水泥基钙—硅铝质复合材料水化机理及协同效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,全球每年水泥工业生产所排放的CO2量与混凝土70年龄期对CO2的自然吸收固化量比例为9.43左右,水泥工业体系的碳当量传递链已完全失衡。同时,我国工业固体废弃物综合利用率不到40%,累积固体废弃物已达70亿吨,占地约7万Km2。基础建设与社会经济发展迫切需要使之成为水泥基材料中能够调节性能的辅助性材料,以减少水泥工业生产过程中的资源消耗与污染排放。
     本研究工作来源于(国家973计划2009CB623201-01)“现代混凝土胶凝浆体微结构形成机理”与(国家科技支撑计划2006BAF02A24)“高性能水泥绿色制造工艺和装备”。以目前应用最广泛的粉煤灰及矿渣作为代表性的硅铝质胶凝材料,探明其在多因素环境下的化学活性特征及其水化机理,通过物理化学手段对其进行表面结构解聚以增强其化学活性,研究硅铝质胶凝材料之间的协同效应匹配关系,进而通过多因素的优化配伍(协同效应、活性激发技术及特殊组分微调等)进行满足工业近零排放原则的制备关键技术设计。
     1.采用Ka-ICP法、非蒸发水量及反应程度等评价方法,系统研究在水热碱性环境、水泥水化环境下粉煤灰、合金矿渣等硅铝质胶凝材料活性,建立了硅铝质胶凝材料化学活性综合评价体系。
     (1)对Kα法环境下的粉煤灰进行化学反应进程模拟,水热碱性环境下的反应初期,网状聚合体与Ca(OH)2反应形成CSH单层膜或CH-CSH双层膜附着于颗粒表面。随着龄期的延续,反应层逐渐深入,此过程中反应界面会出现惰性莫来石及/或新生矿物沸石等惰性物质阻碍反应的进行,而易反应区域会形成溶蚀活化点促进反应介质的继续反应。随着反应深度的加深,溶蚀活化点在反应后期进一步扩展形成溶蚀反应区域,粉煤灰玻璃体中的大部分活性硅铝质参与反应,只剩下由惰性莫来石及/或新生矿物沸石形成的镂空状搭接结构。
     (2)粉煤灰+水泥二元体系中存在一种平衡关系,即水泥水化的Ca(OH)2生成量与粉煤灰化学反应的Ca(OH)2消耗量。并且粉煤灰化学反应所需的Ca(OH)2浓度随其在各反应阶段的表面结构活性及外层包裹膜厚度的不同而不同,基本随厚度增加呈现递增的趋势。
     2.提出了硅铝质胶凝材料高温增钙改性的优化方法,并采用NMR、FTIR等方法探讨了改性粉煤灰硅铝网络结构的解聚机理与规律;结果表明高温增钙使部分Si-O键断裂,其断裂导致高配位的网络中间体Al及Ca较多渗入,从而使网络结构部分强峰的化学位移向低场移动,化学活性得到明显提高。
     (1)最终优化的高温增钙粉煤灰配比为CFA-4-1200℃,即81.0%LCFA1+15.0%CaO+3.0%石膏+1.0%萤石,温度制度为1200℃下0.5h。
     (2)29Si NMR结果分析发现相对于原状粉煤灰,经过高温增钙改性后的粉煤灰其强峰线位移朝正值方向移动,呈现出由高场的集中向低场的分散趋势,说明其网络结构聚合度降低。
     3.提出了化学活性反应时效性贡献率的概念,揭示了硅铝质胶凝材料各时间段反应效率主导与辅助作用的转变规律。研究了改性硅铝质胶凝材料在水泥基材料中的水化机理及多元体系下的协同效应,并探讨了多元复合体系的次第水化理论。
     4.提出了多元体系高性能复合胶凝材料的设计方法,系统研究了高性能复合胶凝材料的水化热、体积变形、开裂敏感性及抗硫酸盐侵蚀等性能。
     结合多元体系协同效应的研究制备高性能复合胶凝材料,实现固体废弃物45%掺量下,其1d水化热下降30%以上,开裂敏感性方面的初始开裂时间相对基准样延长175%以上,28d的线性收缩率相对基准样降低25%以上,抗硫酸盐侵蚀性能相比于基准样提高45%以上(按ASTM C1012-95A标准)。
At present, the rate of CO2 emission quantity by the whole world cement industry production to CO2 absorption quantity by building concretes in 70 years is about 9.43, so the cement industry system's carbon equivalent transmission chain has already been completely unbalanced. And industry solid rejectamenta synthesis using rate in our country is less than 40%, has accumulated to 7,000 million ton and occupied a land area for approximately 70,000 square kilometers. The construction of a resource-economical and environment-friendly society need to make it to become the control characteristic cement material and reduce the resources consumption and the pollution emissions in the cement industry production process.
