应县木塔梁柱节点增强传递压力效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
古建筑木结构的体型一般很大,构件因横纹局压而产生过大的变形甚至严重破坏的现象非常普遍,这是其修缮加固中的关键问题,而且在应县木塔中尤为突出。应县木塔是参考唐代2~3层殿堂结构的建造经验,将殿堂依次叠合而成的高耸木结构,明、暗共9层,高67.31米。相对于一般殿堂结构,高度和自重的成倍增加,使木塔遇到前所未有的两项难题:其一是因自重增加,使承受上层柱轴向荷载的梁(普拍枋和梁栿)横纹局压应力成倍地超过设计强度而产生严重的压缩变形甚至劈裂,导致木塔整体竖向变位。其二是因高度增加,地震荷载作用下的安全可靠成为木塔整体结构的主要问题。由于木塔采用了唐代殿堂内、外分槽的结构形式,用两层柱圈构成筒体,并逐层加设了层高较低称为平坐的刚度加强层,再加上两圈柱子都由下至上向内倾斜对筒体形成环箍力,这些措施帮助木塔抵抗了多次强烈地震而未倒。但是,目前木塔残留的整体倾斜、层间侧移以及由木材横纹压缩引起的竖向压缩变形等都已达到严重影响其安全可靠的程度,所以,木材横纹局压增强加固问题亟待解决,以防突变。
     本文首先研究了木塔结构构造和残损情况,并结合木材的微观构造,探讨了横纹承压的传力机理和横纹承压强度设计值的确定方法。然后计算了木构件横纹局压的抗力作用效应比。分析发现,木塔底部几层普拍枋和梁栿(柱脚下的横梁)的横纹局压抗力作用效应比最小的仅有0.24,势必产生过大的变形,是引起木塔高度降低的主要原因,也是木塔当前最大的安全隐患。针对木材横纹局压的受力特点和加固目标,本文提出“插筋法”增强古建筑木构件的横纹局压承载力的技术,研究增强机理和加固后的力学性能,探讨制作工艺及在应县木塔中的应用问题。普拍枋的截面高度相对较小,横纹局压高应力区贯穿整个构件截面,采取棒材两端直接承压的技术;梁栿的截面高度较大,增强棒材一端承压,另一端没有直接承压面,靠棒材与木材之间的胶层摩擦传递荷载。
     普拍枋中增强棒材的受力形式相当于木材侧向弹性约束下的轴压问题,因而,先从理论角度分析了侧向弹性约束下棒材的计算长度系数的计算方法,进而求得其长细比和稳定承载力。然后设计了一系列试验验证了理论分析的正确性。同时还研究了木材边距、间距和端距对棒材稳定承载力的影响,计算求得木材边、端距的最小值。最后,通过钢筋增强木材横纹局压标
Yingxian ancient wooden pagoda is a flat-form tall building, which was formed by the superposition of monolayer temples. The height of 67.31 meters made it encountered two unprecedented puzzles : Firstly, with the height increased whopping, wind resisting and aseismatic capability become the main question of the whole structure; secondly, because of the weight increased unconventionally, members of the lower 1~3 floors hold overloading perpendicular to grain and they brought large vertical deformation. It lead that the whole structure’s compress deformation developed sequentially.
     Yingxian Wooden pagoda has favorable aseismatic capability, as it used similar modern core-in-core structure, and fixed many batter brace make it become modern rigid reinforced floors in every hidden floor , and slope of bearing post made it that the level and uprightness frame integrate tightly. Under the deadweight, every structural floors form centripetal force. Those earthquake resistant measures resist many the strong destroy of earthquake in history.
     First of all, the structural characteristic and essential of damages were introduced. Secondly the efficiency factor of how much the compression stress perpendicular to grain is more than the design value was calculated. Thirdly, the main reason that members were made too large deformation and serious damage was pointed out. The key technologies that control wooden pagoda vertical compressive deformation were conducted. For the members that have high damnification and were lacking of bearing capacity need be replaced. Northeast larch that has high strength and corrosion resistance is the prime timber, but this timber is easy to crack, so their crack resistance need studied. Simplified result of Earthquake effects indicate that earthquake resistant capacity are obviously scarce and need to be reinforced.
