHES R. E.,DEMARIES P. J. Formation and use of coal combustion residues from three types power plants burning Illinois coals[J].Fuel,2001,(80):1659-1673.
    [32] ANTHONY E.J.Agglomeration and strength development of deposits in CFB boilers firing high-sulfure fules[J]. Fuel,2000,79(15):1933-1942.
    [33] BLONDIN J.,ANTHONY E. J.,Iribarne A. P..A new approach to hydration of FBC residues[C] . Proceedings of the 12th International Conference on Fluidized Bed Combustion.San Diego,USA,1993,22(7):827–834.
    [34]宋远明,钱觉时,王智.燃煤灰渣火山灰反应活性[J].硅酸盐学报, 2006, 34(8):962–965.
    [35]梁文泉.沸腾炉燃煤固硫渣制作火山灰水泥的研究[D].北京:清华大学,1987:39–42.
    [36]王智.流化床燃煤固硫渣特性及其建材资源化研究[D].重庆:重庆大学,2002:25–40.
    [37]王迎华.用于水泥中的固硫渣标准制定的技术研究[D].北京:清华大学, 1995:19-28.
    [38] Anthony E J,Jia L,Wu Y.CFBC ash hydration studies[J].Fuel,2005,84:1393–1397.
    [39]郑洪伟,钱觉时,纪宪坤,王智.燃煤灰渣中的硫[J].粉煤灰综合利用,2007,6:8-11.
    [40]周强.中国煤中的硫氮赋存状态研究[J].洁净煤技术,2008,14(1):73-77.
    [41]王雁,郑楚光,游小清.煤燃烧过程中硫化物的生成特性研究[J].煤炭转化,2002(7):43-46.
    [42]于洪观,刘泽常等.煤燃烧过程中各形态硫析出规律的研究[J].煤炭转化,1999(3):53-57.
    [43]何云华.煤灰成分对燃煤固硫效果的影响[J].洁净煤燃烧,2002,8(2):52-54.
    [44]范红宇,曹欣玉,周俊虎等.不同气氛下煤燃烧固硫化学反应机理研究进展.煤炭学报,2003,28(1):74-79.
    [45]管仁贵,李文,陈皓侃等.煤燃烧时形态硫的析出及钙基添加剂的作用[J].化工学报,2003(6):813-818.
    [46] Anthony EJ , Granatstein DL . Sulfation phenomena in fluidized bed combustion systems[J].Prog Energy Combust Sci,2001(27):215–236.
    [47] Edward J,Anthony,Lufei Jia,etal.CFBC ash hydration studies[J].Fuel,2005(84):1393-1397.
    [48] Mattisson T,LyngfeltA.The reaction between sulfur dioxide and limestone under periodically changing oxidizing and reducing conditions-the effect of reducing conditions[J].Journal of the Institute of energy,1998(71):190-196.
    [49]赵改菊.水泥生料的固硫行为及硫铝酸盐的形成机理研究[D].武汉:武汉理工大学, 2004:40-47.
    [50]屈卫东,杨建华.循环流化床锅炉设备及运行[M].郑州:河南科学技术出版社,2003:128-130.
    [51]宋远明,钱觉时,王智等.固硫灰渣的微观结构与火山灰反应特性[J].硅酸盐学报,2006,34(12):1542-1546.
    [52] E.J.Anthony,L.Jia.Agglomeration and strength development of deposits in CFBC boilers firing high-sulfur fuels[J]. Fuel,2000,79:1933-1942.
    [53]袁润章主编.胶凝材料学[M].武汉:武汉工业大学出版社,1996:6-7.
    [54]钱觉时.粉煤灰特性与粉煤灰混凝土[M].科学出版社,2002:30-38.
    [55] Agripanea P.Iribarne,Julio V.Iribarne,etal.Anthony.Reactivity of calcium sulfate from FBC systems[J].Fuel,1997,76(4):321–327.
    [56] Anthony,E.J.,Iribarne,A.and Iribarne,J.A preliminary investigation of the bibliography on allotropes of calcium sulphate and its hydrates[J].ERL Report,CANMET,1994:327-330.