     This research work originates in (973 Program. Project 2009CB623201) and (National Key Technology R&D Program. Project 2006BAF02A24). Us the most widespread fly ash and slag by at present as the representative inorganic silicon-aluminum character material, verify its chemical activity characteristic and the hydration mechanism under the multi-factor environment, carry on the surface texture depolymerization through the physical chemistry method to strengthen its chemical activity, study the cooperative effect match relations among inorganic silicon-aluminum character materials, then carry on the preparation key technologies satisfying the industry near zero emissions principle design by cooperative effect, active stimulation technology, special component optimization and so on.
     1. The synthesis chemical activity appraisal system is established for the first time, through the strength performance, the non-evaporation water quantity, the reaction degree and the K(?)-ICP performance of fly ash, slag in hydrothermal and alkaline environment.
     (1) Fly ash granule react with Ca(OH)2 and generate CSH monolayer film or CSH double deck film at initial stage which adhere to the granule surface. The formation of reactant reduces the increase speed of Ka value at initial stage. The area where is easy to react forms activation point to promote reaction medium to react continually. activation point enlarges more at later period, and most active SiO2,Al2O3 in fly ash will react completely, and the inert mullite and newborn mineral-zeolite which doesn't react in this process will form joining structure with hollow shape.
     (2) In the fly ash and cement binary system, there is one kind of balanced relations between production quantity of cement hydration Ca(OH)2 and consumption quantity of fly ash chemical reaction Ca(OH)2. And the difference of Ca(OH)2 density used in fly ash chemical reaction is along with its wraps film thickness in each reaction stage's surface texture and activity, basically presents the increasing tendency with its film thickness.
     2. Has developed research on the superficial depolymerization and the chemical activity stimulation effect of inorganic silicon-aluminum character material stimulation system under the different hot historical.
     (1) Propose the optimized way in high temperature increasing the calcium environment:Firstly, use the CaO-SiO2-Al2O3 three phase diagram analyses and the free calcium oxide test to determine probably the calcium mixed quantity and temperature sector, then make sure optimize allocated proportion of calcareous (CaO) using the high temperature microscope.
     And through 29Si/27Al NMR, FTIR and so on to carry on the analysis the modified fly ash silicon-aluminum network structure, and use the chemical activity appraisal system to conduct the active characteristic analytical study. And the optimal allocated proportion is CFA-4-1200℃, namely 81.0%LCFA1+15.0%CaO+3.0% gypsum+1.0% fluorite, temperature system is under 1200℃for 0.5h.
     (2) By 29Si NMR result analysis, comparing to original condition FA, the strong crest lines of modified fly ash by high temperature displacement toward plus direction, present the tendency of the high field centralism to the low field scattered, indicates that its network architecture polymerization degree has reduced. Unify 27Al NMR to carry on the mechanism analysis, in the high temperature increasing calcium environment, calcareous is extremely easy to invade in the middle of the silica polymerization structure and makes the network architecture be not steady, and the Si-O key's break will make the high coordinate network intermediate Al and some Ca permeate, thus cause the strong peak chemical in the network architecture shift to the low field, and the chemical activity of modified fly ash could be enhanced inevitably.
     3. Introduce into the concept about chemical activity response time-limited contribution rate for the first time, and there are mainly two understanding points to the grading hydration theory:Firstly, this theory mainly aims at the chemical activity to respond of compound system various components without considering other effects, such as micro aggregate effect, shape effect and so on; Secondly, reasonable understanding about the grading should be its time-limited contribution rate in certain order, namely various components hydration response has been existing, but there is certain order or overlapping superposition on response efficiency in various time section.
     4. Through the hydration heat, the volumetric deformation, the dehiscence sensitivity and the anti-sulfate corrosion test, carry on the multi-dimensional system high performance compound cementious material design and the performance study.
