MDM4在人脑胶质母细胞瘤中的表达与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     脑胶质瘤在成人中枢神经系统肿瘤中约占颅内肿瘤的40-50%,脑胶质瘤呈弥漫性、侵袭性生长,预后较差、平均生存期较短。目前以手术切除、放射治疗、化学治疗等综合性治疗。但治疗效果并不理想。特别是胶质母细胞瘤(WHOⅣ级)平均生存期约1年左右。
     化疗是胶质瘤治疗重要辅助手段,但相当部分胶质瘤易对化学治疗产生耐药性,无法达到理想疗效,胶质瘤细胞对化疗药物产生耐药性成为了对胶质瘤进行化疗的重大阻碍。临床上常可见相同病理级别、手术切除程度,并均行放射治疗和化学治疗的的患者预后却不尽相同。这种生存时间差异很有可能与个体对放化疗敏感程度不同相关。但目前针对人脑胶质瘤的化疗耐药相关靶标及分子机制尚未被完全阐明,现阶段认为恶性胶质瘤化疗的耐药机制主要与以下几个方面有关:(1)O~6-甲基鸟嘌呤-DNA-甲基转移酶(O~6-Methylguanine Methyltransferase,MGMT);(2)错配修复;(3)多腺苷二磷酸多聚酶(Poly(ADP-ribose)polymerase);(4)凋亡相关基因;(5)转运蛋白。
     我们前期工作通过对胶质瘤病例进行基因芯片检测和临床随访,根据生存时间对芯片数据进行聚类分析,并依据基因与疾病相关数据库,通过生物信息学技术筛选与胶质瘤化疗耐药相关的差异基因,这些差异表达基因可能参与了胶质瘤细胞对化疗敏感性的机制,为后续临床化疗方案的个体化制定和分子靶向化疗提供实验基础。鼠双微基因4(Mouse double minute 4,MDM4)是前期由基因芯片行生物信息分析后筛选出的在生存期长短中有显著差异,并与化疗药物相关的其中一条基因。
     MDM4是p53的一个关键调节因子,通过调控p53的转录功能或线粒体途径来发挥影响细胞凋亡的作用。泛素特异性蛋白酶2a(Ubiquitin-specifc protease 2a,USP2a)是一种去泛素化酶(Deubiquitinating enzymes,DUBs) ,MDM4是USP2a的一种底物。MDM4和USP2a在生存期长的临床标本中比在生存期短的临床标本中表达高,通过患者预后指标的统计学分析表明,在胶质母细胞瘤中,MDM4与患者的生存时间呈正相关;在脑胶质瘤患者的临床标本和细胞株中,MDM4和USP2a能够发生免疫共沉淀形成复合物,MDM4和p53Ser46~P共定位于线粒体中;在胶质瘤细胞株U87MG中,在人工诱导凋亡条件下,MDM4促进凋亡依赖于p53线粒体通路,而非依赖于p21。USP2a具有促进MDM4稳定性的作用,在USP2a稳定MDM4后,通过p53依赖性线粒体通路促进了UV照射后的U87MG细胞凋亡。
     第一部分MDM4在人脑胶质母细胞瘤组织中的表达及意义
     目的:探讨在人脑胶质母细胞瘤中MDM4的mRNA水平表达及蛋白水平表达及意义。
     方法:采用实时荧光定量PCR的方法检测MDM4的mRNA表达水平,通过Western blot检测MDM4的蛋白表达水平。并采用免疫组化的方法检测MDM4在胶质母细胞瘤中的表达,并分析MDM4的蛋白表达与患者生存时间的关系及意义。
     结果:1、在人脑胶质母细胞瘤中,MDM4基因的实时荧光定量PCR结果显示在预后较差的患者胶质瘤组织和预后较好的胶质瘤标本中MDM4 mRNA相对表达水平无显著性差异;2、蛋白免疫印迹提示预后良好组中MDM4的蛋白表达较预后较差组高;在生存期长的患者样本的线粒体中MDM4表达比生存期短的患者高,线粒体及胞质中p53Ser46磷酸化升高,线粒体中细胞色素C(Cytochrome C,Cytc)表达减少;3、在人脑胶质母细胞瘤中USP2a与MDM4能够在胞质中发生免疫共沉淀,MDM4与p53Ser46~P能够在线粒体中发生免疫共沉淀;4、免疫组化实验发现,MDM4蛋白主要表达于阳性染色细胞(呈棕黄色显色细胞)的细胞浆中,MDM4高表达的患者生存期较低表达的患者生存期长,MDM4阳性表达与USP2a和p53Ser46~P表达存在相关性,与p53未发现显著性相关;
     结论:1、在人脑胶质母细胞瘤中,USP2a与MDM4可能是在胞质中发生作用;MDM4与p53Ser46~P可能是在线粒体中发生作用;2、MDM4蛋白水平的上调很有可能是通过转录后调控而提高,推测在胶质瘤中MDM4上调是通过USP2a上调导致的结果,USP2a—MDM4—p53Ser46~P这条通路在人胶质母细胞瘤中可能是存在的;3、发生细胞凋亡时,线粒体外膜的通透性增加,Cytc由线粒体内部向胞质中释放进一步促进凋亡的发生;4、MDM4为胶质母细胞瘤患者预后的独立预测因子。
     第二部分MDM4在人脑胶质瘤细胞株U87MG中的表达及意义
     目的:研究MDM4在人脑胶质瘤细胞株U87MG中的表达及其与USP2a和p53等相关蛋白的作用,为进一步研究MDM4在胶质瘤中作用的分子机制提供基础。
     方法:采用免疫共沉淀和免疫荧光激光共聚焦的方法检测MDM4在人脑胶质母细胞瘤细胞株中的表达及其与USP2a和p53等相关蛋白的关系。
     结果:1、在U87MG细胞系中通过内源性免疫共沉淀(Co-IP)发现,在MDM4沉淀下来的全细胞组分(whole cell lysate,WCL)中能够检测到USP2a蛋白;在MDM4沉淀下来的线粒体蛋白组分中,未检测到USP2a蛋白,但能够检测到p53Ser46~P蛋白;用紫外线照射诱导U87MG细胞凋亡条件下,提取线粒体蛋白行内源性免疫共沉淀发现,U87MG细胞经UV照射后MDM4与Bcl-2和p53Ser46~P结合较正常细胞生长环境下明显增强;2、行U87MG细胞内激光共聚焦发现,在U87MG细胞中过表达GFP-p53、Flag-MDM4及Myc-USP2a后,MDM4在胞质中能够与p53及USP2a发生共定位;过表达Flag-MDM4后,发现MDM4与内源性p53Ser46~P也可发生共定位。
     结论:1、在U87MG细胞系中,MDM4与USP2a在胞质中线粒体外结合,MDM4能与p53Ser46~P在线粒体中发生结合;MDM4能与p53Ser46~P、USP2a发生共定位;2、在U87MG细胞中,USP2a与MDM4具备发生相互作用的条件,MDM4与p53Ser46~P也具备发生相互作用的条件。
     第三部分MDM4在人胶质瘤细胞株U87MG中对细胞凋亡的影响及作用机制研究
     目的:在人脑胶质瘤中研究MDM4在细胞凋亡中作用及分子通路,探讨其发挥肿瘤调控作用的机制。
     方法:在体外细胞系中采用慢病毒干扰及过表达各相关靶标,观察MDM4与凋亡通路中各蛋白间的关系。
     结果:1、在紫外线诱导U87MG细胞凋亡条件下,过表达USP2a后,细胞凋亡明显增加;敲减USP2a后,细胞凋亡减少;在过表达USP2a时敲减p53,细胞凋亡明显减少;2、在正常生长状态下的U87MG细胞中,过表达USP2a时,MDM4蛋白水平上调,但MDM2和p53无明显变化;敲减USP2a后,MDM4蛋白水平明显减低,MDM2也有所降低,但p53水平无明显降低;3、在正常生长状态下的U87MG细胞中,过表达USP2a时引起线粒体中p53和p53Ser46~P蛋白水平升高;过表达p21对线粒体中p53不产生影响,敲减p21不能阻断USP2a对线粒体中p53的作用;敲减MDM4能阻断USP2a对线粒体中p53的作用;4、在紫外线诱导U87MG细胞凋亡条件下,敲减USP2a后Bcl-2蛋白表达升高、Caspase3蛋白表达降低;而在敲减USP2a时过表达MDM4,能够阻断Bcl-2和Caspase3发生变化;5、在紫外线诱导U87MG细胞凋亡条件下,过表达MDM4后,细胞凋亡明显增加;当敲减MDM4后,细胞凋亡明显减少;6、在紫外线诱导U87MG细胞凋亡条件下,过表达MDM4同时敲减p53与单纯过表达MDM4相比,细胞凋亡比例明显减少;7、在紫外线诱导U87MG细胞凋亡条件下,敲减MDM4后,细胞线粒体中p53和p53Ser46~P表达水平明显降低,同时伴线粒体中细胞色素C明显增多、胞质中细胞色素C明显减少;8、在紫外线诱导U87MG细胞凋亡条件下,敲减p21细胞凋亡比例无明显变化;9、在紫外线诱导U87MG细胞凋亡条件下,过表达MDM4时,Bcl-2表达减少,Caspase3表达升高;而在过表达MDM4同时敲减p53时能够阻断Bcl-2和Caspase3发生变化;在过表达MDM4同时敲减p21与单纯过表达MDM4相比, Bcl-2、Caspase3表达无明显变化;过表达MDM2对Bcl-2和Caspase3无明显影响;
     结论:1、在紫外线诱导U87MG细胞凋亡条件下,USP2a促凋亡作用是通过p53介导的;2、在U87MG细胞正常生长状态下,USP2a对MDM4有上调作用,但对p53无明显作用,说明USP2a有稳定MDM4蛋白水平的作用,而对全细胞组分中的p53总蛋白表达并未产生明显影响;3、在U87MG细胞正常生长状态下,USP2a对线粒体中MDM4有上调作用,但对线粒体中p53和p53Ser46~P有上调作用,p21对线粒体中p53无影响。这说明USP2a对线粒体中p53的影响未通过p21发生作用,而可能通过MDM4介导对p53产生作用的;4、在紫外线诱导U87MG细胞凋亡条件下,敲减USP2a引起凋亡通路中Bcl-2表达升高、Caspase3降低,可能是通过MDM4介导发生作用的;5、在紫外线诱导U87MG细胞凋亡条件下,MDM4的表达可能与细胞凋亡呈正相关;6、在紫外线诱导U87MG细胞凋亡条件下,敲减p53能够阻断MDM4的促凋亡作用,MDM4的促凋亡作用需要通过p53来完成;7、在紫外线诱导U87MG细胞凋亡条件下,敲减MDM4后引起线粒体凋亡通路中线粒体p53、p53Ser46~P和细胞色素C的变化。这提示在致命性应激条件下,MDM4是在线粒体中与p53Ser46~P发生作用,并影响细胞色素C的改变,敲减MDM4使线粒体中p53Ser46磷酸化水平下降,细胞色素C由线粒体向外释放减少,抑制了细胞凋亡;8、在紫外线诱导U87MG细胞凋亡条件下,敲减p21对细胞凋亡无明显影响;9、在紫外线诱导U87MG细胞凋亡条件下,MDM4对凋亡相关蛋白(Bcl-2、Caspase3)产生作用是通过p53起作用而不是通过p21起作用;过表达MDM2对Bcl-2和Caspase3无明显影响;
     综上所述,我们认为在紫外线诱导U87MG细胞凋亡条件下,MDM4促进凋亡依赖于p53线粒体通路,而非依赖于p21。USP2a具有促进MDM4稳定性的作用,在USP2a稳定MDM4后,通过p53依赖性线粒体通路促进了UV照射后的U87细胞凋亡。
Background
     Glioma in the adult central nervous system tumors account for about 40-50% of intracranial tumors, gliomas showed diffuse, invasive growth and poor prognosis, with an average survival time is short. Current treatment programs include surgery, radiation therapy, chemotherapy, and other comprehensive treatment. But the treatment is not satisfactory. In particular, the average survival time of glioblastoma (WHOⅣ) patients were approximately 1 year.
     Chemotherapy is an important adjunct to the treatment of glioma, but a considerable part of glioma which easily develop resistance to chemotherapy can not achieve the desired effect, chemotherapeutic drug resistance of glioma has become the major obstacles . We Often see the prognosis for patients with the same clinical pathological grade, extent of surgical resection, and underwent radiation therapy and chemotherapy is not the same. This difference in survival time with the individual's probably depended on sensitivity to chemotherapy. But molecular mechanisms of glioma chemotherapy resistance and related target have not yet been fully elucidated. At this stage, the mechanisms of resistance to chemotherapy of malignant glioma are as follows: ( 1 ) O~6-Methylguanine Methyltransferase(MGMT);(2) Mismatch Repair;(3) Poly(ADP-ribose)polymerase;(4)Apoptosis-Regulating Genes;(5)Transporter Proteins.
     Our previous work carried out some genes which were associated with chemotherapy resistance by gene chip detection of glioma cases and clinical follow-up, MDM4 (Mouse double minute 4) is one of chemotherapy-related genes which were selected from the gene chip analysis of biological information.
     MDM4 is a key regulator of p53, which was affected on apoptosis through regulation of p53 transcriptional function or the mitochondrial pathway. USP2a (Ubiquitin-specifc protease 2a) is one of Deubiquitinating enzymes(DUBs), MDM4 is a substrate of USP2a. the protein expressions of MDM4 and USP2a in the clinical specimens from longer survival patients were higher than that in clinical specimens from shorter survival patients. In clinical glioma specimens and cell lines, MDM4 and USP2a can happen immunoprecipitation and form complex. MDM4 and p53Ser46~P were co-localized in the mitochondria. In the artificial induction of apoptosis conditions, MDM4 promote mitochondrial pathway of apoptosis depends on p53, but not p21. USP2a can promote stability of MDM4.
     Part I: Study on the expression and significance of MDM4 in human glioblastoma
     Objective: To investigate the expression and significance of MDM4 mRNA and protein in brain glioblastoma.
     Methods: The mRNA expression of MDM4 in 8 cases of human glioblastoma tissues were detected with quantitative real-time PCR. The protein expression in these samples were detected using Western blot. The protein location and relationship of MDM4 and prognosis of patients were detected by IHC.
     Results: The expression of MDM4 mRNA was no difference in patient of poor prognosis and in patient of good prognosis. The expression of MDM4 protein is higher in patient of good prognosis than in patient of poor prognosis. Survival in patients with MDM4 high expression were longer than in patients with MDM4 low expression. The positive expression of MDM4 was associated with USP2a,but not p53.
     Conclusion: In human glioblastoma of brain, USP2a and MDM4 may take effect with each other in the cytoplasm; MDM4 and p53Ser46~P may take effect with each other in the mitochondria. The elevated levels of MDM4 protein expression may be due to post-transcriptional regulation by USP2a. MDM4 was an independent predictor of prognosis of glioblastoma patients.
     PartⅡ: Study on the expression of MDM4 and relationship with USP2a and p53 in human glioblastoma cell line U87MG
     Objective: To detect the expression of MDM4 and relationship with USP2a and p53.
     Methods: By immunoprecipitation and confocal immunofluorescence was used to detect the expression of MDM4 and relationship with USP2a and p53.
     Results: In the U87MG cell line, MDM4 could combined with USP2a in the cytoplasm, MDM4 combined with p53Ser46~P in the mitochondria; MDM4 was co-localized with p53Ser46~P, USP2a. Conclusion: USP2a and MDM4 could interact with each other, and MDM4 and p53Ser46~P could also interact with each other in the U87MG cell line.
     Part III Study on effects of MDM4 on apoptosis of U87MG and mechanism of it
     Objective: To investigate effects of MDM4 on apoptosis of U87MG and to explore the mechanism of regulating tumors.
     Methods: In vitro cell lines, to observe the relationship between MDM4 and the various proteins on the apoptosis pathway using lentiviral interference and overexpression of relevant target.
     Results: 1. Under the conditions of UV induced U87MG cells apoptosis, after overexpression of USP2a, apoptosis increased significantly; after USP2a knocked down, apoptosis decreased; p53 knocked down can block the effect of it. 2. Under condition of normal growth of U87MG cells, after overexpression of USP2a, the expression of MDM4 protein increased significantly; after USP2a knocked down, the expression of MDM4 protein decreased. 3. Under condition of normal growth of U87MG cells, after overexpression of USP2a , the expression of p53 and p53Ser46~P proteins in the mitochondria increased; MDM4 knocked down can block the effect of it,but not p21. 4. Under the condition of UV induced U87MG cells apoptosis, after USP2a knocked down, the expression of Bcl-2 protein increased and the expression of Caspase3 protein decreased; Overexpression of MDM4 can block the effect of it. 5. Under the condition of UV induced U87MG cells apoptosis, after overexpression of MDM4, apoptosis increased significantly; after MDM4 knocked down, apoptosis decreased; p53 knocked down can block the effect of it. 6. Under the condition of UV induced U87MG cells apoptosis, after USP2a knocked down, the expression of p53, p53Ser46~P and Cytochrome C proteins in the mitochondria increased and the expression of Cytochrome C protein which was outside of mitochondria decreased.
     7. Under the condition of UV induced U87MG cells apoptosis, after p21 knocked down, apoptosis did not change significantly. 8. Under the condition of UV induced U87MG cells apoptosis, after overexpression of MDM4 , the expression of Bcl-2 protein decreased and the expression of Caspase3 protein increased; p53 knocked down can block the effect of it,but not p21. After Overexpression of MDM2, the expression of Bcl-2 protein and Caspase3 protein did not change significantly.
     Conclusion: Under the condition of UV induced U87MG cells apoptosis, MDM4 could promote apoptosis by its effects on p53 mitochondrial pathway; USP2a could promote stability of MDM4.
引文
[1] Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW,Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007, 114(2): 97-109.
    [2] Amerik AY,Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta. 2004, 1695(1-3): 189-207.
    [3] Marine JC, Francoz S, Maetens M, Wahl G, Toledo F,Lozano G. Keeping p53 in check: essential and synergistic functions of MDM2 and MDM4. Cell Death Differ. 2006, 13(6): 927-934.
    [4] Toledo F,Wahl GM. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int J Biochem Cell Biol. 2007, 39(7-8): 1476-1482.
    [5] Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V, Jochemsen AG,Lozano G. Rescue of embryonic lethality in MDM4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet. 2001, 29(1): 92-95.
    [6] Finch RA, Donoviel DB, Potter D, Shi M, Fan A, Freed DD, Wang CY, Zambrowicz BP, Ramirez-Solis R, Sands AT,Zhang N. mdmx is a negative regulator of p53 activity in vivo. Cancer Res. 2002, 62(11): 3221-3225.
    [7] Migliorini D, Lazzerini Denchi E, Danovi D, Jochemsen A, Capillo M, Gobbi A, Helin K, Pelicci PG,Marine JC. MDM4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol Cell Biol. 2002, 22(15): 5527-5538.
    [8] Steinman HA, Hoover KM, Keeler ML, Sands AT,Jones SN. Rescue of MDM4-deficient mice by MDM2 reveals functional overlap of MDM2 and MDM4 in development. Oncogene. 2005, 24(53): 7935-7940.
    [9] Mancini F, Gentiletti F, D'Angelo M, Giglio S, Nanni S, D'Angelo C, Farsetti A, Citro G, Sacchi A, Pontecorvi A,Moretti F. MDM4 (MDMX) overexpression enhances stabilization of stress-induced p53 and promotes apoptosis. J Biol Chem. 2004, 279(9): 8169-8180.
    [10] Mancini F, Di Conza G, Pellegrino M, Rinaldo C, Prodosmo A, Giglio S, D'Agnano I, Florenzano F, Felicioni L, Buttitta F, Marchetti A, Sacchi A, Pontecorvi A, Soddu S,Moretti F. MDM4 (MDMX) localizes at the mitochondria and facilitates the p53-mediated intrinsic-apoptotic pathway. EMBO J. 2009, 28(13): 1926-1939.
    [11] Vogelstein B, Lane D,Levine AJ. Surfing the p53 network. Nature. 2000, 408(6810): 307-310.
    [12] Kruse JP,Gu W. Modes of p53 regulation. Cell. 2009, 137(4): 609-622.
    [13] Greenblatt MS, Bennett WP, Hollstein M,Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994, 54(18): 4855-4878.
    [14] Chipuk JE,Green DR. Dissecting p53-dependent apoptosis. Cell Death Differ. 2006, 13(6): 994-1002.
    [15] Marchenko ND, Zaika A,Moll UM. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem. 2000, 275(21): 16202-16212.
    [16] Wilkinson KD. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol. 2000, 11(3): 141-148.
    [17] Allende-Vega N, Sparks A, Lane DP,Saville MK. MdmX is a substrate for the deubiquitinating enzyme USP2a. Oncogene. 2010, 29(3): 432-441.
    [1] Ohgaki H,Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol. 2005, 109(1): 93-108.
    [2] Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW,Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007, 114(2): 97-109.
    [3] Hunter C, Smith R, Cahill DP, Stephens P, Stevens C, Teague J, Greenman C, Edkins S, Bignell G, Davies H, O'Meara S, Parker A, Avis T, Barthorpe S, Brackenbury L, Buck G, Butler A, Clements J, Cole J, Dicks E, Forbes S, Gorton M, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Kosmidou V, Laman R, Lugg R, Menzies A, Perry J, Petty R, Raine K, Richardson D, Shepherd R, Small A, Solomon H, Tofts C, Varian J, West S, Widaa S, Yates A, Easton DF, Riggins G, Roy JE, Levine KK, Mueller W, Batchelor TT, Louis DN, Stratton MR, Futreal PA,Wooster R. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res. 2006, 66(8): 3987-3991.
    [4] Stupp R, Hegi ME, Gilbert MR,Chakravarti A. Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol. 2007, 25(26): 4127-4136.
    [5] Stewart LA. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet. 2002, 359(9311): 1011-1018.
    [6] Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E,Mirimanoff RO. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005, 352(10): 987-996.
    [7] Amerik AY,Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta. 2004, 1695(1-3): 189-207.
    [8] Marine JC, Francoz S, Maetens M, Wahl G, Toledo F,Lozano G. Keeping p53 in check: essential and synergistic functions of MDM2 and MDM4. Cell Death Differ. 2006, 13(6): 927-934.
    [9] Toledo F,Wahl GM. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int J Biochem Cell Biol. 2007, 39(7-8): 1476-1482.
    [10] Mancini F, Gentiletti F, D'Angelo M, Giglio S, Nanni S, D'Angelo C, Farsetti A, Citro G, Sacchi A, Pontecorvi A,Moretti F. MDM4 (MDMX) overexpression enhances stabilization of stress-induced p53 and promotes apoptosis. J Biol Chem. 2004, 279(9): 8169-8180.
    [11] Mancini F, Di Conza G, Pellegrino M, Rinaldo C, Prodosmo A, Giglio S, D'Agnano I, Florenzano F, Felicioni L, Buttitta F, Marchetti A, Sacchi A, Pontecorvi A, Soddu S,Moretti F. MDM4 (MDMX) localizes at the mitochondria and facilitates the p53-mediated intrinsic-apoptotic pathway. EMBO J. 2009, 28(13): 1926-1939.
    [12] Riemenschneider MJ, Buschges R, Wolter M, Reifenberger J, Bostrom J, Kraus JA, Schlegel U,Reifenberger G. Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without Tp53 mutation or MDM2 amplification. Cancer Res. 1999, 59(24): 6091-6096.
    [13] Riemenschneider MJ, Knobbe CB,Reifenberger G. Refined mapping of 1q32 amplicons in malignant gliomas confirms MDM4 as the main amplification target. Int J Cancer. 2003, 104(6): 752-757.
    [14] Kruse JP,Gu W. Modes of p53 regulation. Cell. 2009, 137(4): 609-622.
    [15] Vogelstein B, Lane D,Levine AJ. Surfing the p53 network. Nature. 2000, 408(6810): 307-310.
    [16] Allende-Vega N, Sparks A, Lane DP,Saville MK. MdmX is a substrate for the deubiquitinating enzyme USP2a. Oncogene. 2010, 29(3): 432-441.
    [17] Bellail AC, Hunter SB, Brat DJ, Tan C,Van Meir EG. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol. 2004, 36(6): 1046-1069.
    [18] Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC, Whittle IR, Jaaskelainen J,Ram Z. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol. 2003, 5(2): 79-88.
    [19] Brem H, Piantadosi S, Burger PC, Walker M, Selker R, Vick NA, Black K, Sisti M, Brem S, Mohr G,et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet. 1995, 345(8956): 1008-1012.
    [20] Xu GW, Mymryk JS,Cairncross JG. Pharmaceutical-mediated inactivation of p53 sensitizes U87MG glioma cells to BCNU and temozolomide. Int J Cancer. 2005, 116(2): 187-192.
    [21] Xu GW, Mymryk JS,Cairncross JG. Inactivation of p53 sensitizes astrocytic glioma cells to BCNU and temozolomide, but not cisplatin. J Neurooncol. 2005, 74(2): 141-149.
    [22] Batista LF, Roos WP, Christmann M, Menck CF,Kaina B. Differential sensitivity of malignant glioma cells to methylating and chloroethylating anticancer drugs: p53 determines the switch by regulating xpc, ddb2, and DNA double-strand breaks. Cancer Res. 2007, 67(24): 11886-11895.
    [23] Pegg AE. Repair of O(6)-alkylguanine by alkyltransferases. Mutat Res. 2000, 462(2-3): 83-100.
    [24] Sariban E, Kohn KW, Zlotogorski C, Laurent G, D'Incalci M, Day R, 3rd, Smith BH, Kornblith PL,Erickson LC. DNA cross-linking responses of human malignant glioma cell strains to chloroethylnitrosoureas, cisplatin, and diaziquone. Cancer Res. 1987, 47(15): 3988-3994.
    [25] Margison GP, Santibanez Koref MF,Povey AC. Mechanisms of carcinogenicity/chemotherapy by O6-methylguanine. Mutagenesis. 2002, 17(6): 483-487.
    [26] Kaina B. Mechanisms and consequences of methylating agent-induced SCEs and chromosomal aberrations: a long road traveled and still a far way to go. Cytogenet Genome Res. 2004, 104(1-4): 77-86.
    [27] Pegg AE,Byers TL. Repair of DNA containing O6-alkylguanine. FASEB J. 1992, 6(6): 2302-2310.
    [28] Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC,Stupp R. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005, 352(10): 997-1003.
    [29] Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, BaylinSB,Herman JG. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000, 343(19): 1350-1354.
    [30] Zawlik I, Vaccarella S, Kita D, Mittelbronn M, Franceschi S,Ohgaki H. Promoter methylation and polymorphisms of the MGMT gene in glioblastomas: a population-based study. Neuroepidemiology. 2009, 32(1): 21-29.
    [31] Paz MF, Yaya-Tur R, Rojas-Marcos I, Reynes G, Pollan M, Aguirre-Cruz L, Garcia-Lopez JL, Piquer J, Safont MJ, Balana C, Sanchez-Cespedes M, Garcia-Villanueva M, Arribas L,Esteller M. CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res. 2004, 10(15): 4933-4938.
    [32] Criniere E, Kaloshi G, Laigle-Donadey F, Lejeune J, Auger N, Benouaich-Amiel A, Everhard S, Mokhtari K, Polivka M, Delattre JY, Hoang-Xuan K, Thillet J,Sanson M. MGMT prognostic impact on glioblastoma is dependent on therapeutic modalities. J Neurooncol. 2007, 83(2): 173-179.
    [33] Dolan ME, Moschel RC,Pegg AE. Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc Natl Acad Sci U S A. 1990, 87(14): 5368-5372.
    [34] Dolan ME,Pegg AE. O6-benzylguanine and its role in chemotherapy. Clin Cancer Res. 1997, 3(6): 837-847.
    [35] Belanich M, Randall T, Pastor MA, Kibitel JT, Alas LG, Dolan ME, Schold SC, Jr., Gander M, Lejeune FJ, Li BF, White AB, Wasserman P, Citron ML,Yarosh DB. Intracellular Localization and intercellular heterogeneity of the human DNA repair protein O(6)-methylguanine-DNA methyltransferase. Cancer Chemother Pharmacol. 1996, 37(6): 547-555.
    [36] Friedman HS, McLendon RE, Kerby T, Dugan M, Bigner SH, Henry AJ, Ashley DM, Krischer J, Lovell S, Rasheed K, Marchev F, Seman AJ, Cokgor I, Rich J, Stewart E, Colvin OM, Provenzale JM, Bigner DD, Haglund MM, Friedman AH,Modrich PL. DNA mismatch repair and O6-alkylguanine-DNA alkyltransferase analysis and response to Temodal in newly diagnosed malignant glioma. J Clin Oncol. 1998, 16(12): 3851-3857.
    [37] Persidis A. Cancer multidrug resistance. Nat Biotechnol. 1999, 17(1): 94-95.
    [38] Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AM,Deeley RG. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992, 258(5088): 1650-1654.
    [39] Norris MD, Bordow SB, Marshall GM, Haber PS, Cohn SL,Haber M. Expression of the gene for multidrug-resistance-associated protein and outcome in patients with neuroblastoma. N Engl J Med. 1996, 334(4): 231-238.
    [40] Hall PA, Meek D,Lane DP. p53--integrating the complexity. J Pathol. 1996, 180(1): 1-5.
    [41] Lee JM,Bernstein A. p53 mutations increase resistance to ionizing radiation. Proc Natl Acad Sci U S A. 1993, 90(12): 5742-5746.
    [42] Asgari K, Sesterhenn IA, McLeod DG, Cowan K, Moul JW, Seth P,Srivastava S. Inhibition of the growth of pre-established subcutaneous tumor nodules of human prostate cancer cells by single injection of the recombinant adenovirus p53 expression vector. Int J Cancer. 1997, 71(3): 377-382.
    [43] Yang C, Cirielli C, Capogrossi MC,Passaniti A. Adenovirus-mediated wild-type p53 expression induces apoptosis and suppresses tumorigenesis of prostatic tumor cells. Cancer Res. 1995, 55(19): 4210-4213.
    [44] Bobola MS, Tseng SH, Blank A, Berger MS,Silber JR. Role of O6-methylguanine-DNA methyltransferase in resistance of human brain tumor cell lines to the clinically relevant methylating agents temozolomide and streptozotocin. Clin Cancer Res. 1996, 2(4): 735-741.
    [45] Hayashi Y, Ueki K, Waha A, Wiestler OD, Louis DN,von Deimling A. Association of EGFR gene amplification and CDKN2 (p16/MTS1) gene deletion in glioblastoma multiforme. Brain Pathol. 1997, 7(3): 871-875.
    [46] Newcomb EW, Bhalla SK, Parrish CL, Hayes RL, Cohen H,Miller DC. Bcl-2 protein expression in astrocytomas in relation to patient survival and p53 gene status. Acta Neuropathol. 1997, 94(4): 369-375.
    [47] Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008, 455(7216): 1061-1068.
    [48] Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA, Jr., Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE,Kinzler KW. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008, 321(5897): 1807-1812.
    [49] Norden AD, Young GS, Setayesh K, Muzikansky A, Klufas R, Ross GL, Ciampa AS, Ebbeling LG, Levy B, Drappatz J, Kesari S,Wen PY. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology. 2008, 70(10): 779-787.
    [50] Shvarts A, Steegenga WT, Riteco N, van Laar T, Dekker P, Bazuine M, van Ham RC, van der Houven van Oordt W, Hateboer G, van der Eb AJ,Jochemsen AG. MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J. 1996, 15(19): 5349-5357.
    [51] Shvarts A, Bazuine M, Dekker P, Ramos YF, Steegenga WT, Merckx G, van Ham RC, van der Houven van Oordt W, van der Eb AJ,Jochemsen AG. Isolation and identification of the human homolog of a new p53-binding protein, Mdmx. Genomics. 1997, 43(1): 34-42.
    [52] McCoy MA, Gesell JJ, Senior MM,Wyss DF. Flexible lid to the p53-binding domain of human MDM2: implications for p53 regulation. Proc Natl Acad Sci U S A. 2003, 100(4): 1645-1648.
    [53] Marine JC, Dyer MA,Jochemsen AG. MDMX: from bench to bedside. J Cell Sci. 2007, 120(Pt 3): 371-378.
    [54] Bartel F, Taubert H,Harris LC. Alternative and aberrant splicing of MDM2 mRNA in human cancer. Cancer Cell. 2002, 2(1): 9-15.
    [55] Chandler DS, Singh RK, Caldwell LC, Bitler JL,Lozano G. Genotoxic stress induces coordinately regulated alternative splicing of the p53 modulators MDM2 and MDM4. Cancer Res. 2006, 66(19): 9502-9508.
    [56] Toledo F,Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer. 2006, 6(12): 909-923.
    [57] Ramos YF, Stad R, Attema J, Peltenburg LT, van der Eb AJ,Jochemsen AG. Aberrant expression of HDMX proteins in tumor cells correlates with wild-type p53. Cancer Res. 2001, 61(5): 1839-1842.
    [58] Rallapalli R, Strachan G, Cho B, Mercer WE,Hall DJ. A novel MDMX transcript expressed in a variety of transformed cell lines encodes a truncated protein with potent p53 repressive activity. J Biol Chem. 1999, 274(12): 8299-8308.
    [59] Giglio S, Mancini F, Gentiletti F, Sparaco G, Felicioni L, Barassi F, Martella C, Prodosmo A,Iacovelli S, Buttitta F, Farsetti A, Soddu S, Marchetti A, Sacchi A, Pontecorvi A,Moretti F. Identification of an aberrantly spliced form of HDMX in human tumors: a new mechanism for HDM2 stabilization. Cancer Res. 2005, 65(21): 9687-9694.
    [60] Shmueli A,Oren M. MDM2: p53's lifesaver? Mol Cell. 2007, 25(6): 794-796.
    [61] Wang B, Alam SL, Meyer HH, Payne M, Stemmler TL, Davis DR,Sundquist WI. Structure and ubiquitin interactions of the conserved zinc finger domain of Npl4. J Biol Chem. 2003, 278(22): 20225-20234.
    [62] Alam SL, Sun J, Payne M, Welch BD, Blake BK, Davis DR, Meyer HH, Emr SD,Sundquist WI. Ubiquitin interactions of NZF zinc fingers. EMBO J. 2004, 23(7): 1411-1421.
    [63] Gentiletti F, Mancini F, D'Angelo M, Sacchi A, Pontecorvi A, Jochemsen AG,Moretti F. MDMX stability is regulated by p53-induced caspase cleavage in NIH3T3 mouse fibroblasts. Oncogene. 2002, 21(6): 867-877.
    [64] Marine JC,Jochemsen AG. Mdmx as an essential regulator of p53 activity. Biochem Biophys Res Commun. 2005, 331(3): 750-760.
    [65] Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C, Teunisse A, Lam S, Ramos Y, Mohan A, Johnson D, Wilson M, Rodriguez-Galindo C, Quarto M, Francoz S, Mendrysa SM, Guy RK, Marine JC, Jochemsen AG,Dyer MA. Inactivation of the p53 pathway in retinoblastoma. Nature. 2006, 444(7115): 61-66.
    [66] Ianari A, Natale T, Calo E, Ferretti E, Alesse E, Screpanti I, Haigis K, Gulino A,Lees JA. Proapoptotic function of the retinoblastoma tumor suppressor protein. Cancer Cell. 2009, 15(3): 184-194.
    [67] Wade M,Wahl GM. Targeting MDM2 and Mdmx in cancer therapy: better living through medicinal chemistry? Mol Cancer Res. 2009, 7(1): 1-11.
    [68] Prodosmo A, Giglio S, Moretti S, Mancini F, Barbi F, Avenia N, Di Conza G, Schunemann HJ, Pistola L, Ludovini V, Sacchi A, Pontecorvi A, Puxeddu E,Moretti F. Analysis of human MDM4 variants in papillary thyroid carcinomas reveals new potential markers of cancer properties. J Mol Med. 2008, 86(5): 585-596.
    [69] Nanni S, Priolo C, Grasselli A, D'Eletto M, Merola R, Moretti F, Gallucci M, De Carli P, Sentinelli S, Cianciulli AM, Mottolese M, Carlini P, Arcelli D, Helmer-Citterich M, Gaetano C, Loda M, Pontecorvi A, Bacchetti S, Sacchi A,Farsetti A. Epithelial-restricted gene profile of primary cultures from human prostate tumors: a molecular approach to predict clinical behavior of prostate cancer. Mol Cancer Res. 2006, 4(2): 79-92.
    [70] Pizzatti L, Sa LA, de Souza JM, Bisch PM,Abdelhay E. Altered protein profile in chronic myeloid leukemia chronic phase identified by a comparative proteomic study. Biochim Biophys Acta. 2006, 1764(5): 929-942.
    [71] Mancini F, Di Conza G,Moretti F. MDM4 (MDMX) and its Transcript Variants. Curr Genomics. 2009, 10(1): 42-50.
    [72] Kupryjanczyk J, Szymanska T, Madry R, Timorek A, Stelmachow J, Karpinska G, Rembiszewska A, Ziolkowska I, Kraszewska E, Debniak J, Emerich J, Ulanska M, Pluzanska A, Jedryka M, Goluda M, Chudecka-Glaz A, Rzepka-Gorska I, Klimek M, Urbanski K, Breborowicz J, Zielinski J,Markowska J. Evaluation of clinical significance of Tp53, Bcl-2, BAX and MEK1 expression in 229 ovarian carcinomas treated with platinum-based regimen. Br J Cancer. 2003, 88(6): 848-854.
    [73] Rallapalli R, Strachan G, Tuan RS,Hall DJ. Identification of a domain within MDMX-S that isresponsible for its high affinity interaction with p53 and high-level expression in mammalian cells. J Cell Biochem. 2003, 89(3): 563-575.
    [74] Galluzzi L, Morselli E, Kepp O, Tajeddine N,Kroemer G. Targeting p53 to mitochondria for cancer therapy. Cell Cycle. 2008, 7(13): 1949-1955.
    [1] Hadjipanayis CG,Van Meir EG. Brain cancer propagating cells: biology, genetics and targeted therapies. Trends Mol Med. 2009, 15(11): 519-530.
    [2] Hadjipanayis CG,Van Meir EG. Tumor initiating cells in malignant gliomas: biology and implications for therapy. J Mol Med. 2009, 87(4): 363-374.
    [3] Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ, Tang Y, DeFrances J, Stover E, Weissleder R, Rowitch DH, Louis DN,DePinho RA. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell. 2002, 1(3): 269-277.
    [4] Li YJ, Sanson M, Hoang-Xuan K, Delattre JY, Poisson M, Thomas G,Hamelin R. Incidence of germ-line p53 mutations in patients with gliomas. Int J Cancer. 1995, 64(6): 383-387.
    [5] Batchelor TT, Betensky RA, Esposito JM, Pham LD, Dorfman MV, Piscatelli N, Jhung S, Rhee D,Louis DN. Age-dependent prognostic effects of genetic alterations in glioblastoma. Clin Cancer Res. 2004, 10(1 Pt 1): 228-233.
    [6] Gasco M,Crook T. p53 family members and chemoresistance in cancer: what we know and what we need to know. Drug Resist Updat. 2003, 6(6): 323-328.
    [7] Ohgaki H,Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007, 170(5): 1445-1453.
    [8] Toledo F,Wahl GM. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int J Biochem Cell Biol. 2007, 39(7-8): 1476-1482.
    [9] Iwakuma T,Lozano G. MDM2, an introduction. Mol Cancer Res. 2003, 1(14): 993-1000.
    [10] Reifenberger G, Liu L, Ichimura K, Schmidt EE,Collins VP. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res. 1993, 53(12): 2736-2739.
    [11] Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schuler D, Probst-Hensch NM, Maiorka PC, Baeza N, Pisani P, Yonekawa Y, Yasargil MG, Lutolf UM,Kleihues P. Genetic pathways to glioblastoma: a population-based study. Cancer Res. 2004, 64(19): 6892-6899.
    [12] Hart MG, Grant R, Garside R, Rogers G, Somerville M,Stein K. Chemotherapeutic wafers for High Grade Glioma. Cochrane Database Syst Rev. 2008, (3): CD007294.
    [13] Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA, Jr., Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ,Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE,Kinzler KW. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008, 321(5897): 1807-1812.
    [14] Weller M. Predicting response to cancer chemotherapy: the role of p53. Cell Tissue Res. 1998, 292(3): 435-445.
    [15] Xu GW, Mymryk JS,Cairncross JG. Pharmaceutical-mediated inactivation of p53 sensitizes U87MG glioma cells to BCNU and temozolomide. Int J Cancer. 2005, 116(2): 187-192.
    [16] Xu GW, Mymryk JS,Cairncross JG. Inactivation of p53 sensitizes astrocytic glioma cells to BCNU and temozolomide, but not cisplatin. J Neurooncol. 2005, 74(2): 141-149.
    [17] Biroccio A, Bufalo DD, Ricca A, D'Angelo C, D'Orazi G, Sacchi A, Soddu S,Zupi G. Increase of BCNU sensitivity by wt-p53 gene therapy in glioblastoma lines depends on the administration schedule. Gene Ther. 1999, 6(6): 1064-1072.
    [18] Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H, Whittle N, Waterfield MD, Ullrich A,Schlessinger J. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature. 1985, 313(5998): 144-147.
    [19] James CD, Carlbom E, Nordenskjold M, Collins VP,Cavenee WK. Mitotic recombination of chromosome 17 in astrocytomas. Proc Natl Acad Sci U S A. 1989, 86(8): 2858-2862.
    [20] Toledo F,Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer. 2006, 6(12): 909-923.
    [21] Levine AJ, Hu W,Feng Z. The p53 pathway: what questions remain to be explored? Cell Death Differ. 2006, 13(6): 1027-1036.
    [22] Marine JC, Francoz S, Maetens M, Wahl G, Toledo F,Lozano G. Keeping p53 in check: essential and synergistic functions of MDM2 and MDM4. Cell Death Differ. 2006, 13(6): 927-934.
    [23] Barak Y, Gottlieb E, Juven-Gershon T,Oren M. Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dev. 1994, 8(15): 1739-1749.
    [24] Zauberman A, Flusberg D, Haupt Y, Barak Y,Oren M. A functional p53-responsive intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res. 1995, 23(14): 2584-2592.
    [25] Momand J, Zambetti GP, Olson DC, George D,Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992, 69(7): 1237-1245.
    [26] Oliner JD, Kinzler KW, Meltzer PS, George DL,Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992, 358(6381): 80-83.
    [27] Nakamura M, Watanabe T, Klangby U, Asker C, Wiman K, Yonekawa Y, Kleihues P,Ohgaki H. p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol. 2001, 11(2): 159-168.
    [28] Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK,Bernards R. A genomic and functional inventory of deubiquitinating enzymes. Cell. 2005, 123(5): 773-786.
    [29] Wing SS. Deubiquitinating enzymes--the importance of driving in reverse along the ubiquitin-proteasome pathway. Int J Biochem Cell Biol. 2003, 35(5): 590-605.
    [30] Cummins JM,Vogelstein B. HAUSP is required for p53 destabilization. Cell Cycle. 2004, 3(6): 689-692.
    [31] Li HH, Li AG, Sheppard HM,Liu X. Phosphorylation on Thr-55 by TAF1 mediates degradation ofp53: a role for TAF1 in cell G1 progression. Mol Cell. 2004, 13(6): 867-878.
    [32] Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J,Gu W. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature. 2002, 416(6881): 648-653.
    [33] Huang TT, Nijman SM, Mirchandani KD, Galardy PJ, Cohn MA, Haas W, Gygi SP, Ploegh HL, Bernards R,D'Andrea AD. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol. 2006, 8(4): 339-347.
    [34] Brummelkamp TR, Nijman SM, Dirac AM,Bernards R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature. 2003, 424(6950): 797-801.
    [35] Graner E, Tang D, Rossi S, Baron A, Migita T, Weinstein LJ, Lechpammer M, Huesken D, Zimmermann J, Signoretti S,Loda M. The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell. 2004, 5(3): 253-261.
    [36] Gupta K, Copeland NG, Gilbert DJ, Jenkins NA,Gray DA. Unp, a mouse gene related to the tre oncogene. Oncogene. 1993, 8(8): 2307-2310.
    [37] Frederick A, Rolfe M,Chiu MI. The human UNP locus at 3p21.31 encodes two tissue-selective, cytoplasmic isoforms with deubiquitinating activity that have reduced expression in small cell lung carcinoma cell lines. Oncogene. 1998, 16(2): 153-165.
    [38] Gupta K, Chevrette M,Gray DA. The Unp proto-oncogene encodes a nuclear protein. Oncogene. 1994, 9(6): 1729-1731.
    [39] DeSalle LM, Latres E, Lin D, Graner E, Montagnoli A, Baker RT, Pagano M,Loda M. The de-ubiquitinating enzyme Unp interacts with the retinoblastoma protein. Oncogene. 2001, 20(39): 5538-5542.
    [40] Priolo C, Tang D, Brahamandan M, Benassi B, Sicinska E, Ogino S, Farsetti A, Porrello A, Finn S, Zimmermann J, Febbo P,Loda M. The isopeptidase USP2a protects human prostate cancer from apoptosis. Cancer Res. 2006, 66(17): 8625-8632.
    [41] Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D,Courtois G. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature. 2003, 424(6950): 801-805.
    [42] Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T, Shahab A, Yong HC, Fu Y, Weng Z, Liu J, Zhao XD, Chew JL, Lee YL, Kuznetsov VA, Sung WK, Miller LD, Lim B, Liu ET, Yu Q, Ng HH,Ruan Y. A global map of p53 transcription-factor binding sites in the human genome. Cell. 2006, 124(1): 207-219.
    [43] Giri DK, Ali-Seyed M, Li LY, Lee DF, Ling P, Bartholomeusz G, Wang SC,Hung MC. Endosomal transport of ErbB-2: mechanism for nuclear entry of the cell surface receptor. Mol Cell Biol. 2005, 25(24): 11005-11018.
    [44] Szymkiewicz I, Shupliakov O,Dikic I. Cargo- and compartment-selective endocytic scaffold proteins. Biochem J. 2004, 383(Pt 1): 1-11.
    [45] Hoekstra D, Tyteca D,van ISC. The subapical compartment: a traffic center in membrane polarity development. J Cell Sci. 2004, 117(Pt 11): 2183-2192.
    [46] Signoretti S, Montironi R, Manola J, Altimari A, Tam C, Bubley G, Balk S, Thomas G, Kaplan I, Hlatky L, Hahnfeldt P, Kantoff P,Loda M. Her-2-neu expression and progression toward androgen independence in human prostate cancer. J Natl Cancer Inst. 2000, 92(23): 1918-1925.
    [47] Bartlett JM, Brawley D, Grigor K, Munro AF, Dunne B,Edwards J. Type I receptor tyrosine kinases are associated with hormone escape in prostate cancer. J Pathol. 2005, 205(4): 522-529.
    [48] Hernes E, Fossa SD, Berner A, Otnes B,Nesland JM. Expression of the epidermal growth factor receptor family in prostate carcinoma before and during androgen-independence. Br J Cancer. 2004, 90(2): 449-454.
    [49] Kuhajda FP. Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition. 2000, 16(3): 202-208.
    [50] Pizer ES, Pflug BR, Bova GS, Han WF, Udan MS,Nelson JB. Increased fatty acid synthase as a therapeutic target in androgen-independent prostate cancer progression. Prostate. 2001, 47(2): 102-110.
    [51] Pizer ES, Thupari J, Han WF, Pinn ML, Chrest FJ, Frehywot GL, Townsend CA,Kuhajda FP. Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts. Cancer Res. 2000, 60(2): 213-218.
    [52] De Schrijver E, Brusselmans K, Heyns W, Verhoeven G,Swinnen JV. RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells. Cancer Res. 2003, 63(13): 3799-3804.
    [53] Thupari JN, Pinn ML,Kuhajda FP. Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity. Biochem Biophys Res Commun. 2001, 285(2): 217-223.
    [54] Amerik AY,Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta. 2004, 1695(1-3): 189-207.
    [55] Goldberg AL. Functions of the proteasome: the lysis at the end of the tunnel. Science. 1995, 268(5210): 522-523.
    [56] Wilkinson KD. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol. 2000, 11(3): 141-148.
    [57] Cummins JM, Rago C, Kohli M, Kinzler KW, Lengauer C,Vogelstein B. Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature. 2004, 428(6982): 1 p following 486.
    [58] Meulmeester E, Maurice MM, Boutell C, Teunisse AF, Ovaa H, Abraham TE, Dirks RW,Jochemsen AG. Loss of HAUSP-mediated deubiquitination contributes to DNA damage-induced destabilization of Hdmx and Hdm2. Mol Cell. 2005, 18(5): 565-576.
    [59] Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP,Saville MK. The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting MDM2. EMBO J. 2007, 26(4): 976-986.
    [60] Bogler O, Huang HJ, Kleihues P,Cavenee WK. The p53 gene and its role in human brain tumors. Glia. 1995, 15(3): 308-327.
    [61] Sherr CJ,Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999, 13(12): 1501-1512.
    [62] Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH,Peters G. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 1998, 17(17): 5001-5014.
    [63] Kruse JP,Gu W. Modes of p53 regulation. Cell. 2009, 137(4): 609-622.
    [64] Prives C. Signaling to p53: breaking the MDM2-p53 circuit. Cell. 1998, 95(1): 5-8.
    [65] Blaydes JP, Luciani MG, Pospisilova S, Ball HM, Vojtesek B,Hupp TR. Stoichiometric phosphorylation of human p53 at Ser315 stimulates p53-dependent transcription. J Biol Chem. 2001, 276(7): 4699-4708.
    [66] Huang C, Ma WY, Maxiner A, Sun Y,Dong Z. p38 kinase mediates UV-induced phosphorylation ofp53 protein at serine 389. J Biol Chem. 1999, 274(18): 12229-12235.
    [67] Bech-Otschir D, Kraft R, Huang X, Henklein P, Kapelari B, Pollmann C,Dubiel W. COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. EMBO J. 2001, 20(7): 1630-1639.
    [68] Gatti A, Li HH, Traugh JA,Liu X. Phosphorylation of human p53 on Thr-55. Biochemistry. 2000, 39(32): 9837-9842.
    [69] Waterman MJ, Stavridi ES, Waterman JL,Halazonetis TD. ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat Genet. 1998, 19(2): 175-178.
    [70] Chernov MV, Bean LJ, Lerner N,Stark GR. Regulation of ubiquitination and degradation of p53 in unstressed cells through C-terminal phosphorylation. J Biol Chem. 2001, 276(34): 31819-31824.
    [71] Sionov RV,Haupt Y. The cellular response to p53: the decision between life and death. Oncogene. 1999, 18(45): 6145-6157.
    [72] Vousden KH,Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol. 2007, 8(4): 275-283.
    [73] Zawlik I, Kita D, Vaccarella S, Mittelbronn M, Franceschi S,Ohgaki H. Common polymorphisms in the MDM2 and Tp53 genes and the relationship between Tp53 mutations and patient outcomes in glioblastomas. Brain Pathol. 2009, 19(2): 188-194.
    [74] Vousden KH,Prives C. Blinded by the Light: The Growing Complexity of p53. Cell. 2009, 137(3): 413-431.
    [75] Badciong JC,Haas AL. MdmX is a RING finger ubiquitin ligase capable of synergistically enhancing MDM2 ubiquitination. J Biol Chem. 2002, 277(51): 49668-49675.
    [76] Meek DW,Hupp TR. The regulation of MDM2 by multisite phosphorylation--opportunities for molecular-based intervention to target tumours? Semin Cancer Biol. 2010, 20(1): 19-28.
    [77] Harris SL,Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene. 2005, 24(17): 2899-2908.
    [78] Kastan MB,Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004, 432(7015): 316-323.
    [79] Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003, 3(3): 155-168.
    [80] Migliorini D, Danovi D, Colombo E, Carbone R, Pelicci PG,Marine JC. Hdmx recruitment into the nucleus by Hdm2 is essential for its ability to regulate p53 stability and transactivation. J Biol Chem. 2002, 277(9): 7318-7323.
    [81] Nguyen M, Millar DG, Yong VW, Korsmeyer SJ,Shore GC. Targeting of Bcl-2 to the mitochondrial outer membrane by a COOH-terminal signal anchor sequence. J Biol Chem. 1993, 268(34): 25265-25268.
    [82] Chacinska A, Koehler CM, Milenkovic D, Lithgow T,Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009, 138(4): 628-644
    [83] Mancini F, Di Conza G, Pellegrino M, Rinaldo C, Prodosmo A, Giglio S, D'Agnano I, Florenzano F, Felicioni L, Buttitta F, Marchetti A, Sacchi A, Pontecorvi A, Soddu S,Moretti F. MDM4 (MDMX) localizes at the mitochondria and facilitates the p53-mediated intrinsic-apoptotic pathway. EMBO J. 2009, 28(13): 1926-1939.
    [1] Shvarts A, Steegenga WT, Riteco N, van Laar T, Dekker P, Bazuine M, van Ham RC, van der Houven van Oordt W, Hateboer G, van der Eb AJ,Jochemsen AG. MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J. 1996, 15(19): 5349-5357.
    [2] Finch RA, Donoviel DB, Potter D, Shi M, Fan A, Freed DD, Wang CY, Zambrowicz BP, Ramirez-Solis R, Sands AT,Zhang N. mdmx is a negative regulator of p53 activity in vivo. Cancer Res. 2002, 62(11): 3221-3225.
    [3] Toledo F,Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer. 2006, 6(12): 909-923.
    [4] Wang X, Arooz T, Siu WY, Chiu CH, Lau A, Yamashita K,Poon RY. MDM2 and MDMX can interact differently with ARF and members of the p53 family. FEBS Lett. 2001, 490(3): 202-208.
    [5] Little NA,Jochemsen AG. Hdmx and MDM2 can repress transcription activation by p53 but not byp63. Oncogene. 2001, 20(33): 4576-4580.
    [6] Chene P. Inhibition of the p53-MDM2 interaction: targeting a protein-protein interface. Mol Cancer Res. 2004, 2(1): 20-28.
    [7] Wallace M, Worrall E, Pettersson S, Hupp TR,Ball KL. Dual-site regulation of MDM2 E3-ubiquitin ligase activity. Mol Cell. 2006, 23(2): 251-263.
    [8] Bottger V, Bottger A, Garcia-Echeverria C, Ramos YF, van der Eb AJ, Jochemsen AG,Lane DP. Comparative study of the p53-mdm2 and p53-MDMX interfaces. Oncogene. 1999, 18(1): 189-199.
    [9] Popowicz GM, Czarna A,Holak TA. Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain. Cell Cycle. 2008, 7(15): 2441-2443.
    [10] Kostic M, Matt T, Martinez-Yamout MA, Dyson HJ,Wright PE. Solution structure of the Hdm2 C2H2C4 RING, a domain critical for ubiquitination of p53. J Mol Biol. 2006, 363(2): 433-450.
    [11] Poyurovsky MV, Priest C, Kentsis A, Borden KL, Pan ZQ, Pavletich N,Prives C. The MDM2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity. EMBO J. 2007, 26(1): 90-101.
    [12] Singh RK, Iyappan S,Scheffner M. Hetero-oligomerization with MdmX rescues the ubiquitin/Nedd8 ligase activity of RING finger mutants of MDM2. J Biol Chem. 2007, 282(15): 10901-10907.
    [13] Kawai H, Lopez-Pajares V, Kim MM, Wiederschain D,Yuan ZM. RING domain-mediated interaction is a requirement for MDM2's E3 ligase activity. Cancer Res. 2007, 67(13): 6026-6030.
    [14] Uldrijan S, Pannekoek WJ,Vousden KH. An essential function of the extreme C-terminus of MDM2 can be provided by MDMX. EMBO J. 2007, 26(1): 102-112.
    [15] Xiong S, Van Pelt CS, Elizondo-Fraire AC, Liu G,Lozano G. Synergistic roles of MDM2 and MDM4 for p53 inhibition in central nervous system development. Proc Natl Acad Sci U S A. 2006, 103(9): 3226-3231.
    [16] Marine JC,Jochemsen AG. Mdmx as an essential regulator of p53 activity. Biochem Biophys Res Commun. 2005, 331(3): 750-760.
    [17] Wade M,Wahl GM. Targeting MDM2 and Mdmx in cancer therapy: better living through medicinal chemistry? Mol Cancer Res. 2009, 7(1): 1-11.
    [18] Gu J, Kawai H, Nie L, Kitao H, Wiederschain D, Jochemsen AG, Parant J, Lozano G,Yuan ZM. Mutual dependence of MDM2 and MDMX in their functional inactivation of p53. J Biol Chem. 2002, 277(22): 19251-19254.
    [19] Francoz S, Froment P, Bogaerts S, De Clercq S, Maetens M, Doumont G, Bellefroid E,Marine JC. MDM4 and MDM2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proc Natl Acad Sci U S A. 2006, 103(9): 3232-3237.
    [20] Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V, Jochemsen AG,Lozano G. Rescue of embryonic lethality in MDM4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet. 2001, 29(1): 92-95.
    [21] Jones SN, Roe AE, Donehower LA,Bradley A. Rescue of embryonic lethality in MDM2-deficient mice by absence of p53. Nature. 1995, 378(6553): 206-208.
    [22] Macchiarulo A, Giacche N, Carotti A, Baroni M, Cruciani G,Pellicciari R. Targeting the conformational transitions of MDM2 and MDMX: insights into dissimilarities and similarities of p53 recognition. J Chem Inf Model. 2008, 48(10): 1999-2009.
    [23] Fang S, Jensen JP, Ludwig RL, Vousden KH,Weissman AM. MDM2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem. 2000, 275(12): 8945-8951.
    [24] Honda R,Yasuda H. Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene. 2000, 19(11): 1473-1476.
    [25] Popowicz GM, Czarna A, Rothweiler U, Szwagierczak A, Krajewski M, Weber L,Holak TA. Molecular basis for the inhibition of p53 by Mdmx. Cell Cycle. 2007, 6(19): 2386-2392.
    [26] Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C, Teunisse A, Lam S, Ramos Y, Mohan A, Johnson D, Wilson M, Rodriguez-Galindo C, Quarto M, Francoz S, Mendrysa SM, Guy RK, Marine JC, Jochemsen AG,Dyer MA. Inactivation of the p53 pathway in retinoblastoma. Nature. 2006, 444(7115): 61-66.
    [27] Toledo F, Krummel KA, Lee CJ, Liu CW, Rodewald LW, Tang M,Wahl GM. A mouse p53 mutant lacking the proline-rich domain rescues MDM4 deficiency and provides insight into the MDM2-MDM4-p53 regulatory network. Cancer Cell. 2006, 9(4): 273-285.
    [28] LeBron C, Chen L, Gilkes DM,Chen J. Regulation of MDMX nuclear import and degradation by Chk2 and 14-3-3. EMBO J. 2006, 25(6): 1196-1206.
    [29] Mancini F, Di Conza G, Pellegrino M, Rinaldo C, Prodosmo A, Giglio S, D'Agnano I, Florenzano F, Felicioni L, Buttitta F, Marchetti A, Sacchi A, Pontecorvi A, Soddu S,Moretti F. MDM4 (MDMX) localizes at the mitochondria and facilitates the p53-mediated intrinsic-apoptotic pathway. EMBO J. 2009, 28(13): 1926-1939.
    [30] Linares LK, Hengstermann A, Ciechanover A, Muller S,Scheffner M. HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci U S A. 2003, 100(21): 12009-12014.
    [31] Barboza JA, Iwakuma T, Terzian T, El-Naggar AK,Lozano G. MDM2 and MDM4 loss regulates distinct p53 activities. Mol Cancer Res. 2008, 6(6): 947-954.
    [32] Tsvetkov P, Reuven N, Prives C,Shaul Y. Susceptibility of p53 unstructured N terminus to 20 S proteasomal degradation programs the stress response. J Biol Chem. 2009, 284(39): 26234-26242.
    [33] Migliorini D, Danovi D, Colombo E, Carbone R, Pelicci PG,Marine JC. Hdmx recruitment into the nucleus by Hdm2 is essential for its ability to regulate p53 stability and transactivation. J Biol Chem. 2002, 277(9): 7318-7323.
    [34] Chang NS, Doherty J, Ensign A, Schultz L, Hsu LJ,Hong Q. WOX1 is essential for tumor necrosis factor-, UV light-, staurosporine-, and p53-mediated cell death, and its tyrosine 33-phosphorylated form binds and stabilizes serine 46-phosphorylated p53. J Biol Chem. 2005, 280(52): 43100-43108.
    [35] Nemajerova A, Erster S,Moll UM. The post-translational phosphorylation and acetylation modification profile is not the determining factor in targeting endogenous stress-induced p53 to mitochondria. Cell Death Differ. 2005, 12(2): 197-200.
    [36] Feng L, Hollstein M,Xu Y. Ser46 phosphorylation regulates p53-dependent apoptosis and replicative senescence. Cell Cycle. 2006, 5(23): 2812-2819.
    [37] Moll UM, Wolff S, Speidel D,Deppert W. Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol. 2005, 17(6): 631-636.
    [38] Marine JC, Dyer MA,Jochemsen AG. MDMX: from bench to bedside. J Cell Sci. 2007, 120(Pt 3): 371-378.
    [39] Rinaldo C, Prodosmo A, Mancini F, Iacovelli S, Sacchi A, Moretti F,Soddu S. MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol Cell. 2007, 25(5): 739-750.
    [40] Stommel JM,Wahl GM. Accelerated MDM2 auto-degradation induced by DNA-damage kinases isrequired for p53 activation. EMBO J. 2004, 23(7): 1547-1556.
    [41] Tang J, Qu LK, Zhang J, Wang W, Michaelson JS, Degenhardt YY, El-Deiry WS,Yang X. Critical role for Daxx in regulating MDM2. Nat Cell Biol. 2006, 8(8): 855-862.
    [42] Marchenko ND, Wolff S, Erster S, Becker K,Moll UM. Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J. 2007, 26(4): 923-934.
    [43] Shmueli A,Oren M. MDM2: p53's lifesaver? Mol Cell. 2007, 25(6): 794-796.
    [44] Gilkes DM, Chen L,Chen J. MDMX regulation of p53 response to ribosomal stress. EMBO J. 2006, 25(23): 5614-5625.
    [45] Chavez-Reyes A, Parant JM, Amelse LL, de Oca Luna RM, Korsmeyer SJ,Lozano G. Switching mechanisms of cell death in mdm2- and MDM4-null mice by deletion of p53 downstream targets. Cancer Res. 2003, 63(24): 8664-8669.
    [46] Mancini F, Gentiletti F, D'Angelo M, Giglio S, Nanni S, D'Angelo C, Farsetti A, Citro G, Sacchi A, Pontecorvi A,Moretti F. MDM4 (MDMX) overexpression enhances stabilization of stress-induced p53 and promotes apoptosis. J Biol Chem. 2004, 279(9): 8169-8180.
    [47] Sheng Y, Saridakis V, Sarkari F, Duan S, Wu T, Arrowsmith CH,Frappier L. Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nat Struct Mol Biol. 2006, 13(3): 285-291.
    [48] Ronai Z. Balancing MDM2 - a Daxx-HAUSP matter. Nat Cell Biol. 2006, 8(8): 790-791.
    [1] Hall PA, Meek D,Lane DP. p53--integrating the complexity. J Pathol. 1996, 180(1): 1-5.
    [2] McCoy MA, Gesell JJ, Senior MM,Wyss DF. Flexible lid to the p53-binding domain of human MDM2: implications for p53 regulation. Proc Natl Acad Sci U S A. 2003, 100(4): 1645-1648.
    [3] Marine JC, Dyer MA,Jochemsen AG. MDMX: from bench to bedside. J Cell Sci. 2007, 120(Pt 3): 371-378.
    [4] Bartel F, Taubert H,Harris LC. Alternative and aberrant splicing of MDM2 mRNA in human cancer. Cancer Cell. 2002, 2(1): 9-15.
    [5] Ramos YF, Stad R, Attema J, Peltenburg LT, van der Eb AJ,Jochemsen AG. Aberrant expression of HDMX proteins in tumor cells correlates with wild-type p53. Cancer Res. 2001, 61(5): 1839-1842.
    [6] Shmueli A,Oren M. MDM2: p53's lifesaver? Mol Cell. 2007, 25(6): 794-796.
    [7] Wang B, Alam SL, Meyer HH, Payne M, Stemmler TL, Davis DR,Sundquist WI. Structure and ubiquitin interactions of the conserved zinc finger domain of Npl4. J Biol Chem. 2003, 278(22): 20225-20234.
    [8] Shvarts A, Steegenga WT, Riteco N, van Laar T, Dekker P, Bazuine M, van Ham RC, van derHouven van Oordt W, Hateboer G, van der Eb AJ,Jochemsen AG. MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J. 1996, 15(19): 5349-5357.
    [9] Shvarts A, Bazuine M, Dekker P, Ramos YF, Steegenga WT, Merckx G, van Ham RC, van der Houven van Oordt W, van der Eb AJ,Jochemsen AG. Isolation and identification of the human homolog of a new p53-binding protein, Mdmx. Genomics. 1997, 43(1): 34-42.
    [10] Chandler DS, Singh RK, Caldwell LC, Bitler JL,Lozano G. Genotoxic stress induces coordinately regulated alternative splicing of the p53 modulators MDM2 and MDM4. Cancer Res. 2006, 66(19): 9502-9508.
    [11] Toledo F,Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer. 2006, 6(12): 909-923.
    [12] Rallapalli R, Strachan G, Cho B, Mercer WE,Hall DJ. A novel MDMX transcript expressed in a variety of transformed cell lines encodes a truncated protein with potent p53 repressive activity. J Biol Chem. 1999, 274(12): 8299-8308.
    [13] Giglio S, Mancini F, Gentiletti F, Sparaco G, Felicioni L, Barassi F, Martella C, Prodosmo A, Iacovelli S, Buttitta F, Farsetti A, Soddu S, Marchetti A, Sacchi A, Pontecorvi A,Moretti F. Identification of an aberrantly spliced form of HDMX in human tumors: a new mechanism for HDM2 stabilization. Cancer Res. 2005, 65(21): 9687-9694.
    [14] Alam SL, Sun J, Payne M, Welch BD, Blake BK, Davis DR, Meyer HH, Emr SD,Sundquist WI. Ubiquitin interactions of NZF zinc fingers. EMBO J. 2004, 23(7): 1411-1421.
    [15] Gentiletti F, Mancini F, D'Angelo M, Sacchi A, Pontecorvi A, Jochemsen AG,Moretti F. MDMX stability is regulated by p53-induced caspase cleavage in NIH3T3 mouse fibroblasts. Oncogene. 2002, 21(6): 867-877.
    [16] Marine JC,Jochemsen AG. Mdmx as an essential regulator of p53 activity. Biochem Biophys Res Commun. 2005, 331(3): 750-760.
    [17] Levine AJ, Hu W,Feng Z. The p53 pathway: what questions remain to be explored? Cell Death Differ. 2006, 13(6): 1027-1036.
    [18] Kostic M, Matt T, Martinez-Yamout MA, Dyson HJ,Wright PE. Solution structure of the Hdm2 C2H2C4 RING, a domain critical for ubiquitination of p53. J Mol Biol. 2006, 363(2): 433-450.
    [19] Singh RK, Iyappan S,Scheffner M. Hetero-oligomerization with MdmX rescues the ubiquitin/Nedd8 ligase activity of RING finger mutants of MDM2. J Biol Chem. 2007, 282(15): 10901-10907.
    [20] Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A,Ohtsubo M. MDM2 interacts with MDMX through their RING finger domains. FEBS Lett. 1999, 447(1): 5-9.
    [21] Kawai H, Lopez-Pajares V, Kim MM, Wiederschain D,Yuan ZM. RING domain-mediated interaction is a requirement for MDM2's E3 ligase activity. Cancer Res. 2007, 67(13): 6026-6030.
    [22] Linares LK, Hengstermann A, Ciechanover A, Muller S,Scheffner M. HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci U S A. 2003, 100(21): 12009-12014.
    [23] Poyurovsky MV, Priest C, Kentsis A, Borden KL, Pan ZQ, Pavletich N,Prives C. The MDM2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity. EMBO J. 2007, 26(1): 90-101.
    [24] Uldrijan S, Pannekoek WJ,Vousden KH. An essential function of the extreme C-terminus of MDM2 can be provided by MDMX. EMBO J. 2007, 26(1): 102-112.
    [25] Barboza JA, Iwakuma T, Terzian T, El-Naggar AK,Lozano G. MDM2 and MDM4 loss regulatesdistinct p53 activities. Mol Cancer Res. 2008, 6(6): 947-954.
    [26] Marine JC, Francoz S, Maetens M, Wahl G, Toledo F,Lozano G. Keeping p53 in check: essential and synergistic functions of MDM2 and MDM4. Cell Death Differ. 2006, 13(6): 927-934.
    [27] Toledo F,Wahl GM. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int J Biochem Cell Biol. 2007, 39(7-8): 1476-1482.
    [28] Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C, Teunisse A, Lam S, Ramos Y, Mohan A, Johnson D, Wilson M, Rodriguez-Galindo C, Quarto M, Francoz S, Mendrysa SM, Guy RK, Marine JC, Jochemsen AG,Dyer MA. Inactivation of the p53 pathway in retinoblastoma. Nature. 2006, 444(7115): 61-66.
    [29] Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V, Jochemsen AG,Lozano G. Rescue of embryonic lethality in MDM4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet. 2001, 29(1): 92-95.
    [30] Finch RA, Donoviel DB, Potter D, Shi M, Fan A, Freed DD, Wang CY, Zambrowicz BP, Ramirez-Solis R, Sands AT,Zhang N. mdmx is a negative regulator of p53 activity in vivo. Cancer Res. 2002, 62(11): 3221-3225.
    [31] Migliorini D, Lazzerini Denchi E, Danovi D, Jochemsen A, Capillo M, Gobbi A, Helin K, Pelicci PG,Marine JC. MDM4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol Cell Biol. 2002, 22(15): 5527-5538.
    [32] Steinman HA, Hoover KM, Keeler ML, Sands AT,Jones SN. Rescue of MDM4-deficient mice by MDM2 reveals functional overlap of MDM2 and MDM4 in development. Oncogene. 2005, 24(53): 7935-7940.
    [33] Mancini F, Gentiletti F, D'Angelo M, Giglio S, Nanni S, D'Angelo C, Farsetti A, Citro G, Sacchi A, Pontecorvi A,Moretti F. MDM4 (MDMX) overexpression enhances stabilization of stress-induced p53 and promotes apoptosis. J Biol Chem. 2004, 279(9): 8169-8180.
    [34] Wade M,Wahl GM. Targeting MDM2 and Mdmx in cancer therapy: better living through medicinal chemistry? Mol Cancer Res. 2009, 7(1): 1-11.
    [35] Prodosmo A, Giglio S, Moretti S, Mancini F, Barbi F, Avenia N, Di Conza G, Schunemann HJ, Pistola L, Ludovini V, Sacchi A, Pontecorvi A, Puxeddu E,Moretti F. Analysis of human MDM4 variants in papillary thyroid carcinomas reveals new potential markers of cancer properties. J Mol Med. 2008, 86(5): 585-596.
    [36] Nanni S, Priolo C, Grasselli A, D'Eletto M, Merola R, Moretti F, Gallucci M, De Carli P, Sentinelli S, Cianciulli AM, Mottolese M, Carlini P, Arcelli D, Helmer-Citterich M, Gaetano C, Loda M, Pontecorvi A, Bacchetti S, Sacchi A,Farsetti A. Epithelial-restricted gene profile of primary cultures from human prostate tumors: a molecular approach to predict clinical behavior of prostate cancer. Mol Cancer Res. 2006, 4(2): 79-92.
    [37] Pizzatti L, Sa LA, de Souza JM, Bisch PM,Abdelhay E. Altered protein profile in chronic myeloid leukemia chronic phase identified by a comparative proteomic study. Biochim Biophys Acta. 2006, 1764(5): 929-942.
    [38] Mancini F, Di Conza G, Pellegrino M, Rinaldo C, Prodosmo A, Giglio S, D'Agnano I, Florenzano F, Felicioni L, Buttitta F, Marchetti A, Sacchi A, Pontecorvi A, Soddu S,Moretti F. MDM4 (MDMX) localizes at the mitochondria and facilitates the p53-mediated intrinsic-apoptotic pathway. EMBO J. 2009, 28(13): 1926-1939.
    [39] Kupryjanczyk J, Szymanska T, Madry R, Timorek A, Stelmachow J, Karpinska G, Rembiszewska A,Ziolkowska I, Kraszewska E, Debniak J, Emerich J, Ulanska M, Pluzanska A, Jedryka M, Goluda M, Chudecka-Glaz A, Rzepka-Gorska I, Klimek M, Urbanski K, Breborowicz J, Zielinski J,Markowska J. Evaluation of clinical significance of Tp53, Bcl-2, BAX and MEK1 expression in 229 ovarian carcinomas treated with platinum-based regimen. Br J Cancer. 2003, 88(6): 848-854.
    [40] Rallapalli R, Strachan G, Tuan RS,Hall DJ. Identification of a domain within MDMX-S that is responsible for its high affinity interaction with p53 and high-level expression in mammalian cells. J Cell Biochem. 2003, 89(3): 563-575.
    [41] Bartel F, Schulz J, Bohnke A, Blumke K, Kappler M, Bache M, Schmidt H, Wurl P, Taubert H,Hauptmann S. Significance of HDMX-S (or MDM4) mRNA splice variant overexpression and HDMX gene amplification on primary soft tissue sarcoma prognosis. Int J Cancer. 2005, 117(3): 469-475.
    [42] Ianari A, Natale T, Calo E, Ferretti E, Alesse E, Screpanti I, Haigis K, Gulino A,Lees JA. Proapoptotic function of the retinoblastoma tumor suppressor protein. Cancer Cell. 2009, 15(3): 184-194.
    [43] Vogelstein B, Lane D,Levine AJ. Surfing the p53 network. Nature. 2000, 408(6810): 307-310.
    [44] Kruse JP,Gu W. Modes of p53 regulation. Cell. 2009, 137(4): 609-622.
    [45] Greenblatt MS, Bennett WP, Hollstein M,Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994, 54(18): 4855-4878.
    [46] Li YJ, Sanson M, Hoang-Xuan K, Delattre JY, Poisson M, Thomas G,Hamelin R. Incidence of germ-line p53 mutations in patients with gliomas. Int J Cancer. 1995, 64(6): 383-387.
    [47] Batchelor TT, Betensky RA, Esposito JM, Pham LD, Dorfman MV, Piscatelli N, Jhung S, Rhee D,Louