p53上调凋亡调控因子在人类脑胶质瘤中的表达及其增强化疗敏感性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景逆转胶质瘤耐药成为治疗胶质瘤的重要策略,但对胶质瘤耐药发生机制的认识仍存在争议。肿瘤耐药与其高表达耐药基因相关的看法达成了共识;组成肿瘤组织的细胞存在异质性,即由不同亚型细胞组成也是众所周知的事实,然而早先认为相关耐药基因表达是群体细胞的作用,而较少注意到因细胞异质性引发的差别。近年来肿瘤干细胞学说的提出,为解释肿瘤异质性导致肿瘤分子生物学行为差异提供了理论依据,为研究肿瘤细胞生物学特性、解释肿瘤耐药的原因等提供了新思路。凋亡是细胞在一定生理或病理条件下程序性死亡的过程,对生物维持组织稳态和个体生长发育有重要的调控作用,凋亡是涉及细胞层面的一个重要生物学行为,由于大多数化疗药物是通过诱导肿瘤细胞凋亡而发挥作用,所以细胞凋亡通路的异常改变是肿瘤耐药的又一重要机制。逆转肿瘤耐药的研究需要我们重视凋亡调控在肿瘤细胞产生耐药性中的地位及其作用机制。从胶质瘤干细胞层面寻找耐药根源,寻找关键基因、明确凋亡通路异常机制及其相互关系是增强肿瘤对化疗药物敏感性研究的有效途径。本项目在既往研究基础上,从胶质瘤干细胞异质性入手,以胶质瘤凋亡相关的p53上调凋亡调控因子(PUMA)为切入点,以凋亡通路为主线,应用基因转染、RT-PCR、Western-blot方法,从体内体外干预实验探讨PUMA在增强胶质瘤细胞对化疗药物替莫唑胺敏感性的作用机制,即PUMA高表达或激活PUMA促进胶质瘤细胞凋亡并逆转耐药;PUMA可能调控机制:①PUMA维持细胞抗凋亡与促凋亡系统的平衡,其功能缺失,导致凋亡系统失衡,从而发生耐药;②PUMA低表达影响细胞生长周期,使得细胞能够避开化疗药物作用的有效周期,导致细胞耐药;③PUMA调控耐药相关蛋白表达,PUMA对耐药分子的调控异常与耐药发生密切相关。④激活处于G0/G1期的胶质瘤干细胞,使其进入化疗药物的有效作用周期,导致细胞内凋亡触发。本研究从细胞异质性及凋亡调控两方面寻找胶质瘤耐药的根源,并提出PUMA逆转胶质瘤耐药的调控通路模式,为防治胶质瘤化疗耐药提供新思路。
     研究目的:
     1.探讨促凋亡基因PUMA在人类脑胶质瘤中的表达,及其与Bcl-2、Bax蛋白表达的相关性。
     2.探讨体外转染PUMA的人类脑胶质瘤细胞对替莫唑胺敏感性增强的作用机制。
     3.通过体内实验探讨外源性PUMA对人类脑胶质瘤细胞生长的影响及其增强胶质瘤细胞对替莫唑胺(TMZ)敏感性的机制。
     4.探讨基于CD133免疫原型的胶质瘤干细胞耐药性的差异以及PUMA改变胶质瘤细胞对TMZ敏感性的研究。
     研究方法:
     1.应用免疫印迹法(Western blotting.WB),检测10例正常脑组织及52例脑胶质瘤瘤组织中PUMA、Bcl-2、Bax蛋白的表达,通过计算吸光度比值求得各蛋白相对表达量并统计分析结果。
     2.将人类脑胶质瘤细胞U87MG细胞分为正常对照组、空载体组和实验组进行细胞培养,分别将MOI=50的空载体腺病毒(Ad-△BH3)和携带PUMA的重组腺病毒(Ad-PUMA)转染U87MG细胞,转染后用MTT比色法测定各组细胞的存活率并计算IC50,流式细胞仪检测细胞周期的变化,应用TUNEL法检测细胞的凋亡情况。Western blot检测凋亡相关蛋白P53、Bax的表达。
     3.建立人类脑胶质瘤细胞株U87MG裸鼠皮下移植瘤模型,将胶质瘤裸鼠随机分为四组,于建模2周后,分别自腹腔注射生理盐水100μl (对照组,n=8)、2×108 pfu/100μlAd-PUMA ( PUMA组,n=8)、TMZ 10mg/kg (TMZ组,n= 8)和2×108 pfu/100μl Ad-PUMA+ TMZ 10mg/kg (联合组,n= 8)。治疗20天后处死裸鼠,剖腹测量原位肿瘤体积、抑瘤率。TUNEL检测肿瘤细胞凋亡情况。半定量RT-PCR和Western blot检测DNA损伤修复蛋白MGMTmRNA和MGMT蛋白表达情况。
     4.将分选出的CD133+和CD133- U87细胞分别进行传代培养,应用WB,RT-PCR,基因转染流式细胞分析等方法观察外源性PUMA、TMZ干预前后两群细胞的生长变化情况。
     研究结果:
     1. PUMA蛋白、Bax、Bcl-2蛋白表达在Ⅱ、Ⅲ、Ⅳ级胶质瘤中与正常脑组织有统计学意义(P<0.01),Ⅰ级胶质瘤与对照组表达无统计学意义(P>0.05)。病理分级与PUMA、Bax蛋白和Bcl-2蛋白表达相关(rPUMA=-0.925,rBax =-0.931,rBcl-2=0.945,P均<0.001)。PUMA和Bax、Bcl-2蛋白的表达相关(r1=0.963,r2=-0.937 P<0.001)。
     2.外源性PUMA基因在Ad-PUMA转染U87MG 48h后,随着时间延长,PUMA表达使U87MG细胞的增殖能力降低并诱导凋亡,转染24、48、72h的生长抑制率分别为17.3%、35.6%、43.3%,凋亡率分别为20.3%、31.4%、45.4%。正常对照组、Ad-PUMA、Ad-△BH3组细胞的TMZ IC50分别为(15±1.9)、(2.3±0.14)和(14.4±1.6)μmol/L。PUMA表达的U87MG细胞DNA合成受到抑制,周期阻滞在G2期;Western blot检测显示P53表达在各组中差别无统计学意义(P>0.05)、PUMA和Bax在实验组中表达较对照组强,差别有统计学意义(P<0.01)。
     3.治疗20天时对照组、PUMA组、TMZ组、联合组诱发肿瘤瘤体积分别为(3.68±0.16)、(2.63±0.22)、(2.13±0.16)、(0.97±0.18)cm3四组体积进行两两比较差别有统计学意义(P均<0.05)。治疗组抑瘤率分别为28.5%、42.1%、73.6%,两两比较差别有统计学意义(P均<0.05)。TUNEL染色并计算凋亡指数(AI):对照组(2.0±1.2)%、Ad-PUMA组(11.4±2.6)%、TMZ组(7.6±3.2)%、联合组(20.6±8.6)%进行两两比较差别有统计学意义(P均<0.05)。半定量RT-PCR和Western blot检测显示MGMT mRNA和MGMT蛋白在TMZ组中表达最高、与其他三组比较差异有统计学意义(P均< 0.05)。
     4. CD133阳性免疫磁珠分选出胶质瘤干细胞,CD133+胶质瘤干细胞IC50较CD133-胶质瘤干细胞高,CD133+胶质瘤干细胞对替莫唑胺不敏感。CD133+胶质瘤干细胞IC50较CD133-胶质瘤干细胞低(P < 0.05)。将分选出的CD133+胶质瘤干细胞进行分组干预,检测细胞凋亡率,联合组细胞凋亡率与其他组比较差别有显著统计学意义(P < 0.05)
     结论:
     1. PUMA可能是胶质瘤的一个重要的预后标记物。PUMA可通过促进肿瘤细胞凋亡,对脑胶质瘤的发生、发展起作用;PUMA可能与凋亡相关基因Bax、Bcl-2在脑胶质瘤的凋亡中分别起协同和拮抗作用。
     2. Ad-PUMA转染可有效增强人类脑胶质瘤细胞U87MG细胞对替莫唑胺的敏感性,抑制人类脑胶质瘤细胞U87MG细胞的增殖,通过诱导细胞G2期阻滞促进其凋亡,促凋亡机制不依赖于P53。
     3. Ad-PUMA联合TMZ具有协同抑制胶质瘤生长作用,其机制可能与Ad-PUMA促进凋亡和抑制MGMT表达有关。
     4. Ad-PUMA联合TMZ可以促进耐药的责任细胞胶质瘤干细胞凋亡,从而增强胶质瘤对化疗敏感性。
BACKGROUND