     Unify the multi-dimensional system cooperative effect the research preparation high performance compound cementious material to set 45% mixture rate of solid rejectamenta. its 1d hydration heat drops above 30%, the dehiscence sensitive aspect's initial dehiscence time lengthens above 175% to datum type, the 28d linear shrinkage reduces above 25% to datum type, the anti-sulfate corrosion performance enhances above 45% to the datum type (according to ASTM the C1012-95A standard).
引文
[1]宋远明,钱觉时,王智.燃煤灰渣活性差异及来源研究[J].粉煤灰综合利用,2006,(06),16-18.
    [2]Intergovernmental Panel on Climate Change.2006 IPCC Guidelines for National Greenhouse Gas Inventories-Volume 3, Industrial Processes and Product Use.2006.
    [3]王绍武,叶瑾林.近百年全球气候变暖的分析[J].大气科学,1995,9(5):545-553.
    [4]齐春云.中国能源领域气体排放现状及减排对策研究[J].地理科学,2004,24(5):528-534.
    [5]高长明.水泥工业“四零一负”战略对循环经济的奉献[J].国外建材科技,2006,(6):45-48.
    [6]钱觉时.粉煤灰特性和粉煤灰混凝土[M].北京:科学出版社,2002.
    [7]孙超.矿渣-粉煤灰混合胶凝体系研究[D].大庆石油学院硕士学位论文,2006.
    [8]赵由才,柴晓利.生活垃圾资源化原理与技术[M].北京:化学工业出版社,2002.
    [9]张凤祥,余开云.产业弃物在土建工程中的再利用[M].北京:人民交通出版社,2007.
    [10]沈旦申.粉煤灰混凝土[M].北京:中国铁道出版社,1989.
    [11]孙抱真,贾传玖.粉煤灰的颗粒形貌及其物理性质[J].硅酸盐学报,1982,10(1):64-69.
    [12]严悍东.废渣特性及其多元复合对水泥基材料高性能的贡献与机理[D].博士学位论文,南京:东南大学,2001.
    [13]S. Antiohos, A. Papageorgiou, S. Tsimas. Activation of fly ash cementitious systems in the presence of quicklime. Part Ⅱ:Nature of hydration products, porosity and microstructure development[J]. Cement and Concrete Research, Volume 36, Issue 12, December 2006, Pages 2123-2131.
    [14]Fernandez-Jimenez, A.; De La Torre, A.G.; Palomo, A.; Lopez-Olmo, G.; Alonso, M.M.; Aranda, M.A.G. Quantitative determination of phases in the alkali activation of fly ash. Part Ⅰ. Potential ash reactivity[J]. Fuel, v 85, n 5-6, p 625-634, March/April 2006.
    [15]许杰.增钙灰的粉煤灰效应分析[J].河北建筑科技学院学报(自然科学版),1998,(02),18-21.
    [16]裴新意,赵鹏,王尉和,等.粉煤灰的微观形态及其在水泥水化中的特性[J].粉煤灰综合利用,2008,(06),44-46.
    [17]方泽锋,施惠生.粉煤灰对水泥浆体的水化及亚微观结构的影响[J].粉煤灰综合利用,2003,(05),48-51.
    [18]何军志,冯青琴.水泥水化机理和废弃物的利用与固化[J].安阳师范学院学报,2008,(02),
    78-81+86.
    [19]全国水泥标准化技术委员会.GB/T18046用于水泥和混凝土中的粒化高炉矿渣粉[S].北京,中国标准出版社,2008.
    [20]全国水泥标准化技术委员会.GB1596用于水泥和混凝土中的粉煤灰[S].北京,中国标准出版社,2005.
    [21]全国水泥标准化技术委员会.GB/T2847用于水泥中的火山灰质混合材料[S].北京,中国标准出版社,2005.
    [22]全国水泥标准化技术委员会.GB/T12957用于水泥混合材的工业废渣活性试验方法[S].北京,中国标准出版社,2005.
    [23]全国水泥标准化技术委员会.GB/T20491用于水泥和混凝土中的钢渣粉[S].北京,中国标准出版社,2006.
    [24]全国水泥标准化技术委员会.GB/T18046水泥胶砂强度试验[S].北京,中国标准出版社,2005.
    [25]李炜光,申爱琴.粉煤灰活性测试方法[J].长安大学学报(自然科学版),2004,(05):16-19.
    [26]全国水泥标准化技术委员会.GB/T 12960-1996水泥组分的定量测定[S].北京,中国标准出版社,1996.
