热休克蛋白47在大鼠脊髓损伤的表达及苦参素治疗大鼠脊髓损伤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脊髓损伤(SCI)机制复杂,目前尚未完全明确,是困扰医学界的难题之一,也是导致SCI治疗效果欠佳的原因。
     本研究旨在探讨热休克蛋白47(HSP47)在大鼠脊髓中的表达情况,揭示其在大鼠SCI中的作用,完善SCI损伤机制,同时对中药单体成分苦参素发挥治疗作用的机制进行研究。
     首先建立大鼠钳夹型SCI模型,然后通过不同时间点(3天、1周、3周、5周和8周)观察Basso, Beatlie, Bresnahan (BBB)评分,应用苏木精-伊红(HE)染色、尼氏染色、Masson染色及免疫组织化学染色等形态学技术,半定量逆转录聚合酶链式反应(RT-PCR)的分子生物学技术及蛋白质印迹(WB)的蛋白定量技术,对目的蛋白HSP47的空间和时间表达进行定性和定量分析,确定HSP47存在于大鼠脊髓中,且SCI后表达增加。说明HSP47参与到SCI的病理改变过程中,其在SCI胶质瘢痕形成中具有重要的作用,为SCI修复提供新的治疗靶点,开辟治疗SCI的新领域。
     在第8周给予苦参素(Oxymatrine)治疗后,通过对上述指标的检测,提示HSP47及瘢痕表达明显下降,说明苦参素对SCI具有治疗作用,其发挥治疗作用的机制可能是通过干预HSP47 mRNA的病理表达,进一步降低胶原表达治疗SCI,为苦参素应用于SCI领域奠定了理论基础。
     通过SCI后HSP47表达分析,对SCI的机制作了重要的补充和完善,为从基因及分子水平开展针对HSP47的治疗提供了直接的理论依据,为SCI的治疗提出了一个新的课题。
The acute spinal cord injury (SCI) incidence and the rate of disability ascend followed by the development of vehicle and increase of highrise building year by year. The SCI therapy appears urgent and significant. Uncounted scholars have tried to conquer this tough task. However, SCI mechanism is complicated, the therapeutic results are unsatisfactory. SCI includes primary injury and secondary physiopathologic changes. Secondary injury is the main factor in SCI. The physic barrier formed by glial scar is an important environmental factor, while the pathological foundation is hyperplasia of cells which are mainly astrocyte and over deposition of extracellular matrix (ECM). The collagen is the most important ingredient of ECM.
     Heat shock protein (HSP) 47 is a collagen-specific chaperone. It has been shown to be present in the endoplasmic reticulum (ER) and numerous studies have shown its expression in collagen-producing cells and tissues. HSP47 plays a key role in the processing, secretion, folding and assemble of collagen. HSP47 has a single substrate protein, collagen. HSP47 binds specifically to various types of collagens including types I~V in vitro. The biochemical properties, intracellular localization and tissue distribution of HSP47, suggest its role in post-transcriptional regulation of procollagens. Recent studies have convincingly shown a pathogenic role of HSP47 in the development and progression of various human and experimental fibrotic diseases. Therefore, HSP47 provides a selective target to manipulate collagen production.
     The oxymatrine is an anti-fibrotic traditional Chinese drug. It has been applied widespread in scar treatment. The therapeutic action is obviously, while the side effect is minute. To promote the traditional medicine, the study about the therapeutic mechanism of active ingredient monomer has been a hot subject of research in domestic and abroad.
     We used a clip-compression injury modle of spinal cord in rats, evaluated Basso, Beatlie, Bresnahan (BBB) Locomotor Rating Scale and applied Hematoxylin-Eosin (HE), Nissl staining, Masson staining, immunohistochemistry, Reverse Transcription Polymerase Chain Reaction (RT-PCR) and Western Blot techniques to analyze the space and time regularity of HSP47. At the same time, we observed the changes of these indexes after treatment with oxymatrine. We intend to perfect the SCI mechanism, explain the oxymatrine therapeutic mechanism, find a new SCI therapeutic target and open up a new SCI field.
     PartⅠ: Establishment of a clip-compression injury modle of spinal cord in rats
     Objective: To establish a reliable, reduplicate and detectable modle of SCI in rats to observe the behavior and pathological changes, found a base for subsequent research.
     Method: A clip-compression injury modle of spinal cord in rats was used. 54 Wistar rats were divided to normal group, sham-operated group, SCI group randomly. The sham-operated group only received T10 decompression laminectomy;the SCI group received T10 spinal cord injury. The BBB Locomotor Rating Scale were assessed at 3 days and every week after SCI. They were sacrificed to study the morphous of spine and cells using HE staining, the changes of Nissl's body using Nissl staining, GFAP and NF using immunohistochemistry technique at 1, 3, 5 and 8 weeks.
     Results: The Wistar rats BBB scores was 21 in normal and sham-operated group, while the BBB scores was (0.67±0.48) in SCI group at 3 days. The gray matter distribution in spinal cord was typical butterfly shape in normal and sham-operated group. The demarcation of white and gray matter was clear. The cellular morphous was normal and the Nissl's body in cytoplasm was granular. While the normal spinal morphous disappeared, cavitation formed, the demarcation of white and gray matter vanished, the cellular body was smaller, the cytoplasm condensed, the Nissl's body was ambiguity, reduced, sparse and even vanished in SCI group. The expression of GFAP in normal and sham-operated group was increased, while the expression of NF was decreased. But, the expression of GFAP after SCI was increased significantly, while the expression of NF was decreased. Compared with these at 1 and 3 weeks, the expression of GFAP was increased obviously, while the expression of NF was decreased at 5 weeks after injury.
     Conclusions: A clip-compression injury modle of spinal cord in rats is established successful.
     PartⅡ: HSP47 increased in rats with acute SCI
     Objective: To investigate the expression and tanscription of collagen and HSP47 in rats
     with acute SCI. Method: Wistar rats modle of SCI established by clip-compression, setting normal rats and those receiving sham-operated as controls. 90 Wistar rats were divided to normal group, sham-operated group and SCI group randomly. BBB Locomotor Rating Scale were assessed at 3 days and every week after SCI. 9 animals each group were sacrificed to analyse the changes of collagen and HSP47 using Masson staining, immunohistochemistry, semi-quantitative RT-PCR and Western Blot technique at 1, 3 and 5 weeks. Type I collagen, typeⅣcollagen and HSP47 mRNA tanscription levels in 3 rats each group were determined by semi-quantitative RT-PCR 8 weeks after SCI respectively.
     Results: The Wistar rats BBB scores were 21 in normal and sham-operated group, while the BBB scores were (0.70±0.46) in SCI group at 3 days. The expression of collagen and HSP47 were increased significantly after lesion. Compared with these at 1 and 3 weeks, the expression of collagen and HSP47 were increased obviously at 5 weeks after injury. However, type I collagen, typeⅣcollagen and HSP47 mRNA tanscription levels increased significantly, especially typeⅣcollagen and HSP47 mRNA tanscription levels at the 8th week after SCI.
     Conclusions: The expressions of collagen and HSP47 increase after SCI, mainly distribute around indiscriminate hyperplastic blood vessel and spinal dura mater in rats. The tanscription levels of collagen and HSP47 mRNA of Wistar rats are up-regulated after SCI and last for 8 weeks. HSP47 increases after SCI, indicating that HSP47 might be involved in the pathogenic change of SCI.
     PartⅢ: The study about the therapeutic mechanism of oxymatrine in rats with acute SCI
     Objective: To discuss the therapeutic effect and mechanism of oxymatrine in rats with acute SCI.
     Method: A modle of clip-compression injury of spinal cord in rats was used. 45 Wistar rats were divided to normal group, sham-operated group, SCI group, control group and therapeutic group randomly. They received intraperitoneal injection with oxymatrine 150 mg/(kg·d) every day after SCI in therapeutic group, while those received intraperitoneal injection with sodium chloride in the equivalent dosage in control group. BBB Locomotor Rating Scale were assessed at 3 days and every week after SCI. They were sacrificed to study the morphous of spine and cells, the changes of Nissl's body, collagen, GFAP, NF and HSP47 using HE, Nissl staining, Masson staining, immunohistochemistry, RT-PCR and Western Blot technique at 8 weeks.
     Results: Wistar rats BBB scores were 21 in normal and sham-operated group, while the BBB scores were (3.56±1.29) in SCI group, (3.22±1.52) in control group, (4.56±1.20) in therapeutic group at 1 week. The normal spinal morphous disappeared, cavitation formed, the demarcation of white and gray matter vanished, the cellular body was smaller, the cytoplasm condensed, the Nissl's body was ambiguity, reduced, sparse and even vanished in control group. Compared with those in control group, there were not obvious in therapeutic group. The expressions of GFAP and HSP47 after SCI were increased significantly, while the expression of NF was decreased. The expressions of GFAP and HSP47 in therapeutic group were reduced obviously, while the expression of NF was raised.
     Conclusions: SCI in Wistar rats can be treated with oxymatrine. It probably suppresses the expression of HSP47, and reduces the formation of collagen.
引文
[1] Jackson AB, Dijkers M, Devivo MJ, et al. A demographic profile of new traumatic spinal cord injuries: change and stability over 30 years [J]. Arch Phys Med Rehabil, 2004, 85(11):1740-1748.
    [2] Schwab JM, Brechtel K, Mueller CA, et al. Experimental strategies to promote spinal cord regeneration–an integrative perspective [J]. Prog Neurobiol, 2006, 78(2): 91-116.
