浆体性能及井眼条件对顶替效率的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在固井过程中,提高环空注水泥顶替效率是防止钻井液窜槽、保证水泥胶结质量和提高水泥环密封效果的基本前提。由于顶替效率的影响因素复杂多变,涉及到工艺措施、地层条件、井身结构、流体流动性能及固井工具等多个环节,难以利用室内实验手段进行精确物理模拟,因而利用数值模拟手段系统研究环空顶替机理具有重要的现实意义。
     本文基于大型CFD软件FLUENT,利用数值模拟的手段研究了浆体流变参数、偏心环空、“大肚子”及其它变量对顶替效率的影响规律。模拟结果表明:对于宾汉或幂律模式,增加水泥浆与钻井液的密度差、增加水泥浆的稠度系数或钻井液的流性指数、增加水泥浆的塑性粘度、以及增大水泥浆或钻井液的动切力,都有利于提高顶替效率;反之,增加水泥浆的流性指数或钻井液的稠度系数,或增加钻井液的塑性粘度,会使水泥浆的顶替效率降低。此外,顶替效率随着偏心度的增大而降低,迟流现象随偏心度的增加而趋于严重;对于“大肚子”井段,即使接触时间充分,也难以达到完全顶替,顶替效率的最低值在“大肚子”段与正常段交接处。研究结果有助于明确注水泥过程中环空顶替机理,为注水泥设计与施工提供必要的理论依据。
In the course of cementing, improving the displacement efficiency incementingengineeringis abasicpremisetoprevent drillingfluidchanneling,guarantee the bonding strength of set cement and improve the sealingproperty of cement sheath. The displacement efficiency is affected by manyinteractedparameters, suchasthetechnologicmeasures,formationcondition,wellbore geometry, fluid mobility, cementing tools and so on. Due to thecomplexity of influencing factors, it is difficult to precisely simulate thedisplacement by means of laboratory experiments. It is, hence, of practicalimportance to systematical study the annular displacement mechanism bynumericalsimulation.
     Based on the large-scale CFD software FLUENT, the effects ofrheological parameters, eccentric annulus, special well condition and othervariables on the displacement efficiencywere studied bymeans of numericalsimulation.Thesimulationresults showthat increasingthedensitydifferencebetween the cement slurry and the drilling fluid, the consistency coefficientofcementslurryortheliquidityindex ofdrillingfluid,theplasticviscosityofcementslurry,andthe yieldpointofcementslurryordrillingfluid,allhelpto improve the displacement efficiency of cement slurry. On the contrary,increasing the liquidity index of cement slurry or the consistency coefficientof drilling fluid, or increasing the plastic viscosity of drilling fluid, willreduce the displacement efficiency of cement slurry. Meanwhile, when theeccentricity increases, the displacement efficiency decreases, and late-flowphenomenon becomes serious with the increase of eccentricity. For specialwell condition, if sufficient contact time is obtained, it is still hard to reachcomplete displacement. The lowest point of the displacement efficiency ofcement slurrylocates at the point which connects special well condition withnormal condition. Research results can contribute to better understand theannular displacement mechanism incement squeezing,and provide necessarytheoretical foundations for the design and execution of cementing.