    [27]张云升,孙伟.水泥粉煤灰浆体的水化反应进程[J].东南大学学报(自然科学版),2006.36(1):118-123.
    [28]郑克仁,孙伟.水泥-矿渣-粉煤灰体系中矿渣和粉煤灰反应程度测试方法[J].东南大学学报(自然科学版),2004.34(3):361-365.
    [29]廉慧珍,张志龄,王英华.火山灰质材料活性的快速评定方法[J].建筑材料学报,2001.4(3):299-304.
    [30]DONG Rongzhen, MA Baoguo. Model analysis of initial hydration and structure forming of Portland cement [J]. Journal of Wuhan university of technology,2007.12:757-759.
    [31]Etsuo Sakaia, Shigeyoshi Miyaharab, Shigenari Ohsawa, et al. Hydration of fly ash cement [J]. Cement and concrete research,2005.35:1135-1140.
    [32]I. Garcia-Lodeiro;A. Palomo;A. Fernandez-Jimenez. Alkali-aggregate reaction in activated fly ash systems[J]. Cement and Concrete Research, Volume 37, Issue 2, February 2007, Pages 175-183.
    [33]魏风艳,吕忆农,兰祥辉,等.粉煤灰水泥基材料的水化产物[J].硅酸盐学报,2005,(01),52-56.
    [34]钱文勋,蔡跃波.活性激发过程中粉煤灰硅氧多面体结构变化的核磁共振研究[J].材料科学与工程学报,2004,(04),561-563.
    [35]Criado, M; Fernandez-Jimenez, A; Palomo, A; Sobrados, I; Sanz, J. Effect,of the SiO2/Na2O ratio on the alkali activation of fly ash. Part Ⅱ:Si-29 MAS-NMR Survey[J]. Microporous and Mesoporous Materials,109 (1-3):525-534 Mar 1 2008.
    [36]Wang, DM; Hou, YF; Zuo, YF; Li, C; Li, YX; Zhang, HT. Hydration mechanism and microstructure of multi-expansive cementitious material with low water cementitious material ratio[C]. Proceedings of the 6th International Symposium on Cement& Concrete and CANMET/ACI International Symposium on Concrete Technology for Sustainable Development, Vols 1 and 2:578-583 2006.
    [37]Vandeperre, L.J.; Liska, M.; Al-Tabbaa, A.. Hydration and Mechanical Properties of Magnesia, Pulverized Fuel Ash, and Portland Cement Blends[J]. Journal of Materials in Civil Engineering, v 20, n 5, p 375-383, May 2008.
    [38]付克明.碱激发粉煤灰生成胶凝材料的研究[J].矿产综合利用,2007,(06),40-43.
    [39]杨晓光,倪文,张筝,等.碱激发对粉煤灰活性的影响[J].北京科技大学学报,2007,(12),1195-1199.
    [40]A. Fernandez-Jimenez, I. Garcia-Lodeiro and A. Palomo. Durability of alkali-activated fly ash cementitious materials[J]. Journal of Materials Science,2007,42(9):3055-3065.
    [41]Antiohos,S.K.; Papageorgiou, A.; Papadakis,V.G.;Tsimas, S.. Influence of quicklime addition on the mechanical properties and hydration degree of blended cements containing different fly ashes[J]. Construction and Building Materials, v 22, n 6, p 1191-1200, June 2008.
    [42]Antiohos, S.; Tsimas, S.. Investigating the role of reactive silica in the hydration mechanisms of high-calcium fly ash/cement systems[J]. Cement and Concrete Composites, v 27, n 2, p 171-181, January 2005.
    [43]Biernacki, Joseph J.; Williams, P. Jason; Stutzman, Paul E.. Kinetics of reaction of calcium hydroxide and fly ash[J]. ACI Materials Journal, v 98, n 4, p 340-349, July/August 2001.
    [44]张美香,马保国,罗忠涛,等.高活性湿排粉煤灰料浆制备及性能研究[J].武汉理工大学学报,2006,(11),52-55.
    [45]S. Antiohos, S. Tsimas. Activation of fly ash cementitious systems in the presence of quicklime:Part Ⅰ. Compressive strength and pozzolanic reaction rate[J]. Cement and Concrete Research, Volume 34, Issue 5, May 2004, Pages 769-779.
