紫外-可见分光光度法及近红外光谱技术在甘草质量快速分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前甘草来源广泛,不同来源甘草在活性成分含量上存在显著性差异,甘草质量参差不齐,而采用HPLC对甘草进行定量分析的方法存在着诸如繁琐费时、分析成本高、在实际工作中较难推广等问题,因此,亟需一种简便、快速的甘草质量分析方法,能够简便快速地测定甘草中活性成分的含量。本文从建立定性、定量数学模型的角度,运用现代数理统计方法和统计分析软件,进一步研究了利用紫外-可见分光光度法、近红外光谱法及紫外光度计色度分析法快速分析甘草质量的方法。主要研究结果如下:
     (1)在已有的甘草活性成分含量测定方法的基础上,建立了更为简便、快速的利用紫外-可见分光光度法测定甘草总皂苷、总黄酮含量的方法;建立了利用HPLC双波长法同时测定甘草中5种活性成分(甘草酸、甘草苷、甘草素、异甘草苷和异甘草素)含量的方法。
     (2)甘草酸与总皂苷含量之间存在极显著的正相关关系,甘草苷、异甘草苷、甘草素及异甘草素均与总黄酮之间存在极显著的正相关关系;分别建立了通过总皂苷、总黄酮含量来判别甘草酸、甘草苷所属含量范围的判别模型,并对模型的预测结果进行了验证,验证结果表明甘草酸判别模型的平均判别准确率为91.3%,甘草苷判别模型的平均判别准确率为90.0%;分别建立了甘草酸与总皂苷、甘草苷与总黄酮含量之间的回归方程,并对方程的预测结果进行了验证,验证结果表明甘草酸回归方程的平均预测准确率为68.6%,甘草苷回归方程的平均预测准确率为75.3%。
     (3)分别建立了野生和栽培甘草的近红外图谱与其甘草酸含量之间的校正模型,其甘草酸实测值和预测值之间的相关系数R均达到0.999以上,模型平均预测准确率分别为91.4%和95.7%;分别建立了野生和栽培甘草的近红外图谱与其甘草苷含量之间的校正模型,其甘草苷实测值和预测值之间的相关系数R分别为0.996和0.998,模型平均预测准确率分别为86.2%和93.2%;分别建立了野生和栽培甘草的近红外图谱与其异甘草苷含量之间的校正模型,其异甘草苷实测值和预测值之间的相关系数R均达到0.999以上,模型平均预测准确率为分别为89.4%和89.0%。
     (4)不同表面颜色甘草在总皂苷、总黄酮、甘草酸、甘草苷、异甘草苷、甘草素和异甘草素这7种活性成分含量上均不存在显著性的差异,不同断面颜色甘草在总皂苷含量上存在极显著差异,在甘草酸、甘草苷、异甘草苷和甘草素含量上存在显著性差异;色度分析结果表明,甘草去皮粉末的颜色值中明度值L*与总皂苷含量和异甘草素含量存在显著的负相关关系,说明甘草去皮粉末颜色越白,其总皂苷含量和异甘草素含量越低;黄兰值b*与甘草酸含量存在显著的正相关关系,说明甘草去皮粉末颜色越黄,其甘草酸含量越高;黄色系数Y1分别与总皂苷和甘草酸含量间存在显著的正相关关系,说明甘草去皮粉末的黄色系数越高,总皂苷和甘草酸的含量越高。
     (5)从简便、快速、经济、准确性等方面综合比较得出,近红外光谱法在甘草质量快速检测中是最有应用前景的方法,并对甘草酸、甘草苷和异甘草苷的NIR定量分析模型进行了再验证,再验证结果表明,甘草酸和甘草苷NIR定量分析模型的预测准确率较为稳定,可用于实际工作中,而异甘草苷NIR定量分析模型的预测准确率受样品的影响较大,还不够稳定。
In view of the situation that licorice from different sources exists significant differences in the active ingredient contents, Licorice quality is uneven. Now the commonly used detection mean for licorice quanlity is HPLC, but HPLC has several shortages such as time-consuming, high analysis cost and low applicability. So, a simple and rapid quality analysis method to detect the active ingredient in licorice is necessary. This paper starts form the view of establishing qualitative and quantitative mathematical models, with the use of mathematical statistics method and statistic analysis software, in order to develop a simple and rapid quanlity analysis method for licorice with the application of uv-vis spectrophotometry, the near infrared spectroscopy and chromaticity analysis method respective. The main research results are as follows:
     (1) On the basis of the existing determination method for licorice active ingredients, this paper has established a more simple and rapid determination method for total Licorice saponins and flavonoids with the use of uv-vis spectrophotometry; has established a method to determinate glycyrrhizin, liquiritin, liquiritigenin, isoliquiritin and isoliquiritigenin simultaneously with the use of HPLC.