引文
[1] P.H.Jones, D.Berdine. Oil-Well Cementing Factors Influencing BondBetween Cement and Formation[J]. Drill and Prod. Prac.APl.Dallas,March21,1940:45-63
    [2] G..C.Howard, J.B.Clark. Factors to be Considered in Obtaining ProperCementingofCasing[J].D.P.P.API,(1948):257-272
    [3] J.W.Brice, R.C.Holmes. Engineered Casing Cementing Programs UsingTurbulentFlowTechniques[J]. JPT(1964):503-508
    [4] R.H.Mclean. Displacement Mechanics in Primary Cementing[J]. JPT(1967):251-260
    [5] Parker P.N., Ladd, B.J.An Evaluation of a PrimaryCementingTechniqueUsingLowDisplacementRates[R].SPE1234,1965
    [6] Parker P.N. CementingSuccessful at Low Displacement Rates Wor1d Oil[J],1969:93
    [7] C.R.Clark, L.G..Carter. Mud Displacement with Cement Slurries[J]. JPT,July,1973:8-10
    [8] R.C.Haut, R.J.Crook. Primary Cementing: The Mud DisplacementProcess[R].SPE8253,1979
    [9] R.C.Haut, R.J.Crook. Primary Cementing: Optimizing for MaximumDisplacement[J].WorldOil,Nov.1980:9-13
    [10] R.C.Haut, R.J.Crook. Laboratory Investigation of Light-WeightLow-ViscosityCementingSpacerFluids[J].JPT,Aug.1982:18-23
    [11] 刘崇建,黄柏宗,徐同台,等.油气井注水泥理论与应用[M],北京:石油工业出版社,2001.9:292-298
    [12] Bannister, C.Eand Benge. O.C. Pipe Flow Rheometry: RheologicalAnalysis of a Turbulent Flow System Used for Cement Placement[R].SPE102l6,198l
    [13] Jakobsen J. Displacement in Eccentric Annuli During PrimaryCementinginDeciatedWe11s[R].SPE21686,1991
    [14] 柳世杰. 大斜度井和水平井的尾管固井工艺[J].钻采工艺,1995,18(1):15-18
    [15] 徐惠峰.钻井技术手册(三)——固井[M].北京:石油工业出版社,1990.7:382
    [16] 刘崇建,黄柏宗,徐同台,等.油气井注水泥理论与应用[M].北京:石油工业出版社,2001.9:253-259
    [17] 韩占忠,王敬,兰小平.FLUENT:流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.6:19-21
    [18] 王福军.计算流体动力学分析分析-CFD 软件原理与应用[M].北京:清华大学出版社,2004.9:188,206-217
    [19] 李德元,徐国荣,水鸿寿.二维非定常流体力学数值方法[M].北京:科学出版社,1998:72-76
    [20] Hirt C.W., Nichols B.D. Volume of Fluid (VOF) Method for theDynamics of Free Boundaries[J]. Journal of Computational Physics,1981:39,201-225
    [21] 刘崇建,郭小阳.幂律液体在偏心环空的流动规律及其应用[J].天然气工业,1996:3
    [22] 郑永刚.偏心环空注水泥顶替机理研究[J].天然气工业,1994,15(3):46-47
    [23] 宋胜利,杨凤香,王木乐,等.小井眼固井质量差的原因及解决办法[J].石油钻采工艺,2004,26(2):32-34
    [24] 郑永刚.非牛顿流体流动理论及其在石油工程中的应用[M].北京:石油工业出版社,1999.5:56-70
    [25] 郑永刚,郝俊芳.偏心环空紊流注水泥顶替机理研究[J].石油学报,1994,15(3):139-142
    [26] 沈崇棠,刘鹤年.非牛顿流体力学及其应用[M].北京:高等教育出版社,1989:47-68
    [27] 郑永刚.偏心环空旋转套管流场及对注水泥顶替效率的影响[J].西部探矿工业,1994,6(2):33-37
    [28] 刘永建,姜淑卿,黄匡道,等.偏心环空中水泥浆顶替泥浆的一维两相流动[J].大庆石油学院学报,1988.12(3):35-43
    [29] 韩占忠,王敬,兰小平.FLUENT—流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004:132-167
    [30] 陈庭根,管志川.钻井工程理论与技术[M].东营:石油大学出版社,2000.6:106
    [31] 刘崇建,黄柏宗,徐同台,等.油气井注水泥理论与应用[M].北京:石油工业出版社,2001.9:299
    [32] 刘希圣.钻井工艺原理-下册(完井工程)[M].北京:石油工业出版社,1992.7:109-110
    [33] 郑永刚.非牛顿流体流动理论及其在石油工程中的应用[M].北京:石油工业出版社,1999.5:68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700