    [46]Puertas, F; Fernandez-Jimenez, A. Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes[J]. Cement& Concrete Composites,25 (3):287-292 Apr 2003.
    [47]Arjunan, P.; Silsbee, M.R.; Roy, D.M.. Application of chemical methods to assess the mechanism of alkali activation in low calcium fly ash[J]. Proceedings of the American Power Conference, v 61, p Ⅱ/-,1999.
    [48]贾艳涛.矿渣和粉煤灰水泥基材料的水化机理研究[D].东南大学硕士学位论文,2005.
    [49]王琼,施惠生,俞海勇等.高性能混凝土中多元胶凝材料复合效应的研究[J].粉煤灰,2002,(6),3-6.
    [50]张云升,孙伟,郑克仁,等.水泥-粉煤灰浆体的水化反应进程[J].东南大学学报(自然科学版),2006,36(1):118-123.
    [51]王绍东.评定矿渣水硬活性的一种新方法-反应率法[J].硅酸盐学报,1992,(02),196-200.
    [52]S. Antiohos, K. Maganari, S. Tsimas. Evaluation of blends of high and low calcium fly ashes for useas supplementary cementing materials[J]. Cement and Concrete Composites,2005,27 (4):349-356.
    [53]阎培渝,张庆欢.含有活性或惰性掺合料的复合胶凝材料硬化浆体的微观结构特征[J].硅酸盐学报,2006,34(12):1491-1496.
    [54]阎培渝,郑峰.温度对补偿收缩复合胶凝材料水化放热特性的影响[J].硅酸盐学报,2006,34(8):1006-1010.
    [55]李东旭,陈益民,沈锦林.温度和碱对低钙粉煤灰的活化和结构的影响[J].硅酸盐学报,2000,28(6):523-526.
    [56]刘宝举.粉煤灰作用效应及其在蒸养混凝土中的应用研究[D].博士学位论文,长沙:中南大学,2007.
    [57]JO, BW; Park, SK; Park, MS. Strength and hardening characteristics of activated fly ash mortars[J]. Magazine of Concrete Research,59 (2):121-129 MAR 2007.
    [58]Stefanovic, Gordana; Sekulic, Zivko; Cojbasic, Ljubica; Jovanovic, Vladimir. Hydration of mechanically activated mixtures of Portland cement and fly ash[J]. Ceramics-Silikaty, v 51, n3,p 160-167,2007.
    [59]史才军.碱-激发水泥和混凝土[M].北京:化学工业出版社,2009.
    [60]Fernandez-Jimenez, A; Palomo, A. Composition and microstructure of alkali activated fly ash binder:Effect of the activator[J]. Cement and Concrete Research,35 (10):1984-1992 Oct 2005.
    [61]Guerrero, A.; Goni, S.; Moragues, A.; Dolado, J.S.. Microstructure and mechanical performance of belite cements from high calcium coal fly ash[J]. Journal of the American Ceramic Society, v 88, n 7, p 1845-1853, July 2005.
    [62]V. Saraswathy, S. Muralidharan, K. Thangavel, S. Srinivasan. Influence of activated fly ash on corrosion-resistance and strength of concrete[J]. Cement and Concrete Composites, Volume 25, Issue 7, October 2003, Pages 673-680.
    [63]王华,张强,宋存义.莫来石在粉煤灰碱性溶液中的反应行为[J].粉煤灰综合利用,2001, (5):24-27.
    [64]王培铭,陈志源.粉煤灰与水泥浆体间界面的形貌特征[J].硅酸盐学报,1997,25(4):475-479.
    [65]S.K.Antiohos,A.Papageorgiou,V.G.apadakis,et al. Influence of quicklime addition on the mechanical properties and hydration degree of blended cements containing different fly ashes[J].Construction and building materials,2008,22(6):1191-1200.
    [66]Barzin Mobasher,*, Jitendra Pahilajani, Alva Peled. Analytical simulation of tensile response of fabric reinforced cement based composites[J]. Cement and Concrete Composites,2006,28 (1):77-89.
    [67]J.M. Miranda, A. Fernandez-Jimenez, J.A. Gonzalez, A. Palomo. Corrosion resistance in activated fly ash mortars[J]. Cement and Concrete Research,2005,35(12):1210-1217.
    [68]王培铭,刘贤萍,胡曙光等.硅酸盐熟料-煤矸石/粉煤灰混合水泥水化模型研究[J].硅酸盐学报,2007.35(S1):180-186.