    [3] Tator CH. Update on the pathophysiology and pathology of acute spinal cord injury [J]. Brain Pathol, 1995; 5(4): 407-413.
    [4] Kasai Y, Kawakita E, Morishita K, et al. Cordectomy for post-traumatic syringomyelia [J]. Acta Neurochir (Wien), 2008, 150(1):83-86.
    [5] Nielsen OA, Biering-S?rensen F, Mosdal C. Post-traumatic syringomyelia [J]. Ugeskr Laeger, 2003, 165(29):2879-2882.
    [6] Amar AP, Levy ML. Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury [J]. Neurosurgery, 1999, 44(5):1027-1039.
    [7] Coleman WP, Geisler FH. Injury severity as primary predictor of outcome in acute spinal cord injury:retrospective results from a large multicenter clinical trial [J]. Spine J, 2004, 4(4):373-378.
    [8] Licina P, Nowitzke AM. A pproach and considerations regarding the patient with spinal injury [J]. Injury, 2005, 36(Suppl 2): B2-12.
    [9] Privat A. Pathophysiology and treatment of spinal cord injury [J]. Bull Acad Natl Med, 2005, 189(6):1109-1117.
    [10] Kwon BK, Tetzlaff W, Grauer JN, et al. Pathophysiology and pharmacologic treatment of acute spinal cord injury [J]. Spine J, 2004, 4(4): 451-464.
    [11] Hulsebosch CE. Recent advances in pathophysiology and treatment of spinal cord injury [J]. Adv Physiol Educ, 2002, 26(1-4): 238-255.
    [12] Emery E, Aldana P, Bunge MB, et al. Apoptosis after traumatic human spinal cord injury [J]. J Neurosurg, 1998, 89(6):911-920.
    [13] Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesionedspinal cord [J]. Physiol Rev, 1996, 76(2):319-370.
    [14] Buss A, Pech K, Kakulas BA, et al. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury [J]. Brain, 2007, 130(Pt 4):940-953.
    [15] Kakulas BA. A review of the neuropathology of human spinal cord injury with emphasis on special features [J]. J Spinal Cord Med, 1999, 22(2):119-124.
    [16] Tator CH, Koyanagi I. Vascular mechanisms in the pathophysiology of human spinal cord injury [J]. J Neurosurg, 1997, 86(3):483-492.
    [17] Okada M, Miyamoto O, Shibuya S, et al. Expression and role of type I collagen in a rat spinal cord contusion injury model [J]. Neurosci Res, 2007, 58(4): 371-377.
    [18] Ishida Y, Kubota H, Yamamoto A, et al. Type I collagen in Hsp47-null cells is aggregated in endoplasmic reticulum and deficient in N-propeptide processing and fibrillogenesis [J]. Mol Biol Cell, 2006, 17(5): 2346-2355.
    [19] Matsuoka Y, Kubota H, Adachi E, et al. Insufficient folding of type IV collagen and formation of abnormal basement membrane-like structure in embryoid bodies derived from hsp47-null embryonic stem cells [J]. Mol Biol Cell, 2004, 15(10): 4467-4475.
    [20] Nagai N, Hosokawa M, Itohara S, et al. Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with defects in collagen biosynthesis [J]. J Cell Biol, 2000, 150(6): 1499-1506.
    [21] Nakai A, Satoh M, Hirayoshi K, Nagata K. Involvement of the stress protein HSP47 in procollagen processing in the endoplasmic reticulum [J]. J Cell Biol, 1992, 117(4): 903-914.
    [22] Obayashi K, Akamatsu H, Okano Y, et al. Exogenous nitric oxide enhances the synthesis of type I collagen and heat shock protein 47 by normal human dermal fibroblasts [J]. J Dermatol Sci, 2006, 41(2): 121-126.
    [23] Kakugawa T, Mukae H, Hayashi T, et al. Expression of HSP47 in usual interstitial pneumonia and nonspecific interstitial pneumonia [J]. Respir Res, 2005, 6:57.
    [24] Ohashi S, Abe H, Takahashi T, et al. Advanced glycation end products increase collagen-specific chaperone protein in mouse diabetic nephropathy [J]. J Biol Chem,2004, 279(19): 19816-19823.
    [25] Pan H, Halper J. Regulation of heat shock protein 47 and type I procollagen expression in avian tendon cells [J]. Cell Tissue Res, 2003, 311(3): 373-382.
    [26] Wang ZL, Inokuchi T, Ikeda H, et al. Collagen-binding heat shock protein HSP47 expression during healing of fetal skin wounds [J]. Int J Oral Maxillofac Surg, 2002, 31(2): 179-184.
    [27] Razzaque MS, Taguchi T. The possible role of colligin/HSP47, a collagen-binding protein, in the pathogenesis of human and experimental fibrotic diseases [J]. Histol Histopathol, 1999, 14(4): 1199-1212.
    [28] Lonjon N, Kouyoumdjian P, Prieto M, et al. Early functional outcomes and histological analysis after spinal cord compression injury in rats [J].J Neurosurg Spine, 2010, 12(1):106-113.
    [29] Hawryluk GW, Rowland J, Kwon BK, et al. Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury [J]. Neurosurg Focus, 2008, 25(5):E14.
    [30] Fumagalli F, Madaschi L, Brenna P, et al. Single exposure to erythropoietin modulates Nerve Growth Factor expression in the spinal cord following traumatic injury: Comparison with methylprednisolone [J]. Eur J Pharmacol, 2008, 578(1): 19-27.
    [31] Vitellaro-Zuccarello L, Mazzetti S, Madaschi L, et al. Erythropoietin-mediated preservation of the white matter in rat spinal cord injury [J]. Neuroscience, 2007, 144(3): 865-877.
    [32] Goldman SA, Nedergaard M. Erythropoietin strikes a new cord [J]. Nat Med, 2002, 8(8): 785-787.
    [33] Gorio A, Gokmen N, Erbayraktar S, et al. Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma [J]. Proc Natl Acad Sci USA, 2002, 99(14): 9450-9455.
    [34] Beattie MS. Inflammation and apoptosis:linked therapeutic targets in spinal cord injury [J]. Trends Mol Med, 2004, 10(12): 580-583.
    [35] Wu XH, Yang SH, Duan DY, et al. Anti-apoptotic effect of insulin in the control of cell death and neurologic deficit after acute spinal cord injury in rats [J]. J Neurotrauma, 2007, 24(9): 1502-1512.
    [36] Genovese T, Mazzon E, Esposito E, et al. Beneficial effects of FeTSPP, a peroxynitrite decomposition catalyst, in a mouse model of spinal cord injury [J]. Free Radic Bio Med, 2007, 43(5): 763-780.
    [37] Kwon BK, Mann C, Sohn HM, et al. Hypothermia for spinal cord injury [J]. Spine J, 2008, 8(6): 859-874.
    [38] Giménezy Ribotta M , Gaviria M, Menet V, et al. Strategies for regeneration and repair in spinal cord traumatic injury [J]. Prog Brain Res, 2002, 137: 191-212.
    [39] Ferraro GB. Refining our understanding of NgR1 function during myelin inhibition [J]. J Neurosci, 2007, 27(43): 11451-11452
    [40] Willerth SM, Sakiyama-Elbert SE. Cell therapy for spinal cord regeneration [J]. Adv Drug Deliv Rev, 2008, 60(2): 263-276.
    [41] Tsai EC, Dalton PD, Shoichet MS, et al. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection [J]. Biomaterials, 2006, 27(3): 519-533.
    [42] Menei P, Montero-Menei C, Whittemore SR, et al. Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rats pinal cord [J]. Eur J Neurosci, 1998, 10(2): 607-621.
    [43] Rhrich-Haddout F, Kassar-Duchossoy L, Bauchet L, et al. Alpha-motoneurons of the injured cervical spinal cord of the adult rat can reinnervate the biceps brachii muscle by regenerating axons through peripheral nerve bridges: combined ultrastructural and retrograde axonal tracing study [J]. J Neurosci Res, 2001, 64(5): 476-486.
    [44] Deleyrolle L, Marchal-Victorion S, Dromard C, et al. Exogenous and fibroblast growth factor 2/epidermal growth factor-regulated endogenous cytokines regulate neural precursor cell growth and differentiation [J]. Stem Cells, 2006, 24(3): 748-762.
    [45] Gage FH. Mammalian neural stem cells [J]. Science, 2000, 287(5457): 1433-1438.
    [46] Dromard C, Guillon H, Rigau V, et al. Adult human spinal cord harbors neuralprecursor cells that generate neurons and glial cells in vitro [J]. J Neurosci Res, 2008, 86(9): 1916-1926.
    [47] Coutts M, Keirstead HS. Stem cells for the treatment of spinal cord injury [J]. Exp Neurol, 2008, 209(2): 368-377.
    [48] Zietlow R, Lane EL, Dunnett SB, et al. Human stem cells for CNS repair [J]. Cell Tissue Res, 2008, 331(1): 301-322.
    [49] Kim BG, Hwang DH, Lee SI, et al. Stem cell-based cell therapy for spinal cord injury [J]. Cell Transplant, 2007, 16(4): 355-364.
    [50] Privat A. Stem cells and neural repair [J]. Bull Acad Natl Med, 2005, 189(4): 605-613.
    [51] Féron F. Current cell therapy strategies for repairing the central nervous system [J]. Rev Neurol (Paris), 2007, 163 Spec No 1: 3S23-30.