     Secondly, Combining with the timber one-dimensional structural characters, the dissertation bring forward the technology that GFRP stick and steel bar reinforce the timber members whose compression perpendicular to grain have excess load and discuss the craftwork how to do the reinforced members. The
引文
1 陈明达. 应县木塔. 北京. 文物出版社, 2001
    2 梁思成. 营造法式注释. 北京. 清华大学出版社, 1980
    3 梁思成. 图像中国建筑史. 天津. 白花文艺出版社, 2000
    4 Liang, Ssu-Cheng(edited by Wilma Fairbank). A Pictorial History of Chinese Architecture, MIT Press. Boston, 1984
    5 山西省古建筑保护研究所. 应县木塔残损现状勘测结果. 2000.5
    6 魏德敏, 李世温. 应县木塔残损特征的分析研究. 华南理工大学学报(自然科学版), 2002, (11):119~121
    7 李铁英. 应县木塔现状结构残损要点及机理分析. 太原理工大学博士学位论文. 2005
    8 梁思成. 中国建筑的特征. 《梁思成文集》(4) . 1980:96~103
    9 刘致平. 中国建筑类型及结构. 中国建工出版社, 2000
    10 马炳坚. 中国古建筑木作营造技术. 科学出版社, 1991
    11 王天. 古代大木作静力初探. 文物出版社, 1992: 110~121
    12 GB50005-2003. 木结构设计规范. 中国建筑工业出版社, 2003
    13 柴泽俊, 李正云. 朔州崇福寺弥陀殿修缮工程报告.文物出版社,1993
    14 樊承谋, 陈松来. 木结构科技的新发展[J]. 哈尔滨工业大学学报, 2004(6):56~58
    15 赵均海, 俞茂宏, 杨松岩, 孙家驹. 中国古代木结构有限元动力分析.土木工程学报, 2000, (1):32~35
    16 赵均海. 中国古代木结构的结构特征研究. 西安交通大学博士学位论文. 1998
    17 方东平. 木结构的静力、动力及抗震性能研究. 西安交通大学硕士学位论文. 1988
    18 刘晓东. 北门箭楼结构静力、动力试验研究. 西安交通大学硕士学位论文. 1988
    19 张鹏程. 中国古代木构建筑结构及其抗震发展研究. 西安建筑科技大学博士学位论文. 2003
    20 张鹏程, 赵鸿铁, 薛建阳, 高大峰. 中国古代大木作结构振动台试验研究. 世界地震工程. 2002,18(4):35~41
    21 高大峰, 张鹏程,赵鸿铁,薛建阳.中国古建木构架在水平反复荷载作用下变形及内力特征.世界地震工程.2003,19(1):9~14
    22 薛建阳, 赵鸿铁, 张鹏程. 中国古建筑木结构模型的振动台试验研究. 土木工程学报. 2004,37(6):6~11
    23 陈允适, 李武. 古建筑与木质文物维护指南-木结构防腐及化学加固. 中国林业出版社, 1996
    24 李世温, 陈正廷. 应县木塔的荷载研究[R]. 山西应县木塔办公室,2000
    25 李世温 等. 应县木塔各层重量及木材用量的计算[R]. 2000.太原理工大学
    26 太原工学院, 山西省文物局.应县木塔木材取样试验报告[R]. 太原理工大学建工学院, 1979
    27 李铁英,魏剑伟,张善元,李世温. 应县木塔实体结构的动态特性试验与分析.工程力学.2005,(1): 137~144
    28 Hu Shiping.The Earthquake-Resistant Properties of Chinese Traditional Architecture. Earthquake Spectra. 1991,7(3),:355~389
    29 李世温,王晋生,魏剑伟,张文芳.应县木塔抗震性能研究[R].太原理工大学建工学院,1996
    30 李铁英,魏剑伟,张善元,李世温.木结构双参数地震损坏准则及应县木塔地震反应评价.建筑结构学报,2004,(3):91~98
    31 古建筑木结构维护与加固技术规范(GB50165-92) .中国建筑工业出版社,1992
    32 李铁英,张善元,李世温.古木塔风压模型试验分析.实验力学.2002,(3): 354~362
    33 李铁英,张善元,李世温.应县木塔风作用振动分析.力学与实践.2003,(2):40~42
    34 李铁英,张善元,李世温.古木塔场地抗震性能评价及地震参数选择.岩土工程学报.2002,(5):660~663
    35 方东平, 俞茂宏, 宫本裕, 岩崎正二, 彦坂熙.木结构古建筑结构特性的实验研究.工程力学.2000,(2):75~83
    36 方东平, 俞茂宏, 宫本裕, 岩崎正二, 彦坂熙.木结构古建筑结构特性的计算研究.工程力学.2001,(1):137~144
    37 张文芳, 李世温等.一类斗拱木结构恢复力特性的模型试验研究.东南大学学报,1997,(11):65~70
    38 《古建筑木结构维修与加固规范》编制组.古建筑木结构的荷载.四川建筑科学研究.1994,(1):8~10
