吉林高含CO_2深层天然气田水泥浆体系设计与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,吉林油田深层油气资源已经成为其勘探开发的重点,在已钻成的大量油气井中,获得了良好的油气发现。但随着井深的增加,井下情况越来越复杂,尤其是部分吉林深层天然气田高含CO_2酸性气体,给固井带来了新的挑战,CO_2严重腐蚀生产管柱和水泥石,导致气井服役寿命减少。为了解决以上问题,提高吉林高含CO_2深层天然气田的固井质量,亟需研发适用于吉林深层气田防CO_2腐蚀的水泥浆体系。
     针对吉林高含CO_2深层天然气田固井作业存在的突出问题,本文在借鉴国内外防CO_2腐蚀水泥浆体系研究成果的基础上,通过对CO_2腐蚀水泥环机理的研究,确定了CO_2腐蚀水泥环的评价方法和防CO_2腐蚀水泥浆体系的设计原则,完成了波特兰基和磷酸盐水泥浆设计,其中波特兰基防CO_2腐蚀水泥浆体系在两口试验井固井作业后显示了良好的抗CO_2腐蚀特性。
     (1)波特兰基防CO_2腐蚀水泥浆设计
     通过考察95℃、CO_2分压2MPa条件下,常规防窜水泥浆体系及不同材料在360d内的抗腐蚀性能,确定了适合吉林高含CO_2深层天然气田的防CO_2腐蚀水泥浆体系的基本组成材料。筛选出了适合长岭气田高含CO_2的高温深井固井用抗腐蚀外掺料F11F,考察了F11F在150℃、CO_2分压2MPa下28d的抗腐蚀性能和水泥石微观结构,确定了与之相配套的其它油井水泥高温外加剂,形成了以F11F为核心的防CO_2腐蚀高温波特兰基水泥浆体系。
     (2)磷酸盐防CO_2腐蚀水泥浆设计
     通过研究磷酸镁和磷酸钙水泥的制备、水化机理、耐CO_2腐蚀等特性,开发了磷酸盐水泥。通过分析水泥石的微观结构和磷酸盐水泥浆的水化产物,结合磷酸盐的水化特点和表面性质,研发了配套的缓凝剂和降失水剂。测试了磷酸盐水泥浆的流变性能、防窜性能、综合性能及与硅酸盐水泥的相容性,并显示了良好的抗CO_2腐蚀能力。
     2009年以外掺料F11F为核心的波特兰基水泥浆体系在吉林高含CO_2深层天然气田-长岭断陷中部凸起带哈尔金构造两口试验井开展了现场固井试验,顺利完成了固井任务,全井段测井质量合格。截止目前该试验井累计正常生产时间已超过3年,未见CO_2腐蚀异常情况,说明外掺料F11F为核心的新型固井水泥浆体系有效地抑制了CO_2腐蚀水泥石,达到了设计要求。
In recent years, the exploration and development for Jilin Oilfield mainly focus on thedeep oil and gas resources, and good oil and gas resources were found in the oil and gas wellshaving been drilled. However, downhole conditions become more and more complex with theincrease of well depth, especially part of deep natural gas fields with high carbon dioxide,which brings new challenges to cementing. Carbon dioxide severely corrodes productionstring and cemented rock, which reduces the service life of gas wells. In order to solve theabove problems and improve the cementing quality of Jilin deep gas fields with high carbondioxide, it is imperative that developing a cement slurry system can be applied for Jilin deepgas fields to prevent the carbon dioxide corrosion.
     Given the existing prominent problems of cement jobs in Jilin deep gas fields with highcarbon dioxide, based on the findings of carbon-dioxide corrosion resistance cement slurriesat home and abroad, this paper determined the evaluation methods of carbon-dioxidecorrosion cement sheath and design principles of carbon-dioxide corrosion resistance cementslurries by studying the carbon-dioxide corrosion mechanism to cement slurry, and completedthe design of Portland and phosphate cement slurries. Also, the results showed the goodability to resist the carbon-dioxide corrosion after Portland carbon-dioxide corrosionresistance cement slurries were applied for the cement jobs of two test wells.
     (1) Design of Portland corrosion resistance cement slurries
     By observing the corrosion resistance of conventional anti-channeling cement slurriesand different materials within360days at a temperature of95℃and a carbon-dioxide partialpressure of2MPa, this study determined the basic materials used to develop the carbon-dioxide corrosion resistance cement slurries for Jilin deep gas fields with high carbon dioxide,and screened the anti-corrosion admixture F11F to meet the high-temperature and deep-wellcementing demands of Changling gas field with high carbon dioxide. Investigating thecorrosion resistance performance and cemented rock microstructure of F11F within28days ata temperature of150℃and a carbon-dioxide partial pressure of2MPa was to determine otherhigh-temperature oil well cement additives with matching the F11F, and form the Portlandcarbon-dioxide corrosion resistance cement slurries which take F11F admixture as the core.
     (2) Design of phosphate corrosion resistance cement slurries
     This paper developed the phosphate cement by analyzing the preparation, hydration mechanism, carbon-dioxide corrosion resistance, etc of magnesium phosphate cement andcalcium phosphate cement. Through the analysis of the cemented rock microstructure andphosphate cement hydration products, combined with phosphate hydration characteristics andsurface properties, the matching retarder and fluid loss agent were developed. Testingphosphate cement rheological properties, anti-channeling performance, overall performanceand the compatibility with phosphate cement indicated a good corrosion resistance ability tocarbon dioxide.
     Portland cement slurries which take F11F admixture as the core have applied forcementing tests on two wells of Jilin deep gas fields-Changling fault central Herjin upliftstructure with high carbon dioxide in2009, and completed the cementing task successfully. Sofar, these test wells have worked more than3years, and there are no abnormal conditions ofcarbon-dioxide corrosion. These indicate that the new cement slurries which take F11Fadmixture as the core can effectively restrain the carbon dioxide corrosion and meet thedesign requirements.
引文
[1]杜志敏.国外高含硫气藏开发经验与启示[J].天然气工业,2006,21:35-37
    [2]张清玉,邹建龙,谭文礼,等.国内外高温深井固井技术研究现状[J].钻井液与完井液,2005,22(6):57-61
    [3]孙清德.国外高温高压固井新技术[J].钻井液与完井液,2001,18(5):8-12
    [4] American Petroleum Institute.World Wide Cementing Practices[S]. API Dallas US.1991
    [5]丁士东.国内外固井技术现状及发展趋势[J].钻井液与完井液,2002,19(5):35-39
    [6] Onan D D. Effects of supercritical carbon dioxide on well cements[R]. SPE12593,1984
    [7] Barlet-Gouédard V, Ramakrishnan T S, Bennaceur K, et al. Mitigation Strategies forCO_2Migration through Wellbores.(Schlumberger)Virginia:2005
    [8] Gallus J P, Pyle D E, and Moran L K. Physical and Chemical Properties of CementExposed Geothermal Steam[R]. SPE7876,1979
    [9] Shen, J C, Pye D S. Effects of CO_2Attack on Cement in High-Temperature Applications[R]. SPE/IADC18618,1989
    [10] Pilkington P E. Cement Evaluation-Past, Present and Future[J]. JPT,1992,44(2):132-140
    [11] Nolk C. Oilwell Cement Durability[R]. SPE56538,1999
    [12] Garnier A, Laude J B, Patil S, et al. Effect of Acid Gas on Cement Sheath Integrity:Experimental Findings [R]. SPE160890,2012
    [13] Bruckdorfer R A. Carbon Dioxide Corrosion in Oilwell Cement[R]. SPE15176,1986
    [14]黄柏宗.深井固井的若干问题[J].钻井液与完井液,2003,20(5):48-51
    [15]郭志勤,赵庆.抗腐蚀水泥浆体系研究[J].石油钻采工艺,2005,27(增刊):26-29
    [16]刘德平,付华才,吴林龙,等.川东深井固井技术[J].钻采工艺,2005,28(1):16-17
    [17]黄柏宗,林恩平,吕光明,等.固井水泥环柱的腐蚀研究[J].油田化学,1999,16(4):377-383
    [18]叶志富.固井质量影响因素及对策[J].天然气技术,2008,2(3):27-29
    [19]焦少卿,樊凌云,李青.高温、高压、和高含硫气井固井水泥浆设计[J].天然气工业,2009,3(6):47-49
    [20]牟春国,杨远光,施太和,等.水泥石碳化腐蚀影响因素及抗腐蚀方法研究[J].石油钻探技术,2008,36(2):42-44
    [21]周仕明,王立志,杨广国,等.高温环境下CO_2腐蚀水泥石规律的实验研究[J].石油钻探技术,2008,36(6):9-13
    [22]张景富,朱健军,代奎,等.温度及外加剂对G级油井水泥水化产物的影响[J].大庆石油学院学报,2004,28(5):94-97
    [23] Sugama T, Carciello N R. Carbonation of Calcium Phosphate Cements after Long-TermExposure to Na2CO3-Laden Water at250℃[J]. Cem Concr Res,1993,23(6):1409-1417
    [24] Sugama T, Carciello N R. Hydrothermally Synthesized Aluminum Phosphate Cements[J]. Adv Cem Res.,1993,5(17):31-40
    [25] Neiman R, Sarma A C. Setting and Thermal Reactions of Phosphate Investments[J]. JDental Res.,1980,59(9):1478-1485
    [26] Sarkar A K. Investigation of Reaction/Bonding Mechanisms in Regular and RetardedMagnesium-Ammonium Phosphate Cement System[J]. Ceram Trans Cement Techn.,1994,40:281
    [27] Popovics S, Rajendran N, Penko M. Rapid Hardening Cements for Repair ofConcrete[J]. Materials J.,1987,84(1):64-73
    [28] Beirute R M, Sabins F L, Ravi K M. Large-Scale Experiment Show Proper HoleConditioning-A Critical Requirement for Successful Cement Operations[R]. SPE22774,1991
    [29] Smith T R, Ravi R M. Investigation of Drilling Fluid Propertes to Maximize CementDisplacement Efficiency[R]. SPE22775,1991
    [30] Sugama T, Allan M, Hill J M. Calcium Phosphate Cements Prepared by Acid-baseReaction[J]. J Am Ceram Soc.,1992,75(8):2076-2087
    [31] Stiles D. Effects of Long-Term Exposure to Ultrahigh Temperature on the MechanicalParameters of Cement[R]. SPE98896,2006
    [32] Stewart R, Schouten C. Gas Invasion and Migration in Cemented Annuli: Causes andCures[R]. SPE14779,1989
    [33] Bour L, Wilkinson G. Combating Gas Migration in the Michigan Basin[R]. SPE19324,1992
    [34] Owsley,W D. Improved Casing Cementing Practices in the United States[J].Oil and GasJournal,1949,12:15
    [35] Power T C, Brownyard T C. Studies of Physical Properties of Hardened Cement Past[J].Journal of American Concrete Institute,1964,18:23-31
    [36] Smith R C. Check List Aids Successful Primary Cementing[J]. Oil and Gas Journal,1982,11(1):72-75
    [37]吴波.高温深井水泥浆体系在徐闻X1井的应用[J].石油钻采工艺,2006,28(3):34-36
    [38]孙玲,张宏军,李延伟,等.胜科1井超高温水泥浆体系的设计与应用[J].石油钻探技术,2007,35(6):34-36
    [39]陈卓元,张学元,王凤平,等.二氧化碳腐蚀机理及影响因素[J].材料开发与应用,1998,13(5):34-40
    [40]王立平,刘爱玲,罗长吉.大庆油田固井后水气窜实验研究[J].石油钻采工艺,1996,18(3):38-43
    [41]牛新明,张克坚,丁士东,等.川东北地区高压防气窜固井技术[J].石油钻探技术,2008,36(3):10-15
    [42]姚晓.二氧化碳对油井水泥石的腐蚀及防护措施[J].钻井液与完井液,1998,15(1):8-12
    [43]姚晓,唐明述.油井水泥石CO_2腐蚀的热力学条件[J].油田化学,1999,16(1):10-13
    [44]姚晓.CO_2对油井水泥石的腐蚀:热力学条件、腐蚀机理及防护措施[J].西南石油学院学报,1998,20(3):68-71
    [45]陈明亮,刘硕琼,刘顶运,等.固井工程技术服务支持系统CEMSS[J].天然气工业,1997,12(2):82-84
    [46]杨杰,刘海静,张明玉,等.提高水泥环二界面胶结质量方法的探讨[J].钻井液与完井液,2004,21(5):36-39
    [47]周祥家,叶良云.由水化反应的活性中心探讨波特兰水泥的水化机理[J].武汉工业大学学报,1991,(2):52-58
    [48]安策.G级水泥在深井固井中的应用研究[J].钻井液与完井液,1991,8(3):39-42
    [49]杨远光,陈大钧.高温水热条件下水泥石强度衰退的研究[J].石油钻采工艺,1992,14(5):33-39
    [50]张景富,俞庆森,徐明,等.G级油井水泥的水化及硬化[J].硅酸盐学报,2002,30(2):167-171,177
    [51]张景富,徐明,朱健军,等.二氧化碳对油井水泥石的腐蚀[J].硅酸盐学报,2007,35(12):1651-1656
    [52]闫占辉.高温油井水泥的水化硬化[D].大庆:大庆石油学院,2008
    [53]张景富,徐明,高莉莉,等.温度及外加剂对G级油井水泥强度的影响[J].石油钻采工艺,2003,25(3):19-23
    [54]华苏东,姚晓.油井水泥石脆性降低的途径及其作用机理[J].中国石油大学学报(自然科学版),2007,31(1):108-113
    [55]郭志勤,赵庆,燕平,等.固井水泥石抗腐蚀性能的研究[J].钻井液与完井液,2004,21(6):37-40
    [56]张聪,张景富,乔宏宇,等.CO_2腐蚀油井水泥石的深度及其对性能的影响[J].钻井液与完井液,2010,27(6):8-11
    [57]谈士海,张文正,施杰.CO_2生产井的腐蚀机理及预防[J].石油钻采工艺,2001,23(4):72-74
    [58]孙富全,侯薇,靳建洲.CO_2对固井水泥的腐蚀[J].石油化工应用,2007,26(1):35-39
    [59]罗长吉,刘爱玲,程艳.固井防水窜机理研究与应用[J].石油钻采工艺,1995,17(5):35-42
    [60]李泽林,常伟,王秀玲,等.高温防窜水泥浆体系的研究及应用[J].断块油气田,2004,11(4):68-70
    [61]杜伟程,黄柏宗.新的固井防窜理论及措施[J].钻井液与完井液,1997,14(1):33-35
    [62]张兴国,高兴原,冯明.固井质量影响因素分析[J].钻采工艺,2002,25(2):10-13.
    [63]杨振杰,李家芬,苏长明.钻井工程固井胶结界面研究现状[J].石油钻探技术,2005,33(6):1-4
    [64]黄河福,步玉环,王瑞和.固井防窜剂的优选试验研究[J].石油钻探技术,2006,34(6):42-44
    [65] Brice J W, Holmes R C. Engineered Casing Cementing Programs Using Turbulent FlowTechniques[J]. JPT,1964,16(5):503-508
    [66] Jain B, Raiturkar A M P, Holmes C. Using Particle Size Distribution Technology ForDesigning High Density, High Performance Cement Slurries In Demanding FrontierExploration Wells In South Oman[R]. IADC/SPE59134,2000
    [67] Wilson A D. Dental Silicate Cements: VII. Alternative Liquid Cement Formers[J]. JDental Res.,1968,53:1133-1136
    [68] Kent B E, Lewis B G, Wilson A D. The Properties of a Glass Lonomer Cement[J]. BrDental J.,1973,135:332-336
    [69] Larrard F, Sedran T. Optimization of Ultra-High Performance Concrete by the Use of aPacking Model[J]. Cement and Concrete Research,1994,24(6):997-1009
    [70] Krilov Z, Loncaric B, Miksa Z. Investigation of a Long-Term Cement DeteriorationUnder a High-Temperature, SourGas Downhole Environment[R]. SPE58771,2000
    [71]郑刚,郝俊芳.偏心环空紊流注水泥顶替理论研究[J].石油学报,1994,15(3):139-144
    [72]周凤石.偏心环隙流动的基本特征及其对钻井的影响[J].石油钻采工艺,1983,(3):7-16
    [73]刘崇建,谢应权等.水泥凝结过程的气窜问题[J].西南石油学院报,1998,20(4):47-52
    [74]姚晓,兰祥辉,邓敏,等.油井水泥多功能防窜剂的研究及应用[J].南京工业大学学报(自然科学版),2002,24(6):11-15
    [75]贾芝,胡富源,郭卫军,等.用于封固气层的泡沫水泥浆固井技术[J].钻井液与完井液,2003,20(2):22-24
    [76]温雪丽,马海忠,陈小荣,等.防气窜泡沫水泥浆的研究与应用[J].钻井液与完井液,2003,20(4):7-9
    [77]盛国富.水泥环对套管强度影响的理论和试验研究[J].国外油田工程,2004,(10):44
    [78]罗长吉,王允良,张彬.固井水泥环界面胶结强度实验研究[J].石油钻采工艺,1993,15(3):47-51
    [79] Sugama T, Kukacka L E. Magnesium Monophosphate Cements Derived fromDiammonium Phosphate Solutions[J]. Cem Concr Res.,1983,13(3):407-416
    [80] Sugama T. Kukacka L E. Characteristics of Magnesium Polyphosphate CementsDerived from Ammonium Polyphosphate Solutions[J]. Cem Concr Res.,1983,13(4):499-506
    [81] Abdelrazig B E I, Sharp J H, EI-Jazairi B. The Chemical Composition of Mortars Madefrom Magnesia-Phosphate Cement[J]. Cem Concr Res.,1988,18(3):415-425
    [82] Sugama T, Carciello N. Strength Development in Phosphate-Bonded CalciumAluminate Cements[J]. J Am Ceram Soc.,1991,74(5):1023-1030
    [83]汪宏涛,钱觉时,王建国.磷酸镁水泥的研究进展[J].材料导报,2005,12:46-51
    [84]刘子胜,刘昌胜.无机骨粘固剂-磷酸镁骨水泥的研究进展[J].材料导报,2005,5:29-35
    [85] Neiman R, Sarma A C. Setting and Thermal Reactions of Phosphate Investments[J]. JDental Res.,1980,59(9):1478-1485
    [86] Sarkar A K. Investigation of Reaction/Bonding Mechanisms in Regular and RetardedMagnesium-ammonium Phosphate Cement System[J]. Ceram Trans Cement Techn.,1994,40:281
    [87] Sugama T, Carciello N R. Sodium Phosphate-Derived Calcium Phosphate Cements[J].Cem Concr Res.,1995,25(1):91-101
    [88] Popovics S, Rajendran N, Penko M. Rapid Hardening Cements for Repair of Concrete[J]. Materials J.,1987,84(1):64-73
    [89] Aldelrazig B E I, Sharp J H. A Discussion of The Paper "Magnesia Phosphate Cements"by Sugama T and Kukacka L E [J]. Cem Concr Res.,1985,15:921
    [90]李鹏晓,杜亮波,李东旭.新型早强磷酸镁水泥的制备和性能研究[J].硅酸盐通报,2008,7(1):20-25
    [91] Wagh A S, Natarajan R, Kahn D. Light Weight Phosphate Cements[P]. US2007/0051278A1
    [92] Mintz D, Decker J. Cementitious Material[P].2009, US7,053,974B2
    [93] Wagh A S, Jeong S, McDaniel. Chemically Bonded Phosphate Ceramic SealantFormulations for Oilfield Applications[P].2008, US7,438,755B2
    [94] Sugama T, Carciello N R. Sodium Metasilicate-Modified Lightweight High AluminaCements for Use as Geothermal Well-cementing Materials[J]. Adv Cement BasedMater.,1996,3:45-53
    [95] Sugama T, Carciello N R. Carbonation of Hydrothermally Treated Phosphate-BondedCalcium Aluminate Cements[J]. Cem Concr Res.,1992,22(5):783-792
    [96]吴中伟,陶有生.中国水泥与混凝土工业的现状与问题[J].硅酸盐学报,1999,27(6):734-737

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700