    [52] Polentes J, Gauthier P. Transplantation of olfactory ensheathing cells after spinal injury. II-Experimental variability and clinical perspectives [J]. Neurochirurgie, 2005, 51(6): 563-576.
    [53] Polentes J, Gauthier P. Transplantation of olfactory glial cells after spinal injury. I-From experimental data to repair strategy after central injury [J]. Neurochirurgie, 2005, 51(5): 421-434.
    [54] Ridet JL, Pencalet P, Belcram M, et al. Effects of spinal cord X-irradiation on the recovery of paraplegic rats [J]. Exp Neurol, 2000, 161(1): 1-14.
    [55] Giménezy Ribotta M, Rajaofetra N, Morin-Richaud C, et al. Oxysterol (7 beta-hydroxycholesteryl-3-oleate) promotes serotonergic reinnervation in the lesioned rat spinal cord by reducing glial reaction [J]. J Neurosci Res, 1995, 41(1): 79-95.
    [56] Iaci JF, Vecchione AM, Zimber MP, et al. Chondroitin sulfate proteoglycans in spinal cord contusion injury and the effects of chondroitinase treatment [J]. J Neurotrauma, 2007, 24(11): 1743-1759.
    [57] Vavrek R, Pearse DD, Fouad K. Neuronal populations capable of regeneration following a combined treatment in rats with spinal cord transection [J]. J Neurotrauma, 2007, 24(10): 1667-1673.
    [58] Giszter SF. Spinal cord injury:present and future therapeutic devices and prostheses [J].Neurotherapeutics, 2008, 5(1): 147-162.
    [59] Sakas DE, Panourias IG, Simpson BA, et al. An introduction to operative neuromodulation and functional neuroprosthetics,the new frontiers of clinical neuroscience and biotechnology [J]. Acta Neurochi Suppl, 2007, 97(Pt 1): 3-10.
    [60] Creasey GH, Ho CH, Triolo RJ, et al. Clinical applications of electrical stimulation after spinal cord injury [J]. J Spinal Cord Med, 2004, 27(4): 365-375.
    [61] Sadowsky CL. Electrical stimulation in spinal cord injury [J]. Neuro Rehabilitation, 2001, 16(3): 165-169.
    [62] Birbaumer N, Cohen LG. Brain-computer interfaces:communication and restoration of movement in paralysis [J]. J Physiol, 2007,579(Pt 3): 621-636.
    [63] Dobkin BH. Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation [J]. J Physiol, 2007, 579(Pt 3): 637-642.
    [64] Mason SG, Bashashati A, Fatourechi M, et al. A comprehensive survey of brain interface technology designs [J]. Ann Biomed Eng, 2007, 35(2):137-169.
    [65] Wolpaw JR. Brain-computer interfaces as new brain output pathways [J]. J Physiol, 2007, 579(Pt 3): 613-619.
    [66] Santhanam G, Ryu SI, Yu BM, et al. A high-performance brain-computer interface [J]. Nature, 2006, 442(7099): 195-198.
    [67] Schalk G,Kubanek J,Miller KJ, et al. Decoding two-dimensional movement trajectories using electrocorticographic signals in humans [J]. J Neural Eng, 2007, 4(3):264-275.
    [68] Bauernfeind G, Leeb R, Wriessnegger SC, et al. Development, set-up and first results for a one-channel near-infrared spectroscopy system [J]. Biomed Tech (Berl), 2008, 53(1): 36-43.
    [69] Cincotti F, Mattia D, Aloise F, et al. High-resolution EEG techniques for brain-computer interface applications [J]. J Neurosci Methods, 2008, 167(1): 31-42.
    [70] Kurkinen M, Kurkinen M, Taylor A, et al. Cell surface-associated proteins which bind native type IV collagen or gelatin [J]. J Biol Chem, 1984, 259(9): 5915-5922.
    [71] Hirayoshi K, Kudo H, Takechi H, et al. HSP47: a tissue-specific, transformation-sensitive, collagen-binding heat shock protein of chicken embryofibroblasts [J]. Mol Cell Biol, 1991, 11(8): 4036-4044.
    [72] Hart DA, Reno C, Hellio Le Graverand MP, et al. Expression of heat shock protein 47(Hsp47) mRNA levels in rabbit connective tissues during the response to injury and in pregnancy [J]. Biochem Cell Biol, 2000, 78(4): 511-518.
    [73] Nagata K. Hsp47: a collagen-specific molecular chaperone [J]. Trends Biochem Sci, 1996, 21(1): 23-26.
    [74] Lamande SR, Bateman JF. Procollagen folding and assembly: the role of endoplasmic reticulum enzymes and molecular chaperones [J]. Semin Cell Dev Biol, 1999, 10(5): 455-464.
    [75] Hendershot LM, Bulleid NJ. Protein-specific chaperones: the role of hsp47 begins to gel [J]. Curr Biol, 2000, 10(24): R912-R915.
    [76] Sauk JJ, Nikitakis N, Siavash H. Hsp47 a novel collagen binding serpin chaperone, autoantigen and therapeutic target [J]. Front Biosci, 2005, 10: 107-118.
    [77] Prockop DJ, Fertala A. The collagen fibril: the almost crystalline structure [J]. J Struct Biol, 1998, 122(1-2): 111-118.
    [78] Kivirikko KI, Pihlajaniemi T. Collagen hydroxylases and the protein disulfide isomerase subunit of prolyl 4-hydroxylases [J]. Adv Enzymol Relat Areas Mol Biol, 1998, 72: 325-398.
    [79] Smith-Mungo LI, Kagan HM. Lysyl oxidase: properties, regulation and multiple functions in biology [J]. Matrix Biol, 1998, 16(7): 387-398.
    [80] Kivirikko KI, Myllyharju J. Prolyl 4-hydroxylases and their protein disulfide isomerase subunit [J]. Matrix Biol, 1998, 16(7): 357-368.
    [81] Kagan HM, Li W. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell [J]. J Cell Biochem, 2003, 88(4): 660-672.
    [82] Myllyharju J. Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis [J]. Matrix Biol, 2003, 22(1): 15-24.
    [83] Wilson R, Lees JF, Bulleid NJ. Protein disulfide isomerase acts as a molecular chaperone during the assembly of procollagen [J]. J Biol Chem, 1998, 273(16): 9637-9643.
    [84] Tasab M, Batten MR, Bulleid NJ. Hsp47: a molecular chaperone that interacts with and stabilizes correctly-folded procollagen [J]. EMBO J, 2000, 19(10): 2204-2211.
    [85] Hulmes DJ. Building collagen molecules, fibrils, and suprafibrillar structures [J]. J Struct Biol, 2002, 137: 2-10.
    [86] Taguchi T, Razzaque MS. The collagen-specific molecular chaperone HSP47: is there a role in fibrosis? [J]Trends Mol Med, 2007, 13(2): 45-53.
    [87] Nagata K. HSP47 as a collagen-specific molecular chaperone: function and expression in normal mouse development [J]. Semin Cell Dev Biol, 2003, 14(5): 275-282.
    [88] Koide T, Asada S, Nagata K. Substrate recognition of collagen-specific molecular chaperone HSP47. Structural requirements and binding regulation [J]. J Biol Chem, 1999, 274(49): 34523-34526.
    [89] Satoh M, Hirayoshi K, Yokota S, et al. Intracellular interaction of collagen-specific stress protein HSP47 with newly synthesized procollagen [J]. J Cell Biol, 1996, 133(2): 469-483.
    [90] Saga S, Nagata K, Chen WT, et al. pH-Dependent function, purification, and intracellular location of a major collagen-binding glycoprotein [J]. J Cell Biol, 1987, 105(1): 517-527.
    [91] Buccione R, Geuze HJ, Mironov AA, et al. Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell, 1998, 95(7): 993-1003.
    [92] Thomson CA, Ananthanarayanan VS. Structure-function studies on hsp47: pH-dependent inhibition of collagen fibril formation in vitro [J]. Biochem J, 2000, 349(3): 877-883.
    [93] Macdonald JR, Bachinger HP. HSP47 binds cooperatively to triple helical type I collagen but has little effect on the thermal stability or rate of refolding [J]. J Biol Chem, 2001, 276(27): 25399-25403.
    [94] Leikina E, Mertts MV, Kuznetsova N, et al. Type I collagen is thermally unstable at body temperature [J]. Proc Natl Acad Sci USA, 2002, 99(3): 1314-1318.
    [95] Natsume T, Koide T, Yokota S, et al. Interactions between collagen-binding stressprotein HSP47 and collagen. Analysis of kinetic parameters by surface plasmon resonance biosensor [J]. J Biol Chem, 1994, 269(49): 31224-31228.
    [96] Sauk JJ, Smith T, Norris K, et al. Hsp47 and the translation-translocation machinery cooperate in the production of alpha 1(I) chains of type I procollagen [J]. J Biol Chem, 1994, 269(6): 3941-3946.
    [97] Koide T, Aso A, Yorihuzi T, et al. Conformational requirements of collagenous peptides for recognition by the chaperone protein HSP47 [J]. J Biol Chem, 2000, 275(36): 27957-27963.
    [98] Shah NK, Ramshaw JA, Kirkpatrick A, et al. A host-guest set of triple-helical peptides: stability of Gly-X-Y triplets containing common nonpolar residues [J]. Biochemistry, 1996, 35(32): 10262-10268.
    [99] Shah NK, Sharma M, Kirkpatrick A, et al. Gly-Gly-containing triplets of low stability adjacent to a type III collagenepitope [J]. Biochemistry, 1997, 36(19): 5878-5883.