    39 魏剑伟, 李铁英, 张善元, 李世温.应县木塔地基工程地质勘测与分析.工程地质学报.2003,(1):16~19
    40 文化部文物保护科研所.中国古建筑修缮技术.第七版.中国建筑工业出版社,2002
    41 魏剑伟, 李世温.应县木塔地震影响分析.太原理工大学学报.2003,(9):601~605
    42 金 良 生 . 山 西 应 县 佛 宫 寺 释 迦 塔 实 测 记 . 北 京 建 筑 工 程 学 院 学报.1995,(3):60~64
    43 刘光勋.山西应县木塔变形原因之浅见.山西地震.1999.4:1-3
    44 陈国顺,郭文生,贾蕾.山西应县木塔损坏的原因及其环境地质研究概况[J] .山西地震.1998,(3-4):39-41
    45 陈国顺,贾蕾,郭文生. 山西应县木塔环境地质及活动断层的研究[J],山西地震,1998,(3-4):60-71
    46 贾蕾,陈国顺,郭文生.用工程地质方法分析应县木塔塔基土的稳定性[J] .山西地震.1998,(3-4):72-85
    47 陈坤,郭文生,陈国顺.用工程测量方法研究应县木塔损坏的原因[J] .山西地震.1998,(3-4):50-53
    48 孟 繁 兴 , 张 畅 耕 . 应 县 木 塔 维 修 加 固 的 历 史 经 验 . 古 建 园 林 技术.2001,(4):29~33
    49 贺福,杨永刚.碳纤维增强木材复合材料(CFRW). 第二届全国土木工程用纤维增强复合材料(FRP)应用技术交流会. 中国昆明,2002
    50 黄承逵,周长东.纤维聚合物加固木结构的抗剪计算. 第二届全国土木工程用纤维增强复合材料(FRP)应用技术交流会. 中国昆明,2002
    51 Hayder A. Rasheed, Shariq Pervaiz.Bond Slip Analysis of Fiber-Reinforced Polymer-Strengthened Beams [J]. Journal of Engineering Mechanics. 2002,128(1):78-86
    52 Sulojana Shanmuganathan.Fiber reinforced polymer composite materials for civil and building structures – review of the state-of-art[J] .The Structural Engineer, 2003,(6):26-33
    53 Kenneth J. Frideley.Wood and Wood-Based Materials: Current Status and Future of a Structural Material[J]. J. of Material in Civil Engineering.2002,14(2):91-96
    54 C. E. Bakis, L. C. bank, etc.Fiber-Reinforced Polymer Composites for Construction—state-of-the-art review[J].J. of Composites for construction. 2002,6(2),73-87
    55 Roberto Lopez-Anido, Han Xu.Structural Characterization of Hybrid Fiber-Reinforced Polymer-Glulam Panels for Bridge decks[J]. Journal of composites for construction. 2002,6(3):194-203
    56 Roland Hernandez,Julio F. Davalos, etc.Strength and Stiffness of Reinforced Yellow-Poplar Glued-Laminated Beams[R].United States Department of Agriculture, Forest Service, Forest Products Laboratory, July 1997
    57 Christopher Mettem.Structural timber-concrete composites-advantages of a little known innovation[J]. The structural engineer. 18 Feb 2003:17-19
    58 Thanasis C. Triantafillou, Nikola Deskovic.Prestressed FRP sheets as external reinforcement of wood members[J].J. of Structural Engineering. 1992,118(5)1270-1284
    59 William G. Davids.Nonlinear analysis of FRP-Glulam-Concrete Beams with Partial Composite action[J].J. of Structural Engineering. 2001,127(8),967-971
    60 William M. Bulleit, Bogue Sandberg,etc.Steel-Reinforced Glued Laminated Timber[J].J. of Structural Engineering[J] . 1989,115(2),433-444