    [69]肖佳,周士琼.粉煤灰对水泥胶砂性能影响的试验研究[J].粉煤灰,2005,6:22-25.
    [70]蒲心诚.应用比强度指标研究活性矿物掺料在水泥与混凝土中的火山灰效应[J].混凝土与水泥制品,1997,3:6-14.
    [71]付兴华.公路粉煤灰水泥水化产物及机理的研究[J].硅酸盐通报,2001,(03),14-22.
    [72]马强.高活性粉煤灰评价与应用研究[D].长安大学硕士学位论文,2008.
    [73]Ya Mei Zhang, Wei Sun, Han Dong Yan. Hydration of high-volume fly ash cement pastes[J]. Cement and Concrete Composites,2000,22 (4):445-452.
    [74]V. Saraswathy, S. Muralidharan, K. Thangavel, S. Srinivasan. Influence of activated fly ash on corrosion-resistance and strength of concrete[J]. Cement and Concrete Composites,2003,25 (7):673-689.
    [75]王爱勤.粉煤灰水泥的水化动力学[J].硅酸盐学报,1997,25(4):123-128.
    [76]Mehta P K. Influence of fly ash characteristics on the strength of portland fly ash mixtures[J]. Cement and Concrete Research,1985; 15 (4):669
    [77]廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996.
    [78]Rakesh Kumar, Sanjay Kumar, S.P. Mehrotra. Towards sustainable solutions for fly ash through mechanical activation[J]. Resources, Conservation and Recycling, Volume 52, Issue 2, December 2007, Pages 157-179.
    [79]沈晓冬,马素花,王洪芬,钟白茜.含硫铝酸钙硅酸盐水泥中粉煤灰活化机理[J].硅酸盐学报,2006,(02),175-182.
    [80]Puertas, F; Martinez-Ramirez, S; Alonso, S; Vazquez, T. Alkali-activated fly ash/slag cement strength behaviour and hydration products[J]. Cement and Concrete Research,30 (10): 1625-1632 OCT 2000.
    [81]张美香,马保国,罗忠涛,鄢佳佳,蹇守卫.激发剂对湿排粉煤灰活性激发的影响[J].混凝土,2006,(12),49-50+54.
    [82]钱文勋.粉煤灰早期活性激发及其机理研究[D].南京水利科学研究院硕士论文,2002.
    [83]李坦,周学忠.湿排粉煤灰的活性激发及其作为水泥混合材的试验研究[J].建材发展导向,2005,(06),45-48.
    [84]P. Jason Williams, Joseph J. Biernacki, et al. analysis of alkali-activated fly ash-CH pastes [J]. Cement and Concrete Research,2002,32(10):963-971.
    [85]李东旭.低钙粉煤灰中莫来石结构稳定性的研究[J].材料导报,2001,15(10):68-70.
    [86]S. Tsimas *, A. Moutsatsou-Tsima. High-calcium fly ash as the fourth constituent in concrete: problems, solutions and perspectives [J]. Cement and Concrete Composites,2005,27 (2):231-237.
    [87]S. Antiohos 1, S. Tsimas. Investigating the role of reactive silica in the hydration mechanisms of high-calcium fly ash/cement systems[J]. Cement and Concrete Composites,2005,27 (2):171-181.
    [88]佟志芳,康立武,李英杰,杨光华.粉煤灰中硅酸盐烧结反应过程的研究[J].硅酸盐通报,2009,28(3):449-453.
    [89]王晓钧,杨南如,钟白茜。粉煤灰-石灰-水系统反应机理探讨[J].硅酸盐学报,1996,24(2):137-141.
    [90]刘振清.不同“增钙”情况下低质粉煤灰活化技术研究[J].粉煤灰综合利用,2001,(02),25-27.
    [91]马保国.磷-氟-钢渣复合添加剂对水泥熟料烧成的影响[J].硅酸盐学报,2007,35(03),275-280.
    [92]马保国.V2O5掺杂对硅酸盐水泥熟料烧成及矿物结构的影响[J].硅酸盐学报,2007,35(05),588-592.
    [93]罗忠涛.湿排粉煤灰复合电石渣制备高活性矿物掺合料浆[J].土木建筑与环境工程.2009.31(1).
    [94]廖欣译.水泥的结构和性能[M].北京:化学工业出版社,2009.