    [100] Koide T, Takahara Y, Asada S, et al. Xaa-Arg-Gly triplets in the collagen triple helix are dominant binding sites for the molecular chaperone HSP47 [J]. J Biol Chem, 2002, 277(8): 6178-6182.
    [101] Thomson CA, Tenni R, Ananthanarayanan VS. Mapping Hsp47 binding site(s) using CNBr peptides derived from type I and type II collagen [J]. Protein Sci, 2003, 12(8): 1792-1800.
    [102] Tasab M, Jenkinson L, Bulleid NJ. Sequence-specific recognition of collagen triple helices by the collagen-specific molecular chaperone HSP47 [J]. J Biol Chem, 2002, 277(38): 35007-35012.
    [103] Koide T, Asada S, Takahara Y, et al. Specific recognition of the collagen triple helix by chaperone HSP47: minimal structural requirement and spatial molecular orientation [J]. J Biol Chem, 2006, 281(6): 3432-3438.
    [104] Koide T, Nishikawa Y, Asada S, et al. Specific recognition of the collagen triple helix by chaperone HSP47.II.The HSP47-binding structural motif in collagens and related proteins [J]. J Biol Chem, 2006, 281: 11177-11185.
    [105] Marutani T, Yamamoto A, Nagai N, et al. Accumulation of type IV collagen in dilatedER leads to apoptosis in Hsp47-knockout mouse embryos via induction of CHOP [J]. J Cell Sci, 2004, 117(24): 5913-5922.
    [106] Arthur MJ. Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis [J]. Am J Physiol Gastrointest Liver Physiol, 2000, 279(2): G245-249.
    [107] Lindquist JN, Marzluff WF, Stefanovic B. Fibrogenesis. III. Posttranscriptional regulation of type I collagen [J]. Am J Physiol Gastrointest Liver Physiol, 2000, 279(3): G471-476.
    [108] Wells RG. Fibrogenesis. V. TGF-b signaling pathways [J]. Am J Physiol Gastrointest Liver Physiol, 2000, 279(5): G845-850.
    [109] Razzaque MS, Taguchi T. Pulmonary fibrosis: cellular and molecular events [J]. Pathol Int, 2003, 53(3): 133-145.
    [110] Hosokawa N, Hohenadl C, Satoh M, et al. HSP47, a collagen-specific molecular chaperone, delays the secretion of type III procollagen transfected in human embryonic kidney cell line 293: a possible role for HSP47 in collagen modification [J]. J Biochem, 1998, 124(3): 654-662.
    [111] Nagata K. Expression and function of heat shock protein 47: a collagen-specific molecular chaperone in the endoplasmic reticulum [J]. Matrix Biol, 1998, 16(7): 379-386.
    [112] Sasaki H, Sato T, Yamauchi N, et al. Induction of heat shock protein 47 synthesis by TGF-b and IL-1 beta via enhancement of the heat shock element binding activity of heat shock transcription factor 1 [J]. J Immunol, 2002, 168(10): 5178-5183.
    [113] Takechi H, Hirayoshi K, Nakai A, et al. Molecular cloning of a mouse 47-kDa heat-shock protein (HSP47), a collagen-binding stress protein and its expression during the differentiation of F9 teratocarcinoma cells [J]. Eur J Biochem, 1992, 206(2): 323-329.
    [114] Takechi H, Hosokawa N, Hirayoshi K, et al. Alternative 5 splice site selection induced by heat shock [J]. Mol Cell Biol, 1994, 14(1): 567-575.
    [115] Hirata H, Yamamura I, Yasuda K, et al. Separate cis-acting DNA elements control cell type- and tissue-specific expression of collagen binding molecular chaperone HSP47[J]. J Biol Chem, 1999, 274(50): 35703-35710.
    [116] Yasuda K, Hirayoshi K, Hirata H, et al. The Kruppel-like factor Zf9 and proteins in the Sp1 family regulate the expression of HSP47, a collagen-specific molecular chaperone [J]. J Biol Chem, 2002, 277(47): 44613-44622.
    [117] Razzaque MS, Soegiarto DW, Chang D, et al. Conditional deletion of Indian hedgehog from collagen type 2alpha1-expressing cells results in abnormal endochondral bone formation [J]. J Pathol, 2005, 207(4): 453-461.
    [118] Yamamura I, Hirata H, Hosokawa N, et al. Transcriptional activation of the mouse HSP47 gene in mouse osteoblast MC3T3-E1 cells by TGF-beta 1 [J]. Biochem Biophys Res Commun, 1998, 244(1): 68-74.
    [119] Murakami S, Toda Y, Seki T, et al. Heat shock protein (HSP) 47 and collagen are upregulated during neointimal formation in the balloon-injured rat carotid artery [J]. Atherosclerosis, 2001, 157(2): 361-368.
    [120] Razzaque MS, Ahmed AR. Collagens, collagen-binding heat shock protein 47 and transforming growth factor-beta 1 are induced in cicatricial pemphigoid: possible role(s) in dermal fibrosis [J]. Cytokine, 2002, 17(6): 311-316.
    [121] Razzaque MS, Foster CS, Ahmed AR. Role of collagen-binding heat shock protein 47 and transforming growth factor-beta 1 in conjunctival scarring in ocular cicatricial pemphigoid [J]. Invest Ophthalmol Vis Sci, 2003, 44(4): 1616-1621.
    [122] Razzaque MS, Ahmed BS, Foster CS, et al. Effects of IL-4 on conjunctival fibroblasts: possible role in ocular cicatricial pemphigoid [J]. Invest Ophthalmol Vis Sci, 2003, 44(8): 3417-3423.
    [123] Razzaque MS, Le VT, Taguchi T. Heat shock protein 47 and renal fibrogenesis [J]. Contrib Nephrol, 2005, 148: 57-69.
    [124] Wang JF, Olson ME, Ma L, et al. Connective tissue growth factor siRNA modulates mRNA levels for a subset of molecules in normal and TGF-beta 1-stimulated porcine skin fibroblasts [J]. Wound Repair Regen, 2004, 12(2): 205-216.
    [125] Liu D, Razzaque MS, Cheng M, et al. The renal expression of heat shock protein 47 and collagens in acute and chronic experimental diabetes in rats [J]. Histochem J, 2001,33(11-12): 621-628.
    [126] Razzaque MS, Kumatori A, Harada T, et al. Coexpression of collagens and collagen-binding heat shock protein 47 in human diabetic nephropathy and IgA nephropathy [J]. Nephron, 1998, 80(4): 434-443.
    [127] Rocnik E, Chow LH, Pickering JG. Heat shock protein 47 is expressed in fibrous regions of human atheroma and is regulated by growth factors and oxidized low-density lipoprotein [J]. Circulation, 2000, 101(11): 1229-1233.
    [128] Naitoh M, Hosokawa N, Kubota H, et al. Upregulation of HSP47 and collagen type III in the dermal fibrotic disease, keloid [J]. Biochem Biophys Res Commun, 2001, 280(5): 1316-1322.
    [129] Brown KE, Broadhurst KA, Mathahs MM, et al. Expression of HSP47, a collagen-specific chaperone, in normal and diseased human liver [J]. Lab Invest, 2005, 85(6): 789-797.
    [130] Moriyama T, Kawada N, Ando A, et al. Up-regulation of HSP47 in the mouse kidneys with unilateral ureteral obstruction [J]. Kidney Int, 1998, 54(1): 110-119.
    [131] Razzaque MS, Nazneen A, Taguchi T. Immunolocalization of collagen and collagen-binding heat shock protein 47 in fibrotic lung diseases [J]. Mod Pathol, 1998, 11(12): 1183-1188.
    [132] Kuroda K, Tajima S. Proliferation of HSP47-positive skin fibroblasts in dermatofibroma [J]. J Cutan Pathol, 2008, 35(1): 21-26.
    [133] Howard JC, Varallo VM, Ross DC, et al. Wound healing-associated proteins hsp47 and fibronectin are elevated in Dupuytren’s contracture [J]. J Surg Res, 2004, 117(2): 232-238.
    [134] Hamilton AM, Heikkila JJ. Examination of the stress-induced expression of the collagen binding heat shock protein, HSP47, in Xenopus laevis cultured cells and embryos [J]. Comp Biochem Physiol A Mol Integr Physiol, 2006, 143(1): 133-141.
    [135] De Young LX, Bella AJ, O'Gorman DB, et al. Protein biomarker analysis of primary Peyronie's disease cells [J]. J Sex Med. 2010, 7(1 Pt 1): 99-106.
    [136] Kaiser WJ, Holbrook LM, Tucker KL, et al. A functional proteomic method for theenrichment of peripheral membrane proteins reveals the collagen binding protein Hsp47 is exposed on the surface of activated human platelets [J]. J Proteome Res. 2009, 8(6): 2903-2914.
    [137] Liu D, Razzaque MS, Nazneen A, et al. Role of heat shock protein 47 on tubulointerstitium in experimental radiation nephropathy [J]. Pathol Int, 2002, 52(5-6): 340-347.
    [138] Brown KE, Broadhurst KA, Mathahs MM, et al. Expression of HSP47, a collagen-specific chaperone, in normal and diseased human liver [J]. Laboratory Investigation, 2005, 85(6): 789-797.
    [139] Razzaque MS, Hossain MA, Kohno S, et al. Bleomycin-induced pulmonary fibrosis in rat is associated with increased expression of collagen-binding heat shock protein (HSP)47 [J]. Virchows Arch, 1998, 432(5): 455-460.
    [140] Hagiwara S, Iwasaka H, Matsumoto S, et al. Coexpression of HSP47 gene and type I and type III collagen genes in LPS-induced pulmonary fibrosis in rats [J]. Lung, 2007, 185(1): 31-37.
    [141] Hagiwara S, Iwasaka H, Matsumoto S, et al. Association between heat stress protein 70 induction and decreased pulmonary fibrosis in an animal model of acute lung injury [J]. Lung, 2007, 185(5): 287-293.
    [142] Kakugawa T, Yokota SI, Mukae H, et al. High serum concentrations of autoantibodies to HSP47 in nonspecific interstitial pneumonia compared with idiopathic pulmonary fibrosis [J]. BMC Pulm Med, 2008, 8(1): 23.
    [143] Yang SF, Tsai CH, Chang YC. The upregulation of heat shock protein 47 expression in human buccal fibroblasts stimulated with arecoline [J]. J Oral Pathol Med, 2008, 37(4): 206-210.
    [144] Yoshioka S, Mukae H, Ishii H, et al. Alpha-defensin enhances expression of HSP47 and collagen-1 in human lung fibroblasts [J]. Life Sci, 2007, 80(20): 1839-1845.
    [145] Chen L, Wang T, Wang X, et al. Blockade of advanced glycation end product formation attenuates bleomycin-induced pulmonary fibrosis in rats [J]. Respir Res. 2009, 10: 55.
    [146] Isoda K, Kagaya N, Akamatsu S, et al. Hepatoprotective effect of vitamin B12 ondimethylnitrosamine-induced liver injury [J]. Biol Pharm Bull. 2008, 31(2): 309-311.
    [147] Kim J, Seok YM, Jung KJ, et al. Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice [J]. Am J Physiol Renal Physiol. 2009, 297(2): F461-470.
    [148] Hsu YC, Wang LF, Chien YW, et al. Induction of TIMP-1 and HSP47 synthesis in primary keloid fibroblasts by exogenous nitric oxide [J]. J Dermatol Sci, 2007, 45(1): 37-44.
    [149] Hsu YC, Wang LF, Chien YW. Nitric oxide in the pathogenesis of diffuse pulmonary fibrosis [J]. Free Radic Biol Med, 2007, 42(5): 599-607.
    [150] Goulet S, Bihl MP, Gambazzi F, et al. Opposite effect of corticosteroids and long-acting beta(2)-agonists on serum- and TGF-beta(1)-induced extracellular matrix deposition by primary human lung fibroblasts [J]. J Cell Physiol, 2007, 210(1): 167-176.
    [151] Saha SK, Ghosh P, Bhattacharya S, et al. Procollagen synthesis is increased in hypothyroid rat ovary by a parallel and compensatory pathway [J]. Cell Physiol Biochem, 2007, 19(5-6): 313-322.
    [152] Ogawa Y, Razzaque MS, Kameyama K, et al. Role of heat shock protein 47, a collagen-binding chaperone, in lacrimal gland pathology in patients with cGVHD [J]. Invest Ophthalmol Vis Sci, 2007, 48(3): 1079-1086.
    [153] Ogawa Y, Shimmura S, Kawakita T, et al. Epithelial mesenchymal transition in human ocular chronic graft-versus-host disease [J]. Am J Pathol. 2009, 175(6): 2372-2381.
    [154] Uehara M, Inokuchi T, Tobita T, et al. Expression of heat shock protein 47 in the fibrous tissue adjacent to mouse tumour subjected to photodynamic therapy [J]. Oral Oncol, 2007, 43(8): 804-810.
    [155] Yasuda Y, Ohtomo E, Tsukuba T, et al. Carbon dioxide laser irradiation stimulates mineralization in rat dental pulp cells [J]. Int Endod J. 2009, 42(10): 940-946.
    [156] Peranteau WH, Zhang L, Muvarak N, et al. IL-10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation [J]. J Invest Dermatol, 2008, 128(7): 1852-1860.
    [157] van de Bovenkamp M, Groothuis GM, Meijer DK, et al. Liver slices as a model to study fibrogenesis and test the effects of anti-fibrotic drugs on fibrogenic cells in human liver [J]. Toxicol In Vitro, 2008, 22(3): 771-778.
    [158] Swaney JS, Moreno KM, Gentile AM, et al. Sphingosine-1-phosphate (S1P) is a novel fibrotic mediator in the eye [J]. Exp Eye Res, 2008, 87(4): 367-375.
    [159] Kariyawasam HH, Aizen M, Barkans J, et al. Remodeling and airway hyperresponsiveness but not cellular inflammation persist after allergen challenge in asthma [J]. Am J Respir Crit Care Med, 2007, 175(9): 896-904.
    [160] Sakairi T, Hiromura K, Yamashita S, et al. Nestin expression in the kidney with an obstructed ureter [J]. Kidney Int, 2007, 72(3): 307-318.
    [161] Nieto N, Rojkind M. Repeated whiskey binges promote liver injury in rats fed a choline-deficient diet [J]. J Hepatol, 2007, 46(2): 330-339.
    [162] Brown SA, Farkas JP, Arnold C, et al. Heat shock proteins 47 and 70 expression in rodent skin model as a function of contact cooling temperature: Are we overcooling our target? [J]. Lasers Surg Med. 2007, 39(6): 504-512.
    [163] Kuroda K, Tsukifuji R, Shinkai H. Increased expression of heat-shock protein 47 is associated with overproduction of type I procollagen in systemic sclerosis skin fibroblasts [J]. J Invest Dermatol, 1998, 111(6): 1023-1028.
    [164] Hattori T, Fujisawa T, Sasaki K, et al. Isolation and characterization of a rheumatoid arthritis-specific antigen (RA-A47) from a human chondrocytic cell line (HCS-2/8) [J]. Biochem Biophys Res Commun, 1998, 245(3): 679-683.
    [165] Chen JJ, Zhao S, Cen Y, et al. Effect of heat shock protein 47 on collagen accumulation in keloid fibroblast cells [J]. Br J Dermatol, 2007, 156(6): 1188-1195.
    [166] Yoshimatsu M, Uehara M, Yoshida N. Expression of heat shock protein 47 in the periodontal ligament during orthodontic tooth movement [J]. Arch Oral Biol, 2008, 53(9): 890-895.
    [167] Razzaque MS, Kumari S, Foster CS, et al. Expression profiles of collagens, HSP47, TGF-b1, MMPs and TIMPs in epidermolysis bullosa acquisita [J]. Cytokine, 2003, 21(5): 207-213.
    [168] Yokota S, Kubota H, Matsuoka Y, et al. Prevalence of HSP47 antigen and autoantibodies to HSP47 in the sera of patients with mixed connective tissue disease [J]. Biochem Biophys Res Commun, 2003, 303(2): 413-418.
    [169] Higuchi I, Hashiguchi A, Matsuura E, et al. Difierent pattern of HSP47 expression in skeletal muscle of patients with neuromuscular diseases [J]. Neuromuscular Disorders, 2007, 17(3): 221-226.
    [170] Bauriedel G, Jabs A, Skowasch D, et al. Dendritic cells in neointima formation after rat carotid balloon injury: coordinated expression with anti-apoptotic Bcl-2 and HSP47 in arterial repair [J]. J Am Coll Cardiol. 2003, 42(5): 930-938.
    [171] Pieri L, Rinaldi B, Domenici L, et al. Blood-borne cells involved in arterial repair upon experimental incision injury [J]. Histol Histopathol, 2008, 23(1): 19-32.
    [172] Wang J, Dodd C, Shankowsky HA, et al. Deep dermal fibroblasts contribute to hypertrophic scarring [J]. Lab Invest, 2008, 88(12): 1278-1290.
    [173] Mileti? T, Kovacevi?-Jovanovi? V, Vuji? V, et al. Reactive oxygen species (ROS), but not nitric oxide (NO), contribute to strain differences in the susceptibility to experimental arthritis in rats [J]. Immunobiology, 2007, 212(2): 95-105.
    [174] Wang JF, Olson ME, Reno CR, et al. Molecular and cell biology of skin wound healing in a pig model [J]. Conn Tissue Res, 2000, 41(3): 195-211.
    [175] Saito K, Dai Y, Ohtsuka K. Enhanced expression of heat shock proteins in gradually dying cells and their release from necrotically dead cells [J]. Exp Cell Res, 2005, 310(1): 229-236.
    [176] Katagata Y, Hirayama T. Unexpected expression of Hsp47, a replacement of one amino acid (Val 7 Leu) in the amino terminal region, in cultured human tumorigenic cell lines [J]. J Dermatol Sci, 2008, 49(1): 33-38.
    [177] Li D, Guang W, Abuzeid WM, et al. Novel adenoviral gene delivery system targeted against head and neck cancer [J]. Laryngoscope, 2008, 118(4): 650-658.
    [178] Kwon YJ, Lee SJ, Koh JS, et al. Expression patterns of aurora kinase B, heat shock protein 47, and periostin in esophageal squamous cell carcinoma [J]. Oncol Res. 2009, 18(4): 141-151.
    [179] Araki K, Mikami T, Yoshida T, et al. High expression of HSP47 in ulcerative colitis-associated carcinomas: proteomic approach [J]. Br J Cancer. 2009, 101(3): 492-497.
    [180] Margetts CD, Morris M, Astuti D, et al. Evaluation of a functional epigenetic approach to identify promoter region methylation in phaeochromocytoma and neuroblastoma [J]. Endocr Relat Cancer, 2008, 15(3): 777-786.
    [181] Yu AL, Moriniere J, Birke M, et al. Reactivation of optic nerve head astrocytes by transforming growth factor-beta2 and H2O2 is accompanied by increased Hsp32 and Hsp47 expression [J]. Invest Ophthalmol Vis Sci, 2009, 50(4): 1707-1717.
    [182] Sunamoto M, Kuze K, Tsuji H, et al. Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress collagen accumulation in experimental glomerulonephritis [J]. Lab Invest, 1998, 78(8): 967-972.
    [183] Hideo Iwasaka. Three-step research strategies for ARDS: new target molecules-ACE2, HMGB1, and HSP47 [J]. J Anesth, 2007, 21: 122-123.
    [184] Wang Z, Inokuchi T, Nemoto TK, et al. Antisense oligonucleotide against collagen-specific molecular chaperone 47-kDa heat shock protein suppresses scar formation in rat wounds [J]. Plast Reconstr Surg, 2003, 111(6): 1980-1987.
    [185] Wang Z, Li L. The plasmid encoding HSP47 enhances collagen expression and promotes skin wound healing in an alloxan-induced diabetic model [J]. Cell Biol Int. 2009, 33(7): 705-710.
    [186] Hagiwara S, Nakamura K, Hamada H, et al. Inhibition of type I procollagen production by tRNAVal CTE-HSP47 ribozyme [J]. J Gene Med, 2003, 5(9): 784-794.
    [187] Ohba S, Wang ZL, Baba TT, et al. Antisense oligonucleotide against 47-kDa heat shock protein (Hsp47) inhibits wound-induced enhancement of collagen production [J]. Arch Oral Biol, 2003, 48(9): 627-633.
    [188] Nishino T, Miyazaki M, Abe K, et al. Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress peritoneal fibrosis in rats [J]. Kidney Int, 2003, 64(3): 887-896.
    [189] Hagiwara S, Iwasaka H, Matsumoto S, et al. An antisense oligonucleotide to HSP47inhibits paraquat-induced pulmonary fibrosis in rats [J]. Toxicology, 2007, 236(3): 199-207.
    [190] Hagiwara S, Iwasaka H, Matsumoto S, et al. Antisense oligonucleotide inhibition of heat shock protein (HSP) 47 improves bleomycin-induced pulmonary fibrosis in rats [J]. Respir Res, 2007, 8: 37.
    [191] Hagiwara S, Iwasaka H, Matsumoto S, et al. Introduction of antisense oligonucleotides to heat shock protein 47 prevents pulmonary fibrosis in lipopolysaccharide-induced pneumopathy of the rat [J]. Eur J Pharmacol, 2007, 564(1-3): 174-180.
    [192] Zha Y, Le VT, Higami Y, et al. Life-long suppression of growth hormone-insulin-like growth factor-1 activity in genetically altered rats could prevent age-related renal damage [J]. Endocrinology, 2006, 147(12): 5690-5698.
    [193] Wang Z, Li L. Adenovirus-mediated RNA interference against collagen-specific molecular chaperone 47-KDa heat shock protein suppresses scar formation on mouse wounds [J]. Cell Biol Int, 2008, 32(5): 484-493.
    [194] Xia Z, Abe K, Furusu A, et al. Suppression of renal tubulointerstitial fibrosis by small interfering RNA targeting heat shock protein 47 [J]. Am J Nephrol, 2008, 28(1): 34-46.
    [195] Razzaque MS, Shimokawa I, Nazneen A, et al. Life-long dietary restriction modulates the expression of collagens and collagen-binding heat shock protein 47 in aged Fischer 344 rat kidney [J]. Histochem J, 1999, 31(2): 123-132.
    [196] Raghu G, Johnson WC, Lockhart D, et al. Treatment of idiopathic pulmonary fibrosis with a new antifibrotic agent, pirfenidone: results of a prospective, open-label Phase II study [J]. Am J Respir Crit Care Med, 1999, 159(4 Pt 1): 1061-1069.
    [197] Kakugawa T, Mukae H, Hayashi T, et al. Pirfenidone attenuates expression of HSP47 in murine bleomycin-induced pulmonary fibrosis [J]. Eur Respir J, 2004, 24(1): 57-65.
    [198] Nakayama S, Mukae H, Sakamoto N, et al. Pirfenidone inhibits the expression of HSP47 in TGF-β1-stimulated human lung fibroblasts [J]. Life Sci, 2008, 82(3-4): 210-217.
    [199] Thomson CA, Atkinson HM, Ananthanarayanan VS. Identification of small molecule chemical inhibitors of the collagen-specific chaperone Hsp47 [J]. J Med Chem, 2005,48(5): 1680-1684.
    [200] Terui Y, Chu YW, Li JY, et al. Xantholipin, a novel inhibitor of HSP47 gene expression produced by Streptomyces sp [J]. Tetrahedron Letters, 2003, 44: 5427-5430.
    [201] Balakin KV, Kozintsev AV, Kiselyov AS, et al. Rational design approaches to chemical libraries for hit identification [J]. Curr Drug Discov Technol, 2006, 3(1): 49-65.
    [202] Guner O, Clement O, Kurogi Y. Pharmacophore modeling and three dimensional database searching for drug design using catalyst: recent advances [J]. Curr Med Chem, 2004, 11(22): 2991-3005.
    [203]王新峰,李磊,韩国柱.苦参素药理作用的研究进展[J].医药导报,2005,6(6):483-485.
    [204]王俊学,王国俊.苦参碱及氧化苦参碱的药理作用及临床应用[J].肝脏,2000,5(2):116-117.
    [205]王晓红,黄圣凯.苦参碱及氧化苦参碱的药物动力学与药效动力学[J].药学学报,1992,27(8):572-576.
    [206]王明雷,周秋丽,王本祥.氧化苦参碱肠内菌代谢及吸收入血活性成分的研究[J].中国中药杂志,2001,26(4):272-274.
    [207]费艳秋,安富荣,孙黎,等.苦参素注射液的人体药动学[J].中国医院药学杂志,2003,23(1):21-22.
    [208]李俊生,鲍玉琳,温绪东.苦参素片、苦参素胶囊人体生物等效性研究[J].中国药师,2004,7(8):852-584.
    [209]康文臻,谢玉梅,聂青和,等.苦参素对实验性大鼠肝纤维化防治作用的研究[J].世界华人消化杂志,2003,11(2):195-198.
    [210]甘乐文,王国俊,李玉莉.苦参素对大鼠慢性肝损伤的防护作用[J].中草药,2002,33(4):339-341.
    [211]成扬,张昊,李华,等.氧化苦参碱对小鼠免疫性肝纤维化作用机制的研究[J].现代实用医学,2001,13(1):14-16.
    [212]周爱玲,罗琳,茅家慧,等.苦参素对实验性肝纤维化的防治作用及对MMP-2表达的影响[J].中国临床药理学与治疗学,2004,9(10):1096-1100.
    [213]李谦,施光峰,陈澍,等.苦参素及联合维生素E的抗肝纤维化作用及机制[J].中华传染病杂志,2003,21(4):278-280.
    [214]汤苏阳,蔡宝仁,李荟元,等.苦参碱对兔耳增生性瘢痕成纤维细胞增生活性抑制作用[J].中国临床康复,2002,6(4):510-511.
    [215]田荻,秦建中.四种苦参生物碱对人角朊细胞增殖的影响[J].实用中西医结合杂志,1997,10(11):1110-1111.
    [216]宋建,张兴荣,朱梁,等.苦参素对成纤维细胞增殖及Ⅲ型原胶原mRNA的表达的影响[J].第二军医大学学报,1999,20(6):356-358.
    [217]朱樑,宋健,张形容,等.苦参素对成纤维细胞增殖、形态学及转化生长因子β1的影响[J].中国新药与临床杂志,2000,19(6):461-463.
    [218]张峻岭,陈学荣,殷金珠.氧化苦参碱诱导角质形成细胞凋亡研究[J].中国皮肤性病学杂志,2000,14(6):367-368.
    [219]伍严安,高春芳,王皓,等.苦参碱抑制血小板衍生生长因子诱导的小鼠皮肤成纤维细胞增殖[J].第二军医大学学报,2000,21(8):724-726.
    [220]汤苏阳,蔡宝仁,黄高升,等.苦参碱对人增生性瘢痕成纤维细胞合成胶原的影响[J].实用美容整形外科杂志,2001,12(6):330-331.
    [221]陈曙霞.苦参生物碱的药理研究进展[J].中成药,2003,25(1):75-77.
    [222]李正蓉.苦参素的药理与临床研究进展[J].华西药学杂志,2003,18(6):435-437.
    [223]田建华.苦参素胶囊致乙型肝炎加重[J].药物不良反应杂志,2003,6:407-408.
    [224]顾正平,陆惠平.苦参素注射液致过敏性休克1例[J].医药导报,2003,22(10):734.
    [225]高作文,张瑞祺,缪晓辉.苦参素注射液致慢性乙肝患者肝功能损害加重2例[J].药物不良反应杂志,2002,2:120-121.
    [226]许杰,王月军,李成建.苦参不良反应[J].中国误诊学杂志,2004,4(7):1136-1137.
    [227] von Euler M, Seiger A, Sundstr?m E. Clip compression injury in the spinal cord: A Correlative Study of Neurological and Morphological Alterations [J]. Exp Neurol, 1997, 145(2 Pt 1): 502-510.