    [57]韩德刚,高盘良.化学动力学基础[M].北京:北京大学出版社,1987:1–3.
    [58]宋世谟,王正烈,李文兵.物理化学[M].北京:高等教育出版社,1993:218–268.
    [59]杨南如,钟白茜,董攀等.钙矾石的形成和稳定条件[J].硅酸盐学报,1984,12(2):155-168.
    [60]周亚栋,无机材料物理化学[M].武汉:武汉理工大学出版社,2002:283-286.
    [61] Cecilie Evju,Staffan Hansen.The kinetics of ettringite formation and dilatation in a blended cent with–hemihydrate and anhydrite as calcium sulfate [J].Cement and Concrete Research,2005 (35) :2310-2321.
    [62]陈恩义.钙矾石类膨胀剂各组分作用机理及其应用的研究[D].北京:清华大学,1995:45-50.
    [63]彭家惠,楼宗汉.钙矾石形成机理的研究[J].硅酸盐学报, 2000, 28(6):511–515.
    [64] C.S.Poon,S.C.Kou,L.Lam,Z.S.Lin.Activation of fly ash/cement using calcium sulfate anhydrite(CaSO4)[J].Cement and Concrent Research,2001,31:873-881.
    [65]钱觉时,郑洪伟,王智,宋远明,杨娟.流化床燃煤固硫灰渣活性评定方法[J].煤炭学报,2006,31(4):506–510.
    [66] D. A. Spears.Role of clay minerals in UK coal combustion [J].Applied Clay Science, 2000,(16):87-95.
    [67]邵靖邦,邵绪新,王祖讷等.煤中矿物成分对粉煤灰性质的影响[J].煤炭加工与综合利用,1996(6):37-41.
    [68]钱觉时,吴传明,王智.粉煤灰的矿物组成(上)[J].粉煤灰综合利用, 2001(1): 26-31.
    [69]李东旭.低钙粉煤灰中莫来石结构稳定性的研究[J].材料导报,2001,15(10):68-70.
    [70]孙恒虎,郑娟荣.低温煤渣火山灰活性的机理研究[J].煤炭学报,2000, 25(6):664-667.
    [71]宋远明,钱觉时,王智.燃煤灰渣活性差异及来源研究[J].粉煤灰综合利用,2006, (6):16–18.
    [72]宋远明,钱觉时,王志娟.流化床燃煤固硫灰渣水硬特性及机理研究[J].硅酸盐通报,2007,26(3):417–421,499.
    [73]关建适.煤炭灰渣的活性[J].硅酸盐学报,1980,8(4):425–429.
    [74]高琼英,张智强.高岭石矿物相变及其火山灰活性[J].硅酸盐学报,1989(12):623-633.
    [75]白志民等.低温煅烧高岭土火山灰活性对水泥石结构的影响[J].硅酸盐学报,2003(7):715-720.
    [76]张长森.低温煅烧煤矸石火山灰活性研究[J].硅酸盐通报,2004(5):112-115.
    [77] M.Cheriaf,J.Cavalamte Rocha.Pozzolanic properties of pulverized coal combustion bottom ash[J].Cement and Concrete Research,1999(29):1387-1391.
    [78]钱觉时,肖保怀,袁江等.粉煤灰—石灰—硫酸盐系统[J].新型建筑材料,1998(8):19-21.
    [79] Iribarne J,Iribarne A,,Blondin J,etal.Hydration of combustion ashes-a chemical and physical study[J].Fuel,2001,80(6):773–784.
    [80]廉慧珍,张志龄,王英华.火山灰质材料活性的快速评定方法[J].建筑材料学报,2001, 4(3):299–304.
    [81]吴学礼.粉煤灰强度活性的研究[J].硅酸盐建筑制品,1982,(5):18-22.
    [82]乐美龙.做水泥和混凝土掺和料时粉煤灰活性的快速评定[J].硅酸盐建筑制品,1983, (1):35-40.
    [83]乔秀臣,林宗寿,寇世聪.废弃粉煤灰火山灰活性的初步探讨[J].武汉理工大学学报,2003,25(8):23-25.
    [84]何琼瑜.火山灰试验方法——应用的研究[J].水泥,1982,(2):29-33.
    [85]杨基典.火山灰质活性混合材料活性测定方法的研究[J].水泥,1982,(9):40-45.
    [86] F.M.Lea.水泥混凝土化学(第三版)[M].中国建筑工业出版社,1984:246-248.
    [87]袁润章.评定粉煤灰的火山灰活性方法的研究[M].武汉建材学院,1982,(2):68-73.
    [88]沈旦申.粉煤灰物理序参量的系统化[J].硅酸盐学报,1992,(8):566-572.
    [89]中国建筑材料科学研究院水泥所.水泥及其原材料化学分析[M].北京:中国建材工业出版社,1995:304-305.
    [90]杨娟.固硫灰渣特性及其作水泥掺合料研究[D].重庆:重庆大学硕士学位论文,2006:17-18.
    [91]陈燕.石膏建筑材料[M].中国建材工业出版社,2003:73-75.
    [92]崔素萍.石膏种类对硅酸盐水泥性能的影响[J].水泥技术,2005,(2):29-32.
    [93]杨若明,张经华,陈超.北京地区燃煤硫、灰分的测定和分析[J].中央民族大学学报(自然科学版),2001,10(1):76-80.
    [94]何京东,宋书宇,孙镇等.我国煤炭中硫的分布及脱硫发展方向[J].国外金属矿选矿,1999,5:30-33.
    [95]夏培兴,谢晓东.四川省煤炭资源分析[J].四川地址学报,2004,3,24(1):13-15.
    [96]张鸿波,边炳鑫,康华.当前我国煤炭脱硫方法的应用[J].国外金属矿选矿,2002,8:20-22.
    [97] ASTM C 311-00:Standard test methods for sampling and testing fly ash or natural pozzolans for use as a mineral admixtures in Portland-cement concrete,Annual Book of ASTMStandards,Philadelphia,USA.2000:14-16.
    [98] Prince W,Espagne M ,Aitcin P C.Ettringite formation :acrucial step in cement superplasticizer compatibility[J].Cement and Concrete Res,2003 ,33(5):635.
    [99]薛君轩.钙矾石相的形成、稳定和膨胀[J ].硅酸盐学报,1983,11(2):247.
    [100] Andre Hauster,Urs Eggenberger and Tjerk Peters.Origin and Characteristics of Fly Ashes from Cellulose Industries Containing High Proportion of Free Lime and Anhydrite[J].Cement and Concrete Research,1999,29:1569-1573.
    [101]彭波.蒸养制度对高强混凝土性能的影响[D].武汉理工大学,2007:38-45.
    [102]鄢佳佳,马保国,刑伟宏等.不同蒸养温度对水泥基材料干缩与孔结构的影响[J].混凝土,2008,(3):25-29.
    [103]刘宝举,谢友均,李建.蒸养超细粉煤灰混凝土早期强度影响因素研究[J].混凝土, 2003,1:13-15.
    [104]重庆建筑工程学院,南京工学院.混凝土学[M].北京:中国建筑工业出版社.1981:78-81.
    [105]阎培渝,杨文言.模拟大体积混凝土条件下生成的钙矾石的形态[J].建筑材料学报,2001,1:39-43.
    [106]陈胡星,叶青,沈锦林等.钙矾石的长期稳定性[J].材料科学与工程, 2001,2:69-71.
    [107]杨久俊,管宗甫,余海燕等.钙矾石在湿热环境下结构变异性的研究[J].硅酸盐学报,1997,25(4):470-471.
    [108] Lawrence C D.Mortar expansions due to delayed ettringite and formation. Effect of curing period and temperature[J].Cement and Concrete Research,1995,25(4):903-904.
    [109] Idom G M,Skalny J.Rapid test of concrete expansivity due to intemal sulfate attack[J].ACI Materials Journal,1993,5:383-384.
    [110]梁文泉.固硫渣混合水泥的研究及钙矾石相的定量分析[J].武汉水利电力大学学报,1994,27(5):492–499.
    [111] Wu Y,Anthony E J,Jia L.Steam hydration of CFBC ash and the effect of hydration conditions on reactivation[J].Fuel,2004,83(10):1357–1370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700