    61 Zongjin Li, Chun-pong Liu, Tongxi Yu.Laminate of reformed bamboo and extruded Fiber-Reinforced Cementitious Plate[J].J. of Material in Civil Engineering. 2002,14(5):359-365
    62 Chris Gentile, Dagmar Svecova, etc.Timber Beams Strengthened with GFRP Bars: Development and Applications [J]. J. of Composites for construction. 2002,16(1),11-20
    63 Thanasis C. Triantafillou.Shear Reinforcement of wood using FRP Materials[J].J. of materials in Civil Engineering, 1997,9(2),65-69
    64 J. G Broughton, A R Hutchinson.Pull-out behavior of steel rods bonded into timber[J].Materials and structures. 2001,34(3):100-109
    65 Marin Zeno A, Stith Joe K, Tingley Dan A.Commercialization of FRP reinforced glulam beam technology.Proceedings, World Conference on Timber Engineering. Whistler Resort British Columbia , Canada. Aug, 2000
    66 Marin Zeno A, Stith Joe K, Tingley Dan A. Strength and stiffness performanceof FRP reinforced White Oak. Proceedings, World Conference on Timber Engineering. Whistler Resort British Columbia , Canada. 2000
    67 R. F. Lindyberg, H. J. dagher. Probabilistic nonlinear model for reinforced glulam beams. Proceedings, World Conference on Timber Engineering. Whistler Resort British Columbia , Canada. 2000
    68 Nikolaos Plevris, Thanasis C. Triantafillou.Creep behavior of FRP-Reinforced wood members [J], J. of Structural Engineering,1995,121(2):174-186
    69 David V. Rosowsky, William M. Bulleit. Load duration effects in wood members and connections order statistics and critical loads. Structural Safety 2002,(24):347-362
    70 Roberto Lopez-Anido, Antonis P.Michael, Thomas C.Sandford. Experimental characterization of FRP composite-wood pile structural response by bending tests. Marine Structures 2003,(16):257-274
    71 Thanasis C. Triantafillou, Nikola Deskovic. Innovative prestressing with FRP sheets: Mechanical of short-term behavior[J]. J. Structural Engineering, 1991,117(7): 1652-1672
    72 Bradford. M. A., Gilbert . R. I. Time-dependent analysis and design of composite column. J. Struct. Engrg,1990,116(2): 3338~3357
    73 Fridley. K. J., Tang. R. C., Soltis, L. A. Hygrothermal effects on mechanical properties of lumber. J. Struct. Engrg,1992,118(2): 567~581
    74 Fridley. K. J., Tang. R. C., Soltis, L. A., Yoo. C. H. Hygrothermal effects on the mechanical properties of structural lumber. J. Struct. Engrg,118(4), 1023~1038.
    75 Kenneth J. Fridley, R. C. Tang, Lawrence A. Soltis. Creep Behavior Model for Structural Lumber. J Stru Eng, 1992,118(8),2261-2267
    76 Nikolaos Plevris, Thanasis C. Triantafillou. Time-Dependent Behavior of RC Members Strengthened with FRP Laminates. J. Structural Engineering, 1994,120(3).1016-1042
    77 ICBO. Fiber-reinforced plastic (FiRP) reinforced Glued-laminated wood beams [R]. April 1,2001
    78 James F. Shaw. Introduction to Design in wood [M]. Ottawa, Ontario Canada. 1991
    79 Kelly R. McClosekey. Wood design manual(Revised October 1997). [M]. Ottawa, Ontario Canada.1995
    80 H. Ogawa. Architectural application of carbon fibers Development of new carbon fiber reinforced glulam[J]. Carbon. 2000,(38): 211–226
    81 Lawrence a. Loltis robert J.Ross daniel F. Windorski. Fiberglass-reinforced Bolted Wood Connections. Forest Products Journal, 1998,48(9):105~121
    82 Andrew H Buchanan, Peter J Moss, P kevis Townsend. Reinforced bars epoxy bonded in Glue Laminated Timber.1990 International Timber Engineering conference, Tokyo, 1990
    83 Harvey Kim, Ansell Martin P. Improved timber connection using bonded-in GFRP rods. Proceedings, World Conference on Timber Engineering. Whistler Resort British Columbia , Canada. 2000
    84 Andrew H Buchanan, Peter J Moss, Eistetter Sabine. Cement grouted steel bars in glulam. Proceedings, World Conference on Timber Engineering. Whistler Resort British Columbia , Canada. 2000
    85 Bengtsson Charlotte, Kemmsies Martin, Johansson Carl-Johan. Production control methods for glued-in rods for timber structures. Proceedings, World Conference on Timber Engineering. Whistler Resort British Columbia ,Canada. 2000
    86 Schreyer Alexander, Bathon Leander, Pron Helmut G. L. Determination of the Capacities of a new Composites Timber-steel Connector System. Proceedings, World Conference on Timber Engineering. Whistler Resort, British Columbia , Canada. 2000
    87 R.Bainbridge, C.Mettem, K.Harvey, M.Ansell. Bonded-in rod connections for timber structures –development of design methods and test observations. International Journal of Adhesion &Adhesives. 2002,(22): 47~59
    88 Gustafsson Per J, Serrano Erik. Predicting the pull-out strength of glued-in rods. Proceedings, World Conference on Timber Engineering. Whistler , British Columbia ,Canada. 2000
    89 Kangas Jorma. Design of connection based on V-form glued-in rods. Proceedings, World Conference on Timber Engineering. Whistler Resort British Columbia ,Canada. 2000
    90 Pizhong Qiao, Julio F. Davalos, Michael G. Zipfel. Modeling and optimal design of composite-reinforced wood railroad crosstie. Composite structures 1998 (41):87~96
    91 Madsen, B., Hooley, R.F. and Hall, C. A design method for bearing stress, Canadian Journal of Civil Engineering, 1982,9(2).338-349
    92 Hall, C.P. Behaviour of Compression Perpendicular to Grain Loading in Wood. M.A.Sc, Thesis, Department of Civil Engineering, University of British Columbia, Vancouver, Canada, 1980
    93 Borg Madsen. Structural behaviour of timber. Timber Engineering Ltd. 575 Alpine Court. North Vancouver, British Columbia, Canada,1992
    94 Borg Madsen. Behaviour of timber connections. Timber Engineering Ltd. 575 Alpine Court. North Vancouver, British Columbia, Canada, 2000
    95 H.J. Blass, P.Aune, etc. Timber Engineering STEP 2. Centrum Hout, Postbus, 1995
    96 Jennifer O’Connor, Robert Kozak, Chris Gaston. Wood Opportunities in Non-Residential Buildings. Special Publication, No.SP-46, Forintek Canada Corp
    97 Stefan Holmberg, Kent Persson, Hans Petersson. Nonlinear mechanical behaviour and analysis of wood and FRP materials. Computers and Structures 1999,(72):459- 480
    98 Simon Aicher, Gerhard Dill-langer, Lilian Hofflin. Effect of polar anisotropy of wood loaded perpendicular to grain. J of Materials in civil engineering, 2001,(1);2~9.
    99 Maria A. Parisi, Maurizio Piazza. Mechanics of plain and retrofitted traditional timber connections. Vol. 126, No. 12, J of structural engineering, 2000,(12):1395~1403
    100 J. Shen, A. Astanen-Asl, Hysteretic behavior of bolted-angle connections. Journal of Construction Steel Research, 1999 (51):201~218
    101 J. Shen, A. Astanen-Asl, Hysteretic model of bolted-angle connections. Journal of Construction Steel Research. 2000,(54):317~343
    102 Sang-Sup Lee, Tase-Sup Moon, Moment-rotation model of semi-rigid connection with angles. Engineering Structures 2002(24):227~237
    103 陈惠发.钢框架稳定设计.上海世界图书出版公司. 1999
    104 Chen, W.F. and Kishi, N. Moment-rotation relation of top-and-seat-angle connections, Proceedings of the international colloquium on bolted and special connection, May 15~20,Moscow. USSR National Committee of the International Association for Bridge and Structural Engineering, Moscow.
    105 李玉顺. 钢框架结构软钢阻尼器振动控制的试验及理论研究. 哈尔滨工业大学工学博士论文. 2004
    106 G.J. Turvey, Flexure of pultruded GRP beams with semi-rigid end connections, Composite structures. 1999,(47):571~580.
    107 G.J. Turvey, C. Cooper. Semi-rigid column-base connections in pultruded GRP frame structures. Computers and Structures. 2000,(76):77~88.
    108 A.M. Harte, D. Mc Cann. Finite element modeling of the semi-rigid behaviour of pultruded FRP connections. Journal of materials Processing Technology. 2001,(119):98-103
    109 冯鹏,叶列平.FRP 结构和 FRP 组合结构在结构工程中的应用与发展.第二届全国土木工程用纤维增强复合材料(FRP)应用技术交流会,昆明,2002
    110 王永维.木结构可靠度分析. 四川建筑科学研究, 2002,28(2): 1~3
    111 ICBO. Fiber-reinforced plastic (FiRP) reinforced Glued-laminated wood beams [R]. 2001
    112 ICBO. Acceptance criteria for the development of proprietary design formulae for plastic-reinforced glued-laminated beams[R]. AC102, 1994.
    113 美国木结构设计规范.美国国家标准(1997),美国林业及纸业协会
    114 National Design Specification for wood construction, American National Standard, 1997 Edition, American Forest & Paper Association.
    115 Supplement of National Design Specification for wood construction, American National Standard, 1997 Edition, American Forest & Paper Association.
    116 Wood, L. 1960. Relation of strength of wood to duration of load. U.S Dept. of Agric., Forest Product Lab, Report No. 1916, Madison, WI.
    117 AF&PA, 1991, National Design Specification for Wood Construction, Commentary, American Forest & Paper Association, Washington, D.C.
    118 AF&PA/ASCE, 1996, Standard for Load and Resistance Factor Design (LRFD) for Engineered Wood Construction, American Society of Civil Engineers, New York, NY.
    119 W.S. King, J.Y. Richard Yen, Y.N. Alex Yen. Joint characteristics of traditional Chinese wooden frames. Engineering Structures. 1996,18(8):635-644
    120 张相庭. 高层建筑抗风抗震设计计算. 同济大学出版社, 1997
    121 王林安, 潘景龙, 樊承谋. 哈尔滨市某校木屋盖结构的可靠性鉴定. 低温建筑. 2005, (6):34~36
    122 樊承谋, 王林安, 潘景龙. 应县木塔修缮用材的防裂措施[J]. 北京林业大学学报. 2006, (1):98~102
    123 倪士珠, 李源哲. 古建筑木结构用材的树种调查及主要材性实测分析[J]. 四川建筑科学研究院. 1994, (1):11-14
    124 樊承谋. 木结构在我国的前景[J]. 木材工业. 2003,(3): 65~68
    125 陈骥. 钢结构稳定理论与设计. 科学出版社, 2001
    126 成俊卿. 木材学. 中国林业出版社, 1985

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700