     (2) There exsits a very significant positive correlation between glycyrrhizin and total saponins, there also exsits a very significant positive correlation between liquiritin, liquiritigenin, isoliquiritin, isoliquiritigenin and total flavonoids. This paper has established discriminant models, through which we can discriminant the contents range of glycyrrhizin and liquiritin only if we get the contents of total saponins and total flavonoids, the discriminant accuracy of glycyrrhizin discriminant model is91.3%, and the discriminant accuracy of liquiritin discriminant model is90.0%; this paper has established linear regression models, through which we can estimiate the contents of glycyrrhizin and liquiritin only if we get the contents of total saponins and total flavonoids, the estimiate accuracy of glycyrrhizin discriminant model is68.6%and the estimiate accuracy of liquiritin discriminant model is75.3%.
     (3) This paper has established calibration models between glycyrrhizin content and NIR spectrum of wild and cultivated licorice, the R of the wild and cultivated calibration models are both above0.999, the predicting accuracy are91.4%and95.7%respective; has eatabliseh calibration models between liquirtin content and NIR spectrum of wild and cultivated licorice, the R of the wild and cultivated calibration models are0.996and0.998respective, the the predicting accuracy are86.2%and93.2%respective; has eatabliseh calibration models between isoliquirtin content and NIR spectrum of wild and cultivated licorice, the R of the wild and cultivated calibration models are both above0.999, the the predicting accuracy are89.4%and89.0%respective.
     (4) There don't exist significant differences between licorice with different surface colour in total saponins, total flavonoids, glycyrrhizin, liquiritin, liquiritigenin, isoliquiritin and isoliquiritigenin contents, but licorice with different Section color has very significant differences in total saponins contents and has significant differences in glycyrrhizin, liquiritin, liquiritigenin and liquiritin, contents. The chromaticity analysis results shows that the Lightness value L*of the licorice powder with shin off has significant negative correlation with total saponins and isoliquiritigenin content, and the yellow value b*has significant positive correlation with glycyrrhizin content, and the yellow index Y1has significant positive correlation with total saponins and glycyrrhizin content.
     (5) NIR is the most suitable method in the Licorice quality fast detection from the speediness, simplification, economy and accuracy aspects. This paper has revalidated the glycyrrhizin, liquiritin and isoliquiritin NIR models. The results show that the glycyrrhizin and liquiritin NIR models are stable, but the isoliquirtin NIR model is unstable.
引文
[1]国家药典委员会.2010.《中华人民共和国药典》(2010版)[S].北京:化学工业出版社,80.
    [2]高雪岩,王文全,魏胜利,等.甘草及其活性成分的药理活性研究进展[J].中国中药杂志,2009,34(21):2695
    [3]王巧娥,王文慎,黎先春,等.甘草GAP研究中的快速质量检测方法研究[J].现代中药研究与实践,2004,18(1):37
    [4]zheng QY, Yem. Chemical analysis of Chinese herbal medicine Gan Cao (licorice) [J]. J Chromatogr A, 2009,1216(11):1954
    [5]Marijan NA, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhizasp and its bioactive compounds[J]. PhytotherRes,2008,22:709
    [6]Kim JK, Oh S, Kwon HS, et al. Anti-inflammatory effect of roasted licorice extracts on lipopolysaccharide-induced inflammatory responses in murine macrophages[J]. Biochem Bioph Res Co, 2006,345(3):1215-1223.
    [7]Ai-Turki AI, Ei-Ziney MG, Abdel-Salam AM. Chemical and anti-bacterial characterization of aqueous extracts of oregano, marjoram, sage and licorice and their application in milk and labneh[J]. J Food Agr& Env,2008,6(1):39-44
    [8]Park IK. In vivo fungicidal activity of medicinal plant extracts against six phytopathogenic fungi[J]. Int J Pest Manag,2008,54(1):63-68.
    [9]Fiore C, Eisenhut M, Krausse R, et al. Antiviral effects of Glycyrrhiza species[J]. Phytother Res,2008, 22(2):141-148
    [10]Lee CK, Park KK, Lim SS, et al. Effects of the licorice extract against tumor growth and cisplatin-induced toxicity in a mouse xenograft model of colon cancer[J]. Biol Pharm Bull,2007,30(11): 2191-2195..
    [11]Sharifzadeh M, Shamsa F, Shiran S, et al. A time course analysis of systemic administration of aqueous licorice extract on spatial memory retention in rats[J]. Planta Med,2008,74(5):485-490.
    [12]Lee HJ, Yoon MY, Kim JY, et al. Antioxidant activity of Glycyrrhiza uralensis fisch extracts on hydrogen peroxide-induced DNA damage in human leucocytes and cell death in PC 12 cells [J]. Food Sci Biotech,2008,17(2):343-348.
    [13]Choi YJ, Lim SS, Jung JY, et al. Blockade of Nitroxidative Stress by Roasted Licorice Extracts in High Glucose-exposed Endothelial Cells[J]. J Cardiovasc Pharm,2008,52(4):344-354.
    [14]Visavadiya NP, Narasimhacharya A. Hypocholesterolaemic and antioxidant effects of Glycyrrhiza glabra (Linn) in rats[J]. Mol Nutr Food Res,2006,50(11):1080-1086.
    [15]Lee HY, Jung DY, Ha H, et al. Induction of growth hormone release by glycyrrhizae radix on rat[J]. J Biochem Mol Bio,2007,40(6):979-985.
    [16]Wojcikowski K, Stevenson L, Leach D, et al. Antioxidant capacity of 55 medicinal herbs traditionally used to treat the urinary system:A comparison using a sequential three-solvent extraction process[J]. J Altern Complem Med,2007,13(1):103-109.
    [17]Adamyan TI, Gevorkyan ES, Minasyan SM, et al. Effect of licorice root on peripheral blood indexes upon vibration exposure[J]. Bull Exp Biol Med,2005,140(2):197-200.
    [18]Harada S. The broad anti-viral agent glycyrrhizin directly modulates the fluidity of plasma membrane and HIV-1 envelope[J]. Biochem J,2005,392:191-199.
    [19]Hibasami H, Iwase H, Yoshioka K, et al. Glycyrrhizin induces apoptosis in human stomach cancer KATO III and human promyelotic leukemia HL-60 cells[J]. Int J Mol Med,2005,16(2):233-236.
    [20]Rahman S, Sultana S. Glycyrrhizin exhibits potential chemopreventive activity on 12-O-tetradecanoyl phorbol-13-acetate-induced cutaneous oxidative stress and tumor promotion in swiss albino mice[J]. J Enzym Inhib Med Chem,2007,22(3):363-369.
    [21]Rahman S, Sultana S. Chemopreventive activity of glycyrrhizin on lead acetate mediated hepatic oxidative stress and its hyperproliferative activity in Wistarrats[J]. Chem Biol Interact,2006,160(1):61-69.
    [22]杨云,卞广兴,吕秋军.甘草苷对原代海马神经细胞的保护和营养作用[J].中国中药杂志,2008,33(4):931-935.
    [23]杨云,吕秋军.甘草苷抗阿尔茨海默病作用及机制研究[D].中国优秀硕十学位论文全文数据库,2008,(11).
    [24]Zhao ZY. WangW X, Guo H Z, et al. Antidepressantlike efect of liquiritin from Glycyrrhiza uralensis in chronic variable stress induced depression model rats[J]. Behavioural Brain Research, 2008(194):108—113.
    [25]赵志宇,王卫星,郭洪祝,等.甘草苷对抑郁模型大鼠体重及行为学的影响[J].中国心理卫生杂志,2006,20(12):787-790.
    [26]姚李吉,沈洪.抗抑郁中医方药的实验研究进展[J].光明中医,2008,23(5):696-698.
    [27]Kim YW, Ki SH, Lee JR, et al. Liquiritigenin, an aglycone of liquiritin in Glycyrrhizae radix, prevents acute liver injuries in rats induced by acetaminophen with or without buthionine sulfoximine[J], Chem-Biol Int,2006,161(2):125-138.
    [28]Tian QL, Guan YP, Zhang B, et al. Research Advances on Pharmacological Activities of Components in Licorice. Natural Product Researchand Development(天然产物研究与开发),2006(2):164.168.)
    [29]渡边和浩,等.抗病毒药用组成物质[P].日本公开特许公报:平1-175942,1989-07-12.
    [30]Kwon HS, Oh SM, Kim JK, et al. Glabridin, a functional compound of liquorice, attenuates colonic inflammation in mice with dextran sulphate sodium-induced colitis [J]. Clin Exp Immunol,2008,151(1): 165-173.
    [31]Jang EY, Choe ES, Hwang M, et al. Isoliquiritigenin suppresses cocaine-induced extracellular dopamine release in rat brain through GABA(B) receptor[J]. Eur J Pharm,2008, 587(1-3): 124-128
    [32]Sato Y, He JX, Nagai H, et al. Isoliquiritigenin, one of the antispasmodic principles of Glycyrrhiza ularensis roots, acts in the lower part of intestine[J]. Biol Pharm Bull, 2007,30(1):145-149.
    [33]解军波.甘草道地性的物质基础和评判指标体系研究[D].北京:北京中医药大学,2009.
    [34]王立,李家恒.中国甘草属植物研究进展[J].草业科学,1999,16(4):28.
    [35]谷会岩.中国甘草资源生态学研究[D].哈尔滨:东北林业大学,2001.
    [36]魏胜利.甘草地理变异与种源选择[D].哈尔滨:东北林业大学,2003.
    [37]闫永红.不同来源甘草的质量特征及评价研究[D].北京:北京中医药大学,2006.
    [38]王跃飞,文红梅,郭立玮,等.不同产地甘草的聚类分析[J].中草药,2006,37(3):435.
    [39]GU Hui-yan, GONG Li-dong, YU Jing-hua. Measurement and comparison of glycyrrhizic acid contents in root of licorice (Glycyrrhiza uralensis Fisch.) from different cultivating areas[J]. Journal of Forestry Research,2002,13(2):141.
    [40]谢晓梅,周建理,刘永好,等.安徽毫州引种甘草质量的初步评价[J].安徽中医学院学报,2003,22(1):47.
    [41]Hiroaki HAYASHI, Kenichiro INOUE, Kazuo OZAKI. Comparative Analysis of Ten Strains of Glycyrrhiza uralensis Cultivated in Japan. [J]. Biol Pharm Bull,2005,28(6):11 13.
    [42]杨全,王文全,魏胜利,等.甘草不同类型间中总黄酮、多糖含量比较研究[J].中国中药杂志,2007,32(5):445.
    [43]杨全,王文全,魏胜利,等.不同变异类型甘草中甘草苷、甘草酸含量比较研究[J].中草药,2007,38(7):1087.
    [44]郝心敏,干德军,杜建喜,等.栽培甘草的质量考察[J].内蒙古中医药,2002,1:40.
    [45]周成明,田伟,尹春梅,等.家种及野生甘草的甘草酸含量比较[J].中药材,2002,25(12):861.
    [46]孙兰,余竞光,李德宇,等.野生与栽培甘草中甘草酸和甘草黄苷的含量比较[J].中药材,2001,24(8):550.
    [47]郑阿利,盖轲,何登文,等.野生与栽培甘草的质量比较[J].中国药师,2005,8(10):819.
    [48]李成义,李硕,杨春梅,等.甘肃省金塔县野生甘草与栽培甘草的比较研究[J].中华中医药学刊,2007,25(9):1815.
    [49]林寿全,林琳.生态因子对中药甘草质量影响的初步研究[J].生态学杂志,1992,11(6):1720.
    [50]刘艳华,傅克治.不同土壤环境生长甘草主要化学成分含量测定[J].中国兽药杂志,1996,30(4):25.
    [51]王文全.甘草生态学特性及生态环境对其药材质量影响的研究[D].北京:北京林业大学,2000.
    [52]刘长利,王文全.干旱胁迫对甘草酸积累影响的物质组分分配研究[J].中国中药杂志,2008,33(23):2852.
    [53]唐晓敏.水分和盐分处理对甘草药材质量的影响[D].北京:北京中医药大学,2008.
    [54]刘长利.甘草酸在甘草植物体内积累的调控机制研究[D].北京:北京中医药大学,2006.
    [55]王继永.甘草栽培营养的研究[D].北京:北京林业大学,2003.
    [56]魏昭智,李剑中.采挖期和采挖深度对人工甘草品质和产量效益的影响[J].草业科学,2006,23(8):212.
    [57]陈红军,王秀歧,张尚斌.家中梁外甘草最佳采收期研究[J].河北中医药学报,2007,22(1):35.
    [58]王巧娥,王文慎,张吉树,等.梁外半野生甘草最佳采收期研究[J].中药材,2004,27(4):235.
    [59]冯微,王文全,赵平然.栽培年限和采收期对甘草总皂苷、总黄酮含量的影响[J].中药材,2008,31(2):184.
    [60]王晋,刘金荣,李学禹.不同龄期栽培甘草总黄酮的含量测定[J].四川中医,2007,25(4):33.
    [61]孙志蓉,王文全,马长华,等.甘草地下部分生长分布格局及其对甘草酸含量的影响[J].中国中药杂志,2004,29(4):305.
    [62]彭励,胡正海,李金亭,等.甘草苷在甘草中的分布及其含量动态变化研究[J].药物分析杂志,2008,28(8):1230.
    [63]李刚.甘草酸EL ISA法建立及栽培甘草产量与品质调控机理研究[D].北京:中国农业大学,2005
    [64]陈云华,王文全.甘草质量评价方法研究进展[J].时珍国医国药,2008,19(6):1504.
    [65]Yamamoto Y, Majima T, HE J-X, et al. Chemical and pharmaceutical evaluation of Daitou-Gancao in comparison with usual Glycyrrhizae Radices[J]. J. Tradit. Med.,2003,20 (3):102-110.
    [66]Hui L,Bo-Tian C, Li L. et al. Simultaneous Determination of Six Compounds in Licorice and Related Chinese Herbal Preparations [J]. Chromatographia,2009,69 (3-4):229-235.
    [67]刘建玲,周珏,曲凡RP-HPLC法测定栽培甘草中3种成分含量的比较研究[J].安徽中医学院学报,2006,25(4):39-40.
    [68]宋丽军,谭晓梅,罗佳波HPLC法同时测定甘草中甘草苷、甘草酸、甘草次酸含量[J]中药材,2009,32(3):378-379.
    [69]何三民,石森林HPLC法测定甘草中甘草素、异甘草素、甘草苷的含量[J].中草药,2003,34(7):618-619.
    [70]王佩,刘晓昱,吴锡铭.反相高效液相色谱法测定甘草酸18H-差向异构体含量[J].中国药业,2008,17(19):17-18.
    [71]刘金荣,赵文彬,王航宇,等.不同生长期栽培甘草的产量及有效成分分析比较[J].上海中医药杂志,2004,38(11):56-58.
    [72]Hayashi H, Hiraoka N, Yasumasa l, et al. Organ specific localization of flavonoids in Glycyrrhiza glabra L [J]. Plant Science,1996,116(2):233-238
    [73]李伟,王跃飞,文红梅,等.同时分析甘草中7种有效成分[J].中国药学杂志,2008,43(24)1914
    [74]Wang YC, Yang YS.Simultaneous quantification of flavonoids and triterpenoidsin licorice using HPLC[J]. JChromatogr B,2007,850(1-2):392-399.
    [75]曾路,楼之岑,张如意.国产甘草的质量评价[J].药学学报,1991,26(10):788
    [76]沈阳,庄峙厦,王小如.高效毛细管电泳法分离测定不同种类甘草药材中甘草酸的含量[J].现代中药研究与实践,2004,18(增刊),29-32.
    [77]丁秀萍,汪敏,陈宏丽,等.自由溶液毛细管电泳结合内标法分离测定甘草中的甘草次酸和甘草酸[J].兰州大学学报(自然科学版),2008,44(6):65-71.
    [78]孙国祥,周隽思,孙毓庆.毛细管区带电泳法测定甘草浸膏粉中甘草酸和甘草次酸的含量[J].解放军药学学报,2003,19(1):10-12.
    [79]李利军,吴峰敏,程吴,等.电堆集-非水毛细管电泳分离测定甘草次酸和阿魏酸的研究[J].分析测试学报,2008,27(6):611-614.
    [80]汪云,曹云华.毛细管电泳法测定甘草中的甘草素和异甘草素[J].分析测试学报,2004,23(4):104-106.
    [81]Cao Y, Wang Y, Ji C. Determination of liquiritigenin and isoliquiritigenin in Glycyrrhiza uralensis and its medicinal preparations by capillary electrophoresis with electrochemical detection [J]J Chromatogr A. 2004,1042(1-2):203-209.
    [82]陈新,袁红萍,曹玉华,等.阴离子耗尽进样胶束扫集毛细管电动色谱法在线富集测定甘草黄酮类化合物[J].色谱,2010,28(9):889-892
    [83]Rauchensteiner F, Matsumura Y, Yamamoto Y, et al. Analysis and comparison of Radix Glycyrrhizae (licorice) from Europe and China by capillary-zone electrophoresis (CZE) [J]. JPharm Biomed Anal, 2005,8(4):594-600.
    [84]王晋,刘金荣,李学禹.不同龄期栽培甘草总黄酮的含量测定[J].四川中医,2007,25(4):33-35.
    [85]冯薇,王文全,赵平然.甘草总黄酮含量测定方法研究[J].时珍国医国药,2007,18(11):2608-2610
    [86]王淑杰,王淑华,刘钢.双波长紫外分光光度法测定甘草中总黄酮的含量[J].宁夏医学院学报,2005,27(6):506-508.
    [87]刘建宇,王淑华,李娅娅.三波长紫外分光光度法测定甘草中总黄酮含量[J].检验检疫科学,2005,15(5):18-20.
    [88]黄明进,王文全,沈寿茂.甘草总黄酮和总皂苛成分的提取工艺及其含量分析[J].中国现代中药,2010:4(12):
    [89]马建华,杨奇,应用红外光谱法直接定量分析甘草中的甘草酸。新疆农业科学
    [90]索靖伙.红外光谱技术在甘草质量分析上的应用[D].北京:北京中医药大学,2010
    [91]王亚敏,张卓勇,汤彦丰,等.近红外光谱技术在中药鉴别及分析中的应用[J].首都师范大学学报(自然科学版),2004:25(3):
    [92]Li Wanga,b, Frank S.C. Leeb, Xiaoru Wanga,b. Near-infrared spectroscopy for classification of licorice (Glycyrrhizia uralensis Fisch) and prediction of the glycyrrhizic acid (GA) content [J]. LWT 40 (2007)83-88
    [93]Hua-Jin Zeng, Bo-Yang Yu*, Ji-Hua Liu, Nan Liu. Determination of glycyrrhizin in Chinese prescriptions and biological samples by enzyme-linked immunosorbent assay[J] Analytica Chimica Acta 564 (2006)173-178
    [94]苏克曼等.波谱解析法[M].华东理工大学出版社.2002.
    [95]侏尔一,杨凡原.化学计量学方法及应用.北京:科学出版社,2001.
    [96]孙素琴,刘军,周群.傅立叶变换红外光谱和傅立叶变换拉曼光谱法无损鉴别药材的真伪[J].分析化学,2002,30(2):140-143.
    [97]刘荔荔,相秉仁,盛龙生,等.近红外漫反射光谱可视化褶合指纹谱对中药材的定性鉴别[J].中国药科大学学报,2003,34(2):105-108.
    [98]汤彦丰,张卓勇,范国强.中草药大黄的近红外光诊和人工神经网络鉴别研究[J].光谱学与光谱分析,2004,24(11):1348-1351.
    [99]Woo YAkim H J, HwanJ, et al. Discrimlination of herbal medicines according togeographical origin with near infrared reflectance spectroscopy and pattern recognition techniques Journal of Pharmaceutical and Biomedical Analysis,1999,21(2):407-413.
    [100]Woo YA Cho C H, Kim H J, et al. Classification of cultivation area of ginseng by neas infrared spectroscopy and ICP-AES.Microchemical Jounral, 2002, 73(3):299-306.
    [101]张晓慧.基于近红外光谱的连翘有效成分分析与产地鉴别技术研究[D].河南科技大学硕士学 位论文.2008.
    [102]Laasonen M, Harmia-Pulkkinen T,Simard C L, et al. Fast identification of Echinacea purpurea dried roots using near-infrared spectroscopy [J].Analetical Chemistry,2002,74(11):2493-2499.
    [103]瞿海斌,刘晓宣,程翼宇.中药材三七提取液近红外光谱的支持向量机回归校止方法[J].高等学校化学学报,2004,25(1):39-43
    [104]瞿海斌,刘全,程翼宇.近红外漫反射光谱法测定黄连浸膏粉中生物碱含量[J].分析化学,2004,32(4):477-480.
    [105]杨南林,瞿海斌,程翼宇.近红外光谱反法快速测定三七总皂苷的方法研究,浙江大学学报,2002,36(4):463.466.
    [106]刘晓宣.近红外光谱定性定量技术在中药质量控制中的应用研究[D].浙江大学硕士学位论文,2004.
    [107]刑旺兴,刘荔荔,贾暖,等.不同产地红曲的近红外漫反射光谱聚类分析鉴别[J].中药材,2001,24(8):561-563.
    [108]刘荔荔,刑旺兴,贾暖,等.近红外漫反射光谱法测定西洋参中入参的掺入量[J].中国中药杂志,2003,28(2):178-179.
    [109]Li Wanga,b, Frank S.C. Leeb, Xiaoru Wanga,b. Near-infrared spectroscopy for classification of licorice (Glycyrrhizia uralensis Fisch) and prediction of the glycyrrhizic acid (GA) content [J]. LWT 40 (2007)83--88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700