     The reversion of glioma drug-resistance become the important strategy for treatment glioma.But the understanding of mechanisms of glioma drug-resistance occurs remains a matter ofdebate. There is a consensus between glioma drug resistance and high expression drug-resistancegenes. In certain physiological or pathological conditions, apoptosis is programmed cell deathprocess. Apoptosis regulating biological tissue in maintaining steady and individual growth playsan important role. Since most chemotherapy drugs by inducing tumor cell apoptosis is ratherplay a role, so the cell apoptosis pathways of reversion of tumor drug-resistance is anotherimportant mechanism. The tumor drug-resistance research requires that we attach importance tothe apoptosis control mechanism of tumor cell. Looking for key genes is to enhance research inan effective way between apoptosis pathways and tumor drug-resistance. The project is to raisethe p53 up-regulated modulator of apoptosis (PUMA) as the breakthrough point, use of genetransfection, RT - PCR, the Western blot methods, from in vivo and in vitro studies, to explorethe mechanism of PUMA enhance glioma cell chemotherapy drug sensitivity. PUMA highexpression or the PUMA activated promote cell apoptosis and reverse gliomas drug-resistance.PUMA probable control mechanisms: (1) The PUMA lower expression avoid chemotherapydrugs through affectting cell growth cycle; (2) PUMA maintaining cell antiapoptotic andpromote apoptosis system balance, its function lack leads to apoptosis system imbalance to causedrug-resistant; (3) Drug-resistant molecular regulation abnormalities would be closely relatedwith drug resistance. This study try to look for the root of glioma drug resistance from cellapoptosis level, prove the regulation pathways mode of PUMA enhancing glioma drugsensitivity and provide a new approach to prevent and control glioma chemotherapy drugresistance, (4) Activation in G0 / G1 phase of gliomas stem cells, make its into chemotherapydrugs, leading to the effective period within cells apoptosis triggered
     OBJECTIVE
     1. To study the expression of PUMA, Bcl-2 and Bax in human glioma cell and the relation among PUMA, Bcl-2 and Bax.
     2. To investigate the effect of PUMA on the sensitivity of human glioma U87MG cells totemozolomide and its related mechanisms
     3. To explore the inhibitive effects of Ad-PUMA combined with temozolomide on humanglioma cells growth in vivo experiments
     4. To investigate the differences of stem cells based on the glioma CD133 immune prototyperesistant to the effects of drug resistance PUMA..
     METHODS
     1. The expression of PUMA, Bcl-2 and Bax protein were examined by Western-blot analysis in52 cases of human glioma cell and 10 cases of normal brain tissues.
     2. U87MG cells under culture were divided into the normal control group, mock group andexperiment group. After 24 hours 0f culture, the mock and experiment group weretransfected with mock vector (Ad-△BH3) and the recombinant ademnrus carrying PUMA(Ad-PUMA)respectively at a multiplication of infection (MOI) of 50. The proliferationactivity of cells and IC50 were detected by MTT assay, the apoptosis effect and the changeof cell cycle determined by Hoechst stain and flow cytometry (FCM) technologyrespectively.The expression of related proteins was revealed by the method of Western blot.
     3. The nude mouse model with human glioma cells subcutaneous transplantation wasestablished. The mice were randomly divided into 4 groups to receive subcutaneousinjection at the 14th day separately with: Normal saline (control, n=8), Ad-PUMA2×108pfu/100μl (PUMA group, n=8), 10mg/kg TMZ (TMZ group, n=8) and 2×108pfu/100μlAd-PUMA + 10mg/kg TMZ (combined group, n=8). Mice were killed after 20daystreatment. Tumor volume, inhibition rates and apoptotic index (AI) were measured,meanwhile, apoptotic tumor cells were detected by TUNEL technology respectively.Theexpression of MGMT mRNA and MGMT protein were revealed by the methods of RT-PCRand Western blot.
     4. Sorting out CD133 + U87 cells, application CD133-WB, RT - PCR, gene carrying flowcytometric analysis method observation exogenous PUMA, TMZ before and after theintervention of cells to grow two changes
     RESULTS
     1. There were significant differences in the expression of PUMA, Bcl-2 and Bax protein between the control and gradeⅡ, gradeⅢor gradeⅣ(all P<0.01). There was no significantdifference in the expression of those protein between the control and gradeⅠ(P>0.05).There were correlations between the expression of PUMA, Bax or Bcl-2 and tumordifferentiation grade in human glioma (rPUMA=-0.925, rBax =-0.931, rBcl-2=0.945, allP<0.001). There were correlations between the expression of PUMA and Bax, Bcl-2 inhuman glioma (r1=0.963,r2=-0.937,P<0.001).
     2. Exotic PUMA gene was expressed in U87MG cells transfected with Ad-PUMA, whichcould inhibit the proliferation of U87MG cells.The inhibition rate of proliferation 24, 48,72h after transfection was 17.3%, 35.6%, 43.3% and apoptosis rate was 20.3%, 31.4%,45.4% respectively. Results: The TMZ IC50 values of PBS group, Ad-PUMA and Ad-△BH3group cells were (15±1.9), (2.3±0.14) and (13.4±1.6)μmol/L respectively, with thesensitivity to the TMZ of Ad-PUMA group cells increased by 7.0 folds. PUMAoverexpressing U87MG cells showed the DNA synthesis was inhibited and arrested in G2phrase. The results of Western blot showed that after 72 hotms of transfection the PUMAand Bax protein showed increased expression (P<0.01). There was no significant differencein the expression of P53 among these groups (P>0.05).
     3. According to the order: control group, Ad-PUMA group, TMZ group, combined group,tumor volumes were (3.68±0.09)、(2.63±0.13)、(2.13±0.07)、(0.97±0.02) cm3 in 4 groupsrespectively; the inhibitive rates were 0, 28.5%, 42.1%, 73.6% respectively and the apoptoticindexes (AI) were (2.0±1.2) %, (11.4±2.6) %, (7.6±3.2) %, (20.6±8.6) %. The results ofWestern blot and RT-PCR showed that MGMT mRNA and MGMT protein levels in TMZgroup were higher than other groups (all P<0.01).
     4. The TMZ IC50 values of CD133 +glioma stem cell are higher than that of CD133- gliomastem cells. There was significant difference in apoptosis rate between CD133 +glioma stemcell and CD133- glioma stem cell. (all P < 0.05)
     CONCLUSION
     1. The expression of PUMA may be an important prognostic marker for human glioma. Theexpression of PUMA protein was correlated with tumor differentiation grade, could be usedas a valuable marker for the prognosis of human glioma.
     2. PUMA gene transfection greatly enhances the sensitivity of U87MG cells to TMZ-inducedapoptosis and can effectively inhibit the proliferation and promote the apoptosis of U87MG cells. The mechanism of apoptosis mainly relates to induce cell cycle G2 arrest and apoptosisin vitro.
     3. Ad-PUMA combined with TMZ greatly enhances the sensitivity of human glioma cells toTMZ and could effectively inhibit the proliferation and promote the apoptosis of gliomacells, its mechanism is probably related Ad-PUMA promote apoptosis and inhibit MGMTexpression.
     4. Ad - PUMA joint TMZ can promote glioma stem cell apoptosis, thus improving thesensitivity to chemotherapy gliomas.
引文
[1]段国升.脑胶质瘤临床治疗的进展.中华神经外科杂志. 2004. 20(2): 85-87.
    [2] Louis DN. Molecular pathology of malignant gliomas. Annu Rev Pathol. 2006. 1:97-117.
    [3] Furnari FB, Fenton T, Bachoo RM, et al. Malignant astrocytic glioma: genetics, biology,and paths to treatment. Genes Dev. 2007. 21(21): 2683-710.
    [4] Erpolat OP, Akmansu M, Goksel F, Bora H, Yaman E, Buyukberber S. Outcome of newlydiagnosed glioblastoma patients treated by radiotherapy plus concomitant and adjuvanttemozolomide: a long-term analysis. Tumori. 2009. 95(2): 191-7.
    [5] Minniti G, De Sanctis V, Muni R, et al. Radiotherapy plus concomitant and adjuvanttemozolomide for glioblastoma in elderly patients. J Neurooncol. 2008. 88(1): 97-103.
    [6] Takeshima H, Sawamura Y, Gilbert MR, Van Meir EG. Application of advances inmolecular biology to the treatment of brain tumors. Curr Oncol Rep. 2000. 2(5): 425-33.
    [7] Ueki K, Nishikawa R, Nakazato Y, et al. Correlation of histology and molecular geneticanalysis of 1p, 19q, 10q, TP53, EGFR, CDK4, and CDKN2A in 91 astrocytic andoligodendroglial tumors. Clin Cancer Res. 2002. 8(1): 196-201.
    [8] Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B. PUMA induces the rapidapoptosis of colorectal cancer cells. Mol Cell. 2001. 7(3): 673-82.
    [9] Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell.2001. 7(3): 683-94.
    [10] Han J, Flemington C, Houghton AB, et al. Expression of bbc3, a pro-apoptotic BH3-onlygene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci U S A.2001. 98(20): 11318-23.
    [11] Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L. PUMA mediates the apoptoticresponse to p53 in colorectal cancer cells. Proc Natl Acad Sci U S A. 2003. 100(4):1931-6.
    [12] Hoque MO, Begum S, Sommer M, et al. PUMA in head and neck cancer. Cancer Lett.2003. 199(1): 75-81.
    [13] Karst AM, Dai DL, Martinka M, Li G. PUMA expression is significantly reduced inhuman cutaneous melanomas. Oncogene. 2005. 24(6): 1111-6.
    [14]江河,江孝清,周绪红,吴曙辉.喉鳞状细胞癌中PUMA、P53基因的表达及其临床意义.武汉大学学报(医学版). 2006. (01): 57-59+107+140.
    [15] Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998.281(5381): 1305-8.
    [16] Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998. 281(5381): 1309-12.
    [17] Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene. 2008. 27(50): 6398-406.
    [18] Yin C, Knudson CM, Korsmeyer SJ, Van Dyke T. Bax suppresses tumorigenesis andstimulates apoptosis in vivo. Nature. 1997. 385(6617): 637-40.
    [19]方胜,袁先厚,裴永恩,王国安. p-gp、bcl-2和bax蛋白在人脑胶质瘤中的表达.肿瘤防治研究. 2003. 30(1): 72-72.
    [20] Fels C, Schafer C, Huppe B, et al. Bcl-2 expression in higher-grade human glioma: aclinical and experimental study. J Neurooncol. 2000. 48(3): 207-16.
    [21] Gallenne T, Gautier F, Oliver L, et al. Bax activation by the BH3-only protein Pumapromotes cell dependence on antiapoptotic Bcl-2 family members. J Cell Biol. 2009.185(2): 279-90.
    [1] Liang XJ, Aszalos A. Multidrug transporters as drug targets. Curr Drug Targets. 2006.7(8): 911-21.
    [2] Mimeault M, Hauke R, Batra SK. Recent advances on the molecular mechanismsinvolved in the drug resistance of cancer cells and novel targeting therapies. ClinPharmacol Ther. 2008. 83(5): 673-91.
    [3] Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinesehamster ovary cell mutants. Biochim Biophys Acta. 1976. 455(1): 152-62.
    [4] Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependenttransporters. Nat Rev Cancer. 2002. 2(1): 48-58.
    [5] Arnaudeau C, Lundin C, Helleday T. DNA double-strand breaks associated withreplication forks are predominantly repaired by homologous recombination involving anexchange mechanism in mammalian cells. J Mol Biol. 2001. 307(5): 1235-45.
    [6] Sharma RA, Dianov GL. Targeting base excision repair to improve cancer therapies. MolAspects Med. 2007. 28(3-4): 345-74.
    [7] Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev PharmacolToxicol. 2005. 45: 51-88.
    [8] Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy.Oncogene. 2007. 26(9): 1324-37.
    [9] Dive C. Avoidance of apoptosis as a mechanism of drug resistance. J Intern Med Suppl.1997. 740: 139-45.
    [10]范益民,王宏勤,李宝玉.人脑胶质瘤细胞多药耐药性的形成及其耐药特性的研究.中华神经外科杂志. 1999. 15(2): 86.
    [11]田耀辉,姚鑫,杨玉山,陈步东,蔡邵帅,乔婕.人脑胶质瘤组织中耐药相关基因蛋白MGMT、Topo-Ⅱ、GST-π、P-gp的表达变化及意义.山东医药. 2010. (26): 75-76.
    [12] Nakagawa T, Ido K, Sakuma T, Takeuchi H, Sato K, Kubota T. Prognostic significance ofthe immunohistochemical expression of O6-methylguanine-DNA methyltransferase,P-glycoprotein, and multidrug resistance protein-1 in glioblastomas. Neuropathology.2009. 29(4): 379-88.
    [13]吴涛,文志华. MDR1、MRP基因产物在星形细胞瘤中的表达及其意义.中华实验外科杂志. 2004. (04): 93-94.
    [14]王运华,吕明,朱树干.跨膜糖蛋白和肺耐药相关蛋白在人脑胶质瘤中的表达.肿瘤防治杂志. 2001. (05): 464-466.
    [15]杨转移,邓永文,方加胜等.脑胶质瘤和正常脑组织中MGMT、LRP和TopoⅡα的表达及其意义.医学临床研究. 2008. (03): 393-396.
    [16]孙淑清,李桂林,苏玉金等.脑胶质瘤中P170、TOPⅡ表达与其增殖活性关系的研究.国康复理论与实践. 2008. (04): 349-351.
    [17]陈晋,程远,万敬员.蛋白激酶Cα在人神经胶质瘤耐药细胞株凋亡中的作用.中国神经肿瘤杂志. 2009. (02): 82-85.
    [18]陈新军,吴勉云,曹长军.人脑胶质瘤金属硫蛋白表达及其意义.中国临床神经外科杂志. 2003. (05): 47-49.
    [19]吴涛,袁先厚.脑胶质瘤化疗多药耐药机制的研究进展.肿瘤防治研究. 2004. (08):518-520.
    [20]梅文忠,何理盛.谷胱甘肽S转移酶л在脑原发性胶质瘤中表达的临床意义.福建医药杂志. 2004. (04): 117-118+111.
    [21] Erickson LC. The role of O-6 methylguanine DNA methyltransferase (MGMT) in drugresistance and strategies for its inhibition. Semin Cancer Biol. 1991. 2(4): 257-65.
    [22] Jin P, Zhang QL, Liu FS, et al. [Establishment of drug-resistance cell line of humanglioma mediated by MGMT]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2002. 24(6):596-600.
    [23] Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit fromtemozolomide in glioblastoma. N Engl J Med. 2005. 352(10): 997-1003.
    [24] Sugasawa K, Ng JM, Masutani C, et al. Xeroderma pigmentosum group C proteincomplex is the initiator of global genome nucleotide excision repair. Mol Cell. 1998. 2(2):223-32.
    [25] Chen H, Shao C, Shi H, Mu Y, Sai K, Chen Z. Single nucleotide polymorphisms andexpression of ERCC1 and ERCC2 vis-a-vis chemotherapy drug cytotoxicity in humanglioma. J Neurooncol. 2007. 82(3): 257-62.
    [26] Chen ZP, Malapetsa A, Marcantonio D, Mohr G, Brien S, Panasci LC. Correlation ofchloroethylnitrosourea resistance with ERCC-2 expression in human tumor cell lines asdetermined by quantitative competitive polymerase chain reaction. Cancer Res. 1996.56(11): 2475-8.
    [27]潘强,杨学军.胶质瘤化疗药物耐药性分子机制的研究进展.中国临床神经外科杂志. 2010. (02): 118-122.
    [28] Fink D, Zheng H, Nebel S, et al. In vitro and in vivo resistance to cisplatin in cells thathave lost DNA mismatch repair. Cancer Res. 1997. 57(10): 1841-5.山
    [29] Rellecke P, Kuchelmeister K, Schachenmayr W, Schlegel J. Mismatch repair proteinhMSH2 in primary drug resistance in in vitro human malignant gliomas. J Neurosurg.2004. 101(4): 653-8.
    [30] Cahill DP, Levine KK, Betensky RA, et al. Loss of the mismatch repair protein MSH6 inhuman glioblastomas is associated with tumor progression during temozolomidetreatment. Clin Cancer Res. 2007. 13(7): 2038-45.
    [31] Maxwell JA, Johnson SP, McLendon RE, et al. Mismatch repair deficiency does notmediate clinical resistance to temozolomide in malignant glioma. Clin Cancer Res. 2008.14(15): 4859-68.
    [32] Green DR, Kroemer G. Pharmacological manipulation of cell death: clinical applicationsin sight. J Clin Invest. 2005. 115(10): 2610-7.
    [33] McCubrey JA, Steelman LS, Abrams SL, et al. Roles of the RAF/MEK/ERK andPI3K/PTEN/AKT pathways in malignant transformation and drug resistance. AdvEnzyme Regul. 2006. 46: 249-79.
    [34] Cordo-Russo RI, Alaniz LD, Saccodossi N, et al. Hyaluronan induces migration ofmultidrug-resistant lymphoma cell lines in vitro through Tiam1 activation by aPI3K-dependent mechanism. Leuk Res. 2010. 34(11): 1525-32.
    [35] Roepe PD. pH and multidrug resistance. Novartis Found Symp. 2001. 240: 232-47;discussion 247-50, 265-8.
    [36] Iwadate Y, Fujimoto S, Tagawa M, et al. Association of p53 gene mutation with decreasedchemosensitivity in human malignant gliomas. Int J Cancer. 1996. 69(3): 236-40.
    [37] Li S, Jiang T, Li G, Wang Z. Impact of p53 status to response of temozolomide in lowMGMT expression glioblastomas: preliminary results. Neurol Res. 2008. 30(6): 567-70.
    [38] Gu J, Zhang L, Swisher SG, Liu J, Roth JA, Fang B. Induction of p53-regulated genes inlung cancer cells: implications of the mechanism for adenoviral p53-mediated apoptosis.Oncogene. 2004. 23(6): 1300-7.
    [39]王新颖,何美蓉,李明,姜泊. PUMA在奥沙利铂治疗大肠癌中作用机制的实验研究.医学研究生学报. 2007. (04): 366-369.
    [40] Karst AM, Dai DL, Martinka M, Li G. PUMA expression is significantly reduced inhuman cutaneous melanomas. Oncogene. 2005. 24(6): 1111-6.
    [41] Ito H, Kanzawa T, Miyoshi T, et al. Therapeutic efficacy of PUMA for malignant gliomacells regardless of p53 status. Hum Gene Ther. 2005. 16(6): 685-98.
    [42] Wang H, Qian H, Yu J, et al. Administration of PUMA adenovirus increases thesensitivity of esophageal cancer cells to anticancer drugs. Cancer Biol Ther. 2006. 5(4):山3380-5.
    [43] La Porta CA. Drug resistance in melanoma: new perspectives. Curr Med Chem. 2007.14(4): 387-91.
    [44] Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B. PUMA induces the rapid apoptosisof colorectal cancer cells. Mol Cell. 2001. 7(3): 673-82.
    [45]惠玲,邹华,王晓辉等.过表达钙整合素结合蛋白CIB诱导SHG44胶质瘤细胞凋亡的实验研究.中华神经外科杂志. 2010. 26(3): 267-271.
    [46]靳峰,赵万巨,魏宇佳等.胶质瘤干细胞抗凋亡和多重耐药基因的表达.中华神经外科杂志. 2010. 26(2): 159-162.
    [47]贺亚龙,贺晓生,章翔等. FLIP蛋白抑制顺铂诱导大鼠C6胶质瘤细胞凋亡.中华神经外科疾病研究杂志. 2009. 8(4): 316-319.
    [48]冯学泉,王金环,徐新女等.重组腺病毒Vpr诱导脑胶质瘤细胞凋亡的体外研究.中华神经外科杂志. 2010. 26(6): 553-556.
    [49]张春智,康春生,杨卫东等.共抑制miR-221/222表达上调PUMA促进胶质瘤U251细胞凋亡的体外研究.中华神经外科杂志. 2010. 26(8): 752-755.
    [50]荔志云,魏虎来,范临兰,黄艳萍.白藜芦醇通过Fas-线粒体双途径诱导U-87脑胶质瘤细胞凋亡.中华神经外科疾病研究杂志. 2009. 8(5): 401-404.
    [51] Yu J, Yue W, Wu B, Zhang L. PUMA sensitizes lung cancer cells to chemotherapeuticagents and irradiation. Clin Cancer Res. 2006. 12(9): 2928-36.
    [52] Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B. PUMA induces the rapid apoptosisof colorectal cancer cells. Mol Cell. 2001. 7(3): 673-82.
    [53] Ulasov IV, Sonabend AM, Nandi S, Khramtsov A, Han Y, Lesniak MS. Combination ofadenoviral virotherapy and temozolomide chemotherapy eradicates malignant gliomathrough autophagic and apoptotic cell death in vivo. Br J Cancer. 2009. 100(7): 1154-64.
    [54] Stupp R, Hegi ME, den Bent MJ v, et al. Changing paradigms--an update on themultidisciplinary management of malignant glioma. Oncologist. 2006. 11(2): 165-80.
    [55] Nagane M, Kobayashi K, Ohnishi A, Shimizu S, Shiokawa Y. Prognostic significance ofO6-methylguanine-DNA methyltransferase protein expression in patients with recurrentglioblastoma treated with temozolomide. Jpn J Clin Oncol. 2007. 37(12): 897-906.
    [56]刘志华,陈筠,贺艳平, Zhi-hua L, Yun C, Yan-ping HE.他莫昔芬联合化疗对胆管癌耐药细胞株QBC939/ADM的影响.肿瘤研究与临床. 2008. 20(11): 734-736.
    [57]郝淑兰,刘丽坤,李宜放, Shu-lan H, Li-kun L, Yi-fang LI.胃癌细胞多药耐药机制及耐药性逆转.肿瘤研究与临床. 2007. 19(1): 68-70,72.
    [58] Marchesi F, Turriziani M, Tortorelli G, Avvisati G, Torino F, De Vecchis L. Triazenecompounds: mechanism of action and related DNA repair systems. Pharmacol Res. 2007.56(4): 275-87.
    [59]林英,黄世章,郝卓芳,廖德贵. MGMT及P53在脑胶质瘤组织中的表达及其生物学意义.现代临床医学生物工程学杂志. 2005. 11(3): 187-189,201.
    [1] Pim D, Massimi P, Dilworth SM, Banks L. Activation of the protein kinase B pathway bythe HPV-16 E7 oncoprotein occurs through a mechanism involving interaction with PP2A.Oncogene. 2005. 24(53): 7830-8.
    [2] Ramdass B, Maliekal TT, Lakshmi S, et al. Coexpression of Notch1 and NF-kappaBsignaling pathway components in human cervical cancer progression. Gynecol Oncol.2007. 104(2): 352-61.
    [3] Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer.2002. 2(6): 442-54.
    [4] Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cellsdetermine tumor growth and metastatic activity in human pancreatic cancer. Cell StemCell. 2007. 1(3): 313-23.
    [5] Beier D, Hau P, Proescholdt M, et al. CD133(+) and CD133(-) glioblastoma-derivedcancer stem cells show differential growth characteristics and molecular profiles. CancerRes. 2007. 67(9): 4010-5.
    [6] Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L.Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stemcell characteristics. Breast Cancer Res. 2008. 10(1): R10.
    [7] Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ. Efficienttumour formation by single human melanoma cells. Nature. 2008. 456(7222): 593-8.
    [8] Graham SM, Jorgensen HG, Allan E, et al. Primitive, quiescent, Philadelphia-positivestem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro.Blood. 2002. 99(1): 319-25.
    [9] Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Humancortical glial tumors contain neural stem-like cells expressing astroglial and neuronalmarkers in vitro. Glia. 2002. 39(3): 193-206.
    [10] Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in humanbrain tumors. Cancer Res. 2003. 63(18): 5821-8.
    [11] Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiatingcells. Nature. 2004. 432(7015): 396-401.
    [12] Beier D, Hau P, Proescholdt M, et al. CD133(+) and CD133(-) glioblastoma-derivedcancer stem cells show differential growth characteristics and molecular profiles. CancerRes. 2007. 67(9): 4010-5.
    [13] Joo KM, Kim SY, Jin X, et al. Clinical and biological implications of CD133-positive andCD133-negative cells in glioblastomas. Lab Invest. 2008. 88(8): 808-15.
    [14] Liu Q, Nguyen DH, Dong Q, et al. Molecular properties of CD133+ glioblastoma stemcells derived from treatment-refractory recurrent brain tumors. J Neurooncol. 2009. 94(1):1-19.
    [15] Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance ofCD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006. 5: 67.
    [16] Zeppernick F, Ahmadi R, Campos B, et al. Stem cell marker CD133 affects clinicaloutcome in glioma patients. Clin Cancer Res. 2008. 14(1): 123-9.
    [17] Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance bypreferential activation of the DNA damage response. Nature. 2006. 444(7120): 756-60.
    [18] Gu J, Zhang L, Swisher SG, Liu J, Roth JA, Fang B. Induction of p53-regulated genes inlung cancer cells: implications of the mechanism for adenoviral p53-mediated apoptosis.Oncogene. 2004. 23(6): 1300-7.
    [19]王新颖,何美蓉,李明,姜泊. PUMA在奥沙利铂治疗大肠癌中作用机制的实验研究.医学研究生学报. 2007. (04): 366-369.
    [20] Karst AM, Dai DL, Martinka M, Li G. PUMA expression is significantly reduced inhuman cutaneous melanomas. Oncogene. 2005. 24(6): 1111-6.
    [21] Ito H, Kanzawa T, Miyoshi T, et al. Therapeutic efficacy of PUMA for malignant gliomacells regardless of p53 status. Hum Gene Ther. 2005. 16(6): 685-98.
    [22] Wang H, Qian H, Yu J, et al. Administration of PUMA adenovirus increases thesensitivity of esophageal cancer cells to anticancer drugs. Cancer Biol Ther. 2006. 5(4):380-5.
    [1]段国升.脑胶质瘤临床治疗的进展.中华神经外科杂志. 2004. 20(2): 85-87.
    [2] Louis DN. Molecular pathology of malignant gliomas. Annu Rev Pathol. 2006. 1: 97-117.
    [3] Furnari FB, Fenton T, Bachoo RM, et al. Malignant astrocytic glioma: genetics, biology,and paths to treatment. Genes Dev. 2007. 21(21): 2683-710.
    [4] Erpolat OP, Akmansu M, Goksel F, Bora H, Yaman E, Buyukberber S. Outcome of newlydiagnosed glioblastoma patients treated by radiotherapy plus concomitant and adjuvanttemozolomide: a long-term analysis. Tumori. 2009. 95(2): 191-7.
    [5] Minniti G, De Sanctis V, Muni R, et al. Radiotherapy plus concomitant and adjuvanttemozolomide for glioblastoma in elderly patients. J Neurooncol. 2008. 88(1): 97-103.
    [6] Takeshima H, Sawamura Y, Gilbert MR, Van Meir EG. Application of advances inmolecular biology to the treatment of brain tumors. Curr Oncol Rep. 2000. 2(5): 425-33.
    [7] Ueki K, Nishikawa R, Nakazato Y, et al. Correlation of histology and molecular geneticanalysis of 1p, 19q, 10q, TP53, EGFR, CDK4, and CDKN2A in 91 astrocytic andoligodendroglial tumors. Clin Cancer Res. 2002. 8(1): 196-201.
    [8] Liang XJ, Aszalos A. Multidrug transporters as drug targets. Curr Drug Targets. 2006.7(8): 911-21.
    [9] Mimeault M, Hauke R, Batra SK. Recent advances on the molecular mechanismsinvolved in the drug resistance of cancer cells and novel targeting therapies. ClinPharmacol Ther. 2008. 83(5): 673-91.
    [10] Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinesehamster ovary cell mutants. Biochim Biophys Acta. 1976. 455(1): 152-62.
    [11] Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependenttransporters. Nat Rev Cancer. 2002. 2(1): 48-58.
    [12] Arnaudeau C, Lundin C, Helleday T. DNA double-strand breaks associated withreplication forks are predominantly repaired by homologous recombination involving anexchange mechanism in mammalian cells. J Mol Biol. 2001. 307(5): 1235-45.
    [13] Sharma RA, Dianov GL. Targeting base excision repair to improve cancer therapies. MolAspects Med. 2007. 28(3-4): 345-74.
    [14] Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev PharmacolToxicol. 2005. 45: 51-88.
    [15] Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy.Oncogene. 2007. 26(9): 1324-37.
    [16] Dive C. Avoidance of apoptosis as a mechanism of drug resistance. J Intern Med Suppl.1997. 740: 139-45.
    [17]范益民,王宏勤,李宝玉.人脑胶质瘤细胞多药耐药性的形成及其耐药特性的研究.中华神经外科杂志. 1999. 15(2): 86.
    [18]田耀辉,姚鑫,杨玉山,陈步东,蔡邵帅,乔婕.人脑胶质瘤组织中耐药相关基因蛋白MGMT、Topo-Ⅱ、GST-π、P-gp的表达变化及意义.山东医药. 2010. (26): 75-76.
    [19] Nakagawa T, Ido K, Sakuma T, Takeuchi H, Sato K, Kubota T. Prognostic significance ofthe immunohistochemical expression of O6-methylguanine-DNA methyltransferase,P-glycoprotein, and multidrug resistance protein-1 in glioblastomas. Neuropathology.2009. 29(4): 379-88.
    [20]吴涛,文志华. MDR1、MRP基因产物在星形细胞瘤中的表达及其意义.中华实验外科杂志. 2004. (04): 93-94.
    [21]王运华,吕明,朱树干.跨膜糖蛋白和肺耐药相关蛋白在人脑胶质瘤中的表达.肿瘤防治杂志. 2001. (05): 464-466.
    [22]杨转移,邓永文,方加胜等.脑胶质瘤和正常脑组织中MGMT、LRP和TopoⅡα的表达及其意义.医学临床研究. 2008. (03): 393-396.
    [23]孙淑清,李桂林,苏玉金等.脑胶质瘤中P170、TOPⅡ表达与其增殖活性关系的研究.中国康复理论与实践. 2008. (04): 349-351.
    [24]陈晋,程远,万敬员.蛋白激酶Cα在人神经胶质瘤耐药细胞株凋亡中的作用.中国神经肿瘤杂志. 2009. (02): 82-85.
    [25]陈新军,吴勉云,曹长军.人脑胶质瘤金属硫蛋白表达及其意义.中国临床神经外科杂志. 2003. (05): 47-49.
    [26]吴涛,袁先厚.脑胶质瘤化疗多药耐药机制的研究进展.肿瘤防治研究. 2004. (08):518-520.
    [27]梅文忠,何理盛.谷胱甘肽S转移酶л在脑原发性胶质瘤中表达的临床意义.福建医药杂志. 2004. (04): 117-118+111.
    [28] Erickson LC. The role of O-6 methylguanine DNA methyltransferase (MGMT) in drugresistance and strategies for its inhibition. Semin Cancer Biol. 1991. 2(4): 257-65.
    [29] Jin P, Zhang QL, Liu FS, et al. Establishment of drug-resistance cell line of human gliomamediated by MGMT. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2002. 24(6): 596-600.
    [30] Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit fromtemozolomide in glioblastoma. N Engl J Med. 2005. 352(10): 997-1003.
    [31] Sugasawa K, Ng JM, Masutani C, et al. Xeroderma pigmentosum group C proteincomplex is the initiator of global genome nucleotide excision repair. Mol Cell. 1998. 2(2):223-32.
    [32] Chen H, Shao C, Shi H, Mu Y, Sai K, Chen Z. Single nucleotide polymorphisms andexpression of ERCC1 and ERCC2 vis-a-vis chemotherapy drug cytotoxicity in humanglioma. J Neurooncol. 2007. 82(3): 257-62.
    [33] Chen ZP, Malapetsa A, Marcantonio D, Mohr G, Brien S, Panasci LC. Correlation ofchloroethylnitrosourea resistance with ERCC-2 expression in human tumor cell lines asdetermined by quantitative competitive polymerase chain reaction. Cancer Res. 1996.56(11): 2475-8.
    [34]潘强,杨学军.胶质瘤化疗药物耐药性分子机制的研究进展.中国临床神经外科杂志. 2010. (02): 118-122.
    [35] Fink D, Zheng H, Nebel S, et al. In vitro and in vivo resistance to cisplatin in cells thathave lost DNA mismatch repair. Cancer Res. 1997. 57(10): 1841-5.
    [36] Rellecke P, Kuchelmeister K, Schachenmayr W, Schlegel J. Mismatch repair proteinhMSH2 in primary drug resistance in in vitro human malignant gliomas. J Neurosurg.2004. 101(4): 653-8.
    [37] Cahill DP, Levine KK, Betensky RA, et al. Loss of the mismatch repair protein MSH6 inhuman glioblastomas is associated with tumor progression during temozolomidetreatment. Clin Cancer Res. 2007. 13(7): 2038-45.
    [38] Maxwell JA, Johnson SP, McLendon RE, et al. Mismatch repair deficiency does notmediate clinical resistance to temozolomide in malignant glioma. Clin Cancer Res. 2008.14(15): 4859-68.
    [39] Green DR, Kroemer G. Pharmacological manipulation of cell death: clinical applicationsin sight. J Clin Invest. 2005. 115(10): 2610-7.
    [40] McCubrey JA, Steelman LS, Abrams SL, et al. Roles of the RAF/MEK/ERK andPI3K/PTEN/AKT pathways in malignant transformation and drug resistance. AdvEnzyme Regul. 2006. 46: 249-79.
    [41] Cordo-Russo RI, Alaniz LD, Saccodossi N, et al. Hyaluronan induces migration ofmultidrug-resistant lymphoma cell lines in vitro through Tiam1 activation by aPI3K-dependent mechanism. Leuk Res. 2010. 34(11): 1525-32.
    [42] Roepe PD. pH and multidrug resistance. Novartis Found Symp. 2001. 240: 232-47;discussion 247-50, 265-8.
    [43] Iwadate Y, Fujimoto S, Tagawa M, et al. Association of p53 gene mutation with decreasedchemosensitivity in human malignant gliomas. Int J Cancer. 1996. 69(3): 236-40.
    [44] Li S, Jiang T, Li G, Wang Z. Impact of p53 status to response of temozolomide in lowMGMT expression glioblastomas: preliminary results. Neurol Res. 2008. 30(6): 567-70.
    [45] Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B. PUMA induces the rapid apoptosisof colorectal cancer cells. Mol Cell. 2001. 7(3): 673-82.
    [46] Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell.2001. 7(3): 683-94.
    [47] Han J, Flemington C, Houghton AB, et al. Expression of bbc3, a pro-apoptotic BH3-onlygene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci U S A.2001. 98(20): 11318-23.
    [48] Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L. PUMA mediates the apoptoticresponse to p53 in colorectal cancer cells. Proc Natl Acad Sci U S A. 2003. 100(4):1931-6.
    [49] Gu J, Zhang L, Swisher SG, Liu J, Roth JA, Fang B. Induction of p53-regulated genes inlung cancer cells: implications of the mechanism for adenoviral p53-mediated apoptosis.Oncogene. 2004. 23(6): 1300-7.
    [50]王新颖,何美蓉,李明,姜泊. PUMA在奥沙利铂治疗大肠癌中作用机制的实验研究.医学研究生学报. 2007. (04): 366-369.
    [51] Karst AM, Dai DL, Martinka M, Li G. PUMA expression is significantly reduced inhuman cutaneous melanomas. Oncogene. 2005. 24(6): 1111-6.
    [52] Ito H, Kanzawa T, Miyoshi T, et al. Therapeutic efficacy of PUMA for malignant gliomacells regardless of p53 status. Hum Gene Ther. 2005. 16(6): 685-98.
    [53] Wang H, Qian H, Yu J, et al. Administration of PUMA adenovirus increases thesensitivity of esophageal cancer cells to anticancer drugs. Cancer Biol Ther. 2006. 5(4):380-5.
    [54] Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Humancortical glial tumors contain neural stem-like cells expressing astroglial and neuronalmarkers in vitro. Glia. 2002. 39(3): 193-206.
    [55] Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in humanbrain tumors. Cancer Res. 2003. 63(18): 5821-8.
    [56] Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiatingcells. Nature. 2004. 432(7015): 396-401.
    [57] Beier D, Hau P, Proescholdt M, et al. CD133(+) and CD133(-) glioblastoma-derivedcancer stem cells show differential growth characteristics and molecular profiles. CancerRes. 2007. 67(9): 4010-5.
    [58] Joo KM, Kim SY, Jin X, et al. Clinical and biological implications of CD133-positive andCD133-negative cells in glioblastomas. Lab Invest. 2008. 88(8): 808-15.
    [59] Liu Q, Nguyen DH, Dong Q, et al. Molecular properties of CD133+ glioblastoma stemcells derived from treatment-refractory recurrent brain tumors. J Neurooncol. 2009. 94(1):1-19.
    [60] Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance ofCD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006. 5: 67.
    [61] Zeppernick F, Ahmadi R, Campos B, et al. Stem cell marker CD133 affects clinicaloutcome in glioma patients. Clin Cancer Res. 2008. 14(1): 123-9.
    [62] Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance bypreferential activation of the DNA damage response. Nature. 2006. 444(7120): 756-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700