    [228] Kao CH, Chen SH, Chio CC, et al. Exogenous administration of glial cell line-derived neurotrophic factor improves recovery after spinal cord injury [J]. Resuscitation, 2008, 77(3): 395-400.
    [229] Gris D, Hamilton EF, Weaver LC. The systemic inflammatory response after spinal cord injury damages lungs and kidneys [J]. Exp Neurol, 2008, 211(1): 259-270.
    [230] Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats [J]. J Neurotrauma, 1995, 12(1): 1-21.
    [231]屈淑贤,谢晓冬,郑振东,等.免疫组织化学染色SP法检测人乳腺癌组织中VEGF和VEGF-C的表达及意义[J].现代肿瘤医学,2007,15(11):1582-1584.
    [232]周建军,吴国材,冯华.脊髓损伤的动物模型进展[J].脊柱外科杂志,2004,2(3):173-175.
    [233] Rivilin AS, Tator CH. Effect of duration of spinal cord compress a new acute cord injury model in the rat [J]. Surg Neurol, 1978, 10(1): 38-43.
    [234] Fehlings MG, Tator CH. The relationships amony the severity of spinal cord injury, residual neurological function, axion counts, and counts of retrogradely labeled neurons after experimental spinal cord injury [J]. Exp Neurol, 1995, 132(2): 220-228.
    [235] Schwartz G, Fehlings MG. Evlauation of the neuroprotective effects of sodium chammel blockers after spinal cord injury: Imporved behavioral and neuroanatomical recovery with riluzole [J]. J Neurosurg, 2001, 94(2 Suppl): 245-256.
    [236] Ramón-Cueto A, Cordero MI, Santos-Benito FF, et al. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia [J]. Neuron, 2000, 25(2): 425-435.
    [237] Fournier AE, Takizawa BT, Strittmatter SM. Rho kinase inhibition enhances axonal regeneration in the injured CNS [J]. J Neurosci, 2003, 23(4): 1416-1423.
    [238] Dergham P, Ellezam B, Essagian C, et al. Rho signaling pathway targeted to promote spinal cord repair [J]. J Neurosci, 2002, 22(15): 6570-6577.
    [239]傅强,侯铁胜,鲁凯伍,等.大鼠胸段脊髓损伤后后肢运动功能不同评价标准的比较研究[J].中国脊柱脊髓杂志,2001,11(5):278-281.
    [240]蔡文琴.医用神经生物学基础[M].重庆:西南师范大学出版社.2001:416-420.
    [241]杜卓民.实用组织学技术[M].北京:人民卫生出版社.1998:144-145.
    [242] Eng LF, Ghimikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000) [J]. Neurochem Res, 2000, 25(9-10): 1439-1451.
    [243] Dougherty KD, Dreyfus CF, Black IB. Brain derived-neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury [J]. Neurobiol Dis, 2000, 7(6 Pt B): 574-585.
    [244] Bigini P, Bastone A, Mennini T. Glutamate transporters in the spinal cord of the wobbler mouse [J]. Neuroreport. 2001, 12(9): 1815-1820.
    [245] Ozawa H, Wu ZJ, TanakaY, et al. Morphologic change and astrocyte response to unilateral spinal cord compression in rabbits [J]. J Neurotrauma, 2004, 21(7): 944-955.
    [246]张卫红,王道新.脊髓损伤后胶质纤维酸性蛋白的表达及其意义[J].南京医科大学学报,2002,22(1):17-19.
    [247] Shaw G, Yang C, EllisR, et al. Hyperphosphorylated neurofilament NF-H is a serum biomarker of axonal injury [J]. Biochem Biophys Res Commun, 2005, 336(4): 1268-1277.
    [248]胡俊勇,李佛保,廖威明,等.大鼠脊髓损伤后神经丝蛋白及胶质纤维酸性蛋白表达的变化及意义[J].中山大学学报(医学科学),2003,24(2):129-131.
    [249] Zhang ZX, Casey DM, Julien J P, et al. Normal dendntitic arborization in spinal motoneurons requires neurofilament subunit L [J]. J Comp Neurol, 2002, 450(2): 144-149.
    [250] Uchida K, Baba H, Maezawa Y, et al. Progressive changes in neurofilament proteins and growth-associated protein-43 immunoreactivities at the site of cervical spinal cord compression in spinal hyperostotic mice [J]. Spine, 2002, 27(5): 480-487.
    [251] Yabe JT, Wang FS, Chylinski T, et al. Selective accumulation of the high molecular weight neurofilament subunit within the distal region of growing axonal neurites [J]. Cell Motil Cytoskeleton, 2001, 50(l): 1-9.
    [252] Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cord injury [J]. Nat Rev Neurosci, 2006, 7(8): 628-643.
    [253] Ramer MS, Priestley JV, McMahon SB. Functional regeneration of sensory axons into the adult spinal cord [J]. Nature, 2000, 403(6767): 312-316.
    [254] Cao Q, Xu XM, Devries WH, et al. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells [J].J Neurosci, 2005, 25(30): 6947-6957.
    [255] Guo JS, Zeng YS, Li HB, et al. Cotransplant of neural stem cells and NT-3 gene modified Schwann cells promote the recovery of transected spinal cord injury [J]. Spinal Cord, 2007, 45(1): 15-24.
    [256] Chen MS, Huber AB, van der Haar ME, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1 [J]. Nature 2000, 403(6768): 434-439.
    [257] Wang KC, Koprivica V, Kim JA, et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth [J]. Nature, 2002, 417(6892): 941-944.
    [258] Silver J, Miller JH. Regeneration beyond the glial scar [J]. Nat Rev Neurosci, 2004, 5(2): 146-156.
    [259] Xia Y, Zhao T, Li J, et al. Antisense vimentin cDNA combined with chondroitinase ABC reduces glial scar and cystic cavity formation following spinal cord injury in rats [J]. Biochem Biophys Res Commun, 2008, 377(2): 562-566.
    [260] Grimpe B, Silver J. A novel DNA enzyme reduces glycosaminoglycan chains in the glial scar and allows microtransplanted dorsal root ganglia axons to regenerate beyond lesions in the spinal cord [J]. J Neurosci, 2004, 24(6): 1393-1397.
    [261] Oguro A, Sakurai T, Fujita Y, et al. The molecular chaperone HSP47 rapidly senses gravitational changes in myoblasts [J]. Genes to Cells, 2006, 11(11): 1253-1265.
    [262] Coumans JV, Lin TT, Dai HN, et al. Axonal regeneration and functional recovery after comp lete sp inal cord transection in rats by delayed treatment with transp lants and neurotrophins [J]. J Neurosci, 2001, 21(23): 9334-9344.
    [263] Seitz A, Aglow E, Heber-katz E. Recovery from spinal cord injury: a new transection model in the C57B1/6 mouse [J]. J Neurosci Res, 2002, 67(3): 337-345.
    [264] Fitch MT, Doller C, Combs CK, et al. Cellular and molecular mechanism s of glial scarring and p rogressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma [J]. J Neurosci, 1999, 19(19): 8182-8198.
    [265]王树森,胡蕴玉,罗卓荆,等.大鼠脊髓损伤局部空洞瘢痕的量化分析[J].中国矫形外科杂志,2005,13(6):450-452.
    [266]郑晓飞.RNA实验技术手册[M].北京:科学出版社,2004:24-42.
    [267]张维铭.现代分子生物学实验手册[M].北京:科学出版社,2004:80-106.
    [268]王雁云,罗开梅,李永青,等.一种快速的胚胎组织总RNA的提取方法[J].生命科学研究,2001,5(1):88-91.
    [269]顾红雅.植物基因与分子操作[M].北京:北京大学出版社,1995:74-87.
    [270] Doroudi R, Andersson M, Svensson PA, et al. Methodological studies of multiple reference genes as endogenous controls in vascular gene expression studies [J]. Endothelium, 2005, 12(5): 215-223.
    [271] Gilsbach R, Kouta M, Bonisch H, et al. Comparison of invitro and invivo reference genes for internal standardization of real-time PCR data [J]. Biotechniques, 2006, 40(2): 173-177.
    [272] Doroudi R, Andersson M, Svensson P, et al. Methodological studies of multiple reference genes as endogenous controls in vascular gene expression studies [J]. Endothelium, 2005, 12(5): 215-223.
    [273] Gilsbach R, Kouta M, Bonisch H, et al. Comparison of in vitro and in vivo reference genes for internal standardization of real-time PCR data [J]. Biotechniques, 2006, 40(2): 173-177.
    [274] Yan HZ, Liou RF. Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica [J]. Fungal Genet and Biol, 2006, 43(6): 430-438.
    [275]朱华,李珅,赵瑞强,等.三七植物GAPDH基因克隆及序列分析[J].西北植物学报,2006,26(7):1316-1319.
    [276] Liu JY. Real-time PCR technique and its application in quantification of plant nucleic acid molecules [J]. Acta Botanica Sinica, 2003, 45(6): 631-637.
    [277] Saur D, Vanderwinden JM, Seidler B, et al. Single-nucleotide promoter polymorphism alters transcription of neuronal nitric oxide synthase exon 1c in infantile hypertrophic pyloric stenosis [J]. Proc Natl Acad Sci, 2004, 101(6): 1662-1667.
    [278] Deane EE, Kelly SP, Luk JC, et al. Chronic salinity adaptation modulates hepatic heatshock protein and insulin-like growth factor I expression in black sea bream [J]. Mar Biotechnol(NY), 2002, 4(2): 193-205.
    [279]李晓泽,刘关君,杨传平.西伯利亚蓼甘油醛-3-磷酸脱氢酶基因的cDNA克隆与序列分析[J].植物生理学通讯,2007,43(1):41-48.
    [280] Sirover MA. New insights into an old protein: the functional diversity of mammalian glyceraldehydes-3-phosphate dehydrogenase [J]. Biochim Biophys Acta, 1999, 1432(2): 159-184.
    [281] Berry MD, Boulton AA. Glyceraldehyde-3-phosphate dehydrogenase and apoptosis [J]. J Neurosci Res, 2000, 60(2): 150-154.
    [282] Tajima H, Tsuchiya K, Yamada M, et al. Over-expression of GAPDH induces apoptosis in COS-7 cells transfected with cloned GAPDH cDNAs [J]. Neuroreport, 1999, 10(10): 2029-2033.
    [283]皮荣标,颜光美.3-磷酸甘油醛脱氢酶与神经元凋亡[J].中国神经科学杂志,2000,16(1):73-75.
    [284] Chen RW, Saunders PA, Wei H, et al. Involvement of glyceraldehyde-3-phosphate dehydrogenase(GAPDH) and p53 in neuronal apoptosis: evidence that GAPDH is upregulated by p53 [J]. J Neurosci, 1999, 19(21): 9654-9662.
    [285]鲁国东,郑学勤,谢联辉,等.稻瘟病菌3-磷酸甘油醛脱氢酶基因的克隆及序列分析[J].热带作物学报,1998,19(4):83-89.
    [286]刘志华,杨谦.球毛壳菌甘油醛-3-磷酸脱氢酶基因克隆及特性分析[J].微生物学报,2005,45(6):885-889.
    [287] Joosten EA, Dijkstra S, Brook GA, et al. Collagen IV deposits do not prevent regrowing axons from penetrating the lesion site in spinal cord injury [J]. J Neurosci Res, 2000, 62(5): 686-691.
    [288] Iseda T, Nishio T, Kawaguchi S, et al. Spontaneous regeneration of the corticospinal tract after transection in young rats: a key role of reactive astrocytes in making favorable and unfavorable conditions for regeneration [J]. Neuroscience, 2004, 126 (2): 365-374.
    [289] Mercier F, Kitasako JT, Hatton GI. Anatomy of the brain neurogenic zones revisited:fractones and the fibroblast/macrophage network [J]. J Comp Neurol, 2002, 451(2): 170-188.
    [290]王卫国,吴强,胡保坤,等.几种测定灰树花多糖中蛋白质含量方法的比较研究[J].中国食用菌,2003,22(1):27-30.
    [291]王爱军,王凤山,王友联,等.低浓度蛋白质含量测定方法的研究[J].中国生化药物杂志,2003,24(2):78-80.
    [292]李涤生.临床检验基础[M].北京:人民卫生出版社,1991:244.
    [293] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976, 72: 248-254.
    [294] Zuo SS, Lundahl P. A micro-Bradford membrane protein assay [J]. Anal Biochem, 2000, 284(1): 162-164.
    [295]李良铸.生化制药学[M].北京:中国医药科技出版社,1991:201-206.
    [296] Craig EA. The heat shock response [J]. CRC Crit Rev Bicohem, 1985, 18(3): 239-280.
    [297] Lindquist S. The heat-shock response [J]. Annu Rev Biochem, 1986, 55: 1151-1191.
    [298]杨晓明,徐华,张焱,等.氧化苦参碱对心肌损伤大鼠线粒体保护作用的研究[J].中国中药杂志,2008,33(2):168-171.
    [299] Lee HC, Cho DY, Lee WY, et al. Pitfalls in treatment of acute cervical spinal cord injury using high-dose methylprednisolone: a retrospect audit of 111 patients [J]. Surg Neurol, 2007, 68(Suppl 1): S37-41.
    [300] Suberviola B, González-Castro A, Llorca J, et al. Early complications of high-dose methylprednisolone in acute spinal cord injury patients [J]. Injury, 2008, 39(7): 748-752.
    [301] Wang YC, Wu YT, Huang HY, et al. Sustained intraspinal delivery of neurotrophic factor encapsulated in biodegradable nanoparticles following contusive spinal cord injury [J]. Biomaterials, 2008, 29(34): 4546-4553.
    [302] Taylor SJ, Rosenzweig ES, McDonald JW 3rd, et al. Delivery of neurotrophin-3 from fibrin enhances neuronal fiber sprouting after spinal cord injury [J]. J Control Release, 2006, 113(3): 226-235.
    [303] Taylor SJ, Sakiyama-Elbert SE. Effect of controlled delivery of neurotrophin-3 from fibrin on spinal cord injury in a long term model [J]. J Control Release, 2006, 116(2): 204-210.
    [304] Pitts LH, Ross A, Chase GA, et al. Treatment with thyrotropin-releasing hormone (TRH) in patients with traumatic spinal cord injuries [J]. J Neurotrauma, 1995, 12(3): 235-243.
    [305] Chinnock P, Roberts I. Gangliosides for acute spinal cord injury [J]. Cochrane Database Syst Rev. 2005 Apr 18;(2): CD004444.
    [306] Baptiste DC, Fehlings MG. Pharmacological approaches to repair the injured spinal cord [J]. J Neurotrauma, 2006, 23(3-4): 318-334.
    [307] Follesa P, Wrathall JR, Mocchetti I. 2, 3 dihydroxy 6 nitro 7 sulfamoylbenzo(F) quinoxaline (NBQX) increase fibroblast growth factor mRNA levels after contusive spinal cord injury [J]. Brain Res, 1998, 782(1-2): 306-309.
    [308] Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury [J]. Spine, 2001, 26(24 Suppl): S2-12.
    [309] Winkler T, Sharma HS, St?lberg E, et al. An L-type calcium channel blocker, nimodipine influences trauma induced spinal cord conduction and axonal injury in the rat [J]. Acta Neurochir Suppl, 2003, 86: 425-432.
    [310] Díaz-Ruiz A, Ibarra A, Pérez-Severiano F, et al. Constitutive and inducible nitric oxide synthase activities after spinal cord contusion in rats [J]. Neurosci Lett, 2002, 319(3);129-132.
    [311] Grimpe B, Silver J. The extracellular matrix in axon regeneration [J]. Prog Brain Res, 2002, 137: 333-349.
    [312] Fujimoto T, Nakamura T, Ikeda T, et al. Potent protective effects of melatonin on experimental spinal cord injury [J]. Spine, 2000, 25(7): 769-775.
    [313] Yukawa Y, Lou J, Fukui N, et al. Optimal treatment timing to attenuate neuronal apoptosis via Bcl-2 gene transfer in vitro and in vivo [J]. J Neurotrauma, 2002, 19(9): 1091-1103.
    [314] Fee D, Crumbaugh A, Jacques T, et al. Activated/effector CD4+ T cells exacerbateacute damage in the central nervous system following traumatic injury [J]. J Neuroimmunol, 2003, 136(1-2): 54-66.
    [315] Schwartz M, Hauben E. T cell-based therapeutic vaccination for spinal cord injury [J]. Prog Brain Res, 2002, 137(4): 401-406.
    [316] Hauben E, Schwartz M. Therapeutic vaccination for spinal cord injury: helping the body to cure itself [J]. Trends Pharmacol Sci, 2003, 24(1): 7-12.
    [317] Schwartz G, Fehlings MG. Secondary injury mechanisms of spinal cord trauma: a novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole [J]. Prog Brain Res, 2002, 137(2): 177-190.
    [318] Gruner JA, Yee AK. 4-Aminopyridine enhances motor evoked potentials following graded spinal cord compression injury in rats [J]. Brain Res, 1999, 816(2): 446-456.
    [319] Wells JE, Hurlbert RJ, Fehlings MG, et al. Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice [J]. Brain, 2003, 126(Pt 7): 1628-1637.
    [320] Cakir E, Baykal S, Karahan SC, et al. Acute phase effects of ATP-MgC(l2) on experimental spinal cord injury [J]. Neurosurg Rev, 2003, 26(1): 67-70.
    [321]刘卫东,韩凤岳.脊髓Ⅱ号治疗大鼠脊髓损伤的电生理研究[J].中国骨伤,1997,10(1):10-11.
    [322]胡侦明,劳汉昌,张宝华,等.三七总皂甙对鼠脊髓损伤早期病理变化影响的观察[J].中国脊柱脊髓杂志,1997,7(1):26-28.
    [323]施光峰,李谦,翁心华,等.苦参素对大鼠纤维化肝脏金属蛋白酶-1和α-平滑肌肌动蛋白表达的影响[J].中华肝脏病杂志,2004,12(1):56.
    [324]孙永年,徐斌,黄祝青,等.苦参素治疗对慢乙肝患者TGF-β1、TNF-α、HA、PcⅢ水平的影响[J].中国现代医学杂志,2004,14(3):41-44.
    [325]李继强,陆伦根,华静,等.氧化苦参碱对大鼠肝星状细胞增殖的影响[J].上海医学,1999,22(10):598-599.
    [326]陈源文,李定国,吴建新,等.氧化苦参碱对转化生长因子-β1促肝星状细胞活化及跨膜信号转导影响[J].胃肠病学和肝病学杂志,2005,14(1):31-35.
    [327]刘雷,裴福兴,唐康来,等.大鼠牵张性脊髓损伤后胶质纤维酸性蛋白的表达及意义[J].临床骨科杂志,2005,8(3):268-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700