    [95]董发勤.矿物粉尘表面活性位及其变化分析[J].岩石矿物学杂志,1999,18(3):264-271.
    [96]董发勤.矿物粉体表面官能团及其在材料中作用[J].中国矿业,1999,8(5):90-92.
    [97]易志慧,蒋海青,王晓钧,于士刚.粉煤灰激活中ATR-FTIR-FTIR和NMR的分析与比较[J].材料导报,2007,21(11):278-281.
    [98]Shao-Dong Wang, Karen L. Scrivener.29Si and 27Al NMR study of alkali-activated slag[J]. Cement and Concrete Researeh,2003,33(4):769-774.
    [99]王晓钧,杨南如.粉煤灰研磨过程中铝氧多面体结构变化的核磁共振研究[J].硅酸盐学报,2003,31(2):188-192.
    [100]何永佳.29Si固体核磁共振技术在水泥化学研究中的应用[J].材料科学与工程学报,2007,25(1):147-153.
    [101]方永浩.固体高分辨核磁共振在水泥化学研究中的应用[J].建筑材料学报,2003,6(1)54-60.
    [102]S. Gomes, M. Fran(?)ois. Characterization of mullite in silicoaluminous fly ash by XRD, TEM, and 29Si MAS NMR[J]. Cement and Concrete Research,2000,30(2):175-181.
    [103]谷章昭,乐美龙,伍劲夫等.粉煤灰活性的研究[J].硅酸盐学报,1982,10(2):151-160.
    [104]谷章昭,周保卫,乐美龙等.粉煤灰的火山灰活性指数[J].硅酸盐学报,1991,19(2):112-117.
    [105]L.Lam,Y.L.Wong,C.S.Poon. Degree of hydration and gel/space ratio of high-volume fly ash/cement systems[J]. Cement and Concrete Research,2000,30(5):747-756.
    [106]张立华.多组分水泥基材料水化特征与产物性质的研究[D].武汉理工大学硕士学位论文,2002.
    [107]董芸.石灰石粉-粉煤灰-水泥三元胶凝体系性能及水化机理研究[C].《硅酸盐学报》创刊50周年暨中国硅酸盐学会2007年学术年会论文摘要集,2007.
    [108]张庆欢.粉煤灰在复合胶凝材料水化过程的作用机理[D].硕士学位论文,北京:清华大学,2006.
    [109]Maltais, Y.; Marchand, J.. Influence of curing temperature on cement hydration and mechanical strength development of fly ash mortars[J]. Cement and Concrete Research, v 27, n 7, p 1009-1020, July 1997.
    [110]Berry, E.E.; Hemmings, R.T.; Cornelius, B.J.. Mechanisms of hydration reactions in high volume fly ash pastes and mortars [J]. Cement and Concrete Composites, v 12, n 4, p 253-261, 1990.
    [111]吴中伟.绿色高性能混凝土与科技创新[J].建筑材料学报,1998(3):1-7
    [112]贺行洋.基于渗流理论的矿物掺合料效应分析方法[J].武汉理工大学学报,2010(2):23-27
    [113]唐咸燕,肖佳,陈烽,陈雷.粉煤灰和矿渣微粉在水泥基材料中的复合效应研究[J].水泥,2006,(10),9-12.
    [114]张文生,陈益民.粉煤灰与水泥熟料共同水化硬化的基础研究进展及评述[J].硅酸盐学报,2000,28(2):160-164.
    [115]Xiao-Yong Wang and Han-Seung Lee. Simulation of a temperature rise in concrete incorporating fly ash or slag[J]. Materials and Structures,2009,22(7)
    [116]阎培瑜.水泥基材料水化动力学模型[J].硅酸盐学报,2006,34(5):555-559.
    [117]KRSTULOVIC R,DABIC P.A conceptual model of the cement hydration process[J].Cem Concr Res,2000,30(5):693-698.
    [118]De SCHUTTER GHydration and temperature development of concrete made with blast-furnace slag cement[J].Cem Concr Res,1999,29(1):143-149.
    [119]李虹燕.粉煤灰-矿渣对水泥水化热的影响[J].混凝土,2008,(10):54-57.
    [120]董刚.粉煤灰和矿渣在水泥浆体中的反应程度研究[D].中国建筑材料科学研究总院博士学位论文,2008.
    [121]Pipat Termkhajornkit, Toyoharu Nawa, Kiyofumi Kurumisawa. Effect of water curing conditions on the hydration degree and compressive strengths of fly ash-cement paste [J]. Cement and Concrete Composites,2006,28 (8):781-789.
    [122]Prinya Chindaprasirt, Chai Jaturapitakkul, Theerawat Sinsiri. Effect of fly ash fineness on compressive strength and pore size of blended cement paste[J]. Cement and Concrete Composites,2005,27 (4):425-428.
    [123]F. Puertas, A. Fernandez-Jimenez. Mineralogical and microstructural characterization of alkali-activated fly ash/slag pastes[J]. Cement and Concrete Composites,2003,25 (3):287-292.
    [124]马保国.高性能海洋混凝土的研究[D].博士学位论文.武汉:武汉理工大学,2000:42
    [125]龙广成,谢友均,王新友.矿物掺合料对新拌水泥浆体密实性能的影响[J].建筑材料学报,2002,5(1):21-25.
    [126]张景富,丁虹.矿渣-粉煤灰混合材料水化产物、微观结构和性能[J].硅酸盐学报,2007,35(5):633-637.
    [127]王律.新型复合矿物掺合料对混凝土耐久性影响的研究[J].混凝土,2007,(5):25-29.
    [128]王绍武,谢志辉,蔡静宁等.近千年全球平均气温变化的研究[J].自然科学进展,2002,12(11):1145-1149.
    [129]Intergovernmental Panel on Climate Change.2006 IPCC Guidelines for National Greenhouse Gas Inventories-Volume 3, Industrial Processes and Product Use.2006.
    [130]Nobuo Kato. Analysis of structure of energy consumption and dynamics of emission of atmospheric species related to the global environmental change (SOx, NOx, and CO2) in ASIA [J]. Atmospheric Environment,1996,30 (5):757-785.
    [131]王明星,张仁健,郑循华.温室气体的源与汇[J].气候与环境研究,2000,5(1):75-79.
    [132]R. Roskovic, D. Bjegovic. Role of mineral additions in reducing CO2 emission [J]. Cement and Concrete Research,2005,35:974-978.
    [133]庄春来.我国水泥工业余热利用现状及发展趋势[J].中国水泥,2004,(12):9-11.
    [134]史才军,邹庆焱.预养护对二氧化碳养护砌块混凝土的影响[J].第十届全国水泥和混凝土化学及应用技术会议,2007,南京.
    [135]常钧,WANG Sanwu, SHAO Yixin.用碳化养护电弧熔炉钢渣制备集料和混凝土[J].硅酸盐学报,2007,35(9):1264-1269.
    [136]Young, J.F., Berger, R.L. and Breese, J. Accelerated Curing of Compacted Calcium Silicate Mortars on Exposure to CO2 [J].Journal of The American Ceramic Society,1974,57(9): 394-397.
    [137]黄莹.粉煤灰掺量和细度对水泥凝结时间的影响[J].水泥,2003,(12):4-6.
    [138]胡鹏刚.颗粒形貌及粒级对粉煤灰水泥需水量影响的试验研究[J].混凝土,2008,(2):99-101.
    [139]彭卫兵.辅助胶凝材料对混凝土开裂行为的影响及评价[J].混凝土,2005,(6):50-55.
    [140]温小栋.梯度结构混凝土的体积稳定性研究与应用[D].博士学位论文.武汉理工大学,2007:65
    [141]余红发,孙伟,鄢良慧,杨波.在盐湖环境中高强与高性能混凝土的抗冻性[J].硅酸盐学报,2004,32(7):842-848.
    [142]马保国,罗忠涛,高小建,李相国.不同品种水泥的抗碳硫硅酸钙型硫酸盐侵蚀性能[J].硅酸盐学报,2006,34(5):622-625.
    [143]马保国,高小建,罗忠涛.矿物掺合料对水泥砂浆TSA侵蚀的影响[J].材料科学与工程学报,2006,24(2):230-234.
    [144]O.S.B. Al-Amoudi, Attack on plain and blended cements exposed to aggressive sulfate environments [J]. Cement and Concrete Composites,2002,24(3):305-316.
    [145]S.M. Torres, C.A. Kirk, C.J. Lynsdale, R.N. Swamy, etal, Thaumasite-ettringite solid solutions in degraded mortars, Cem. Concr. Res.34(2004) 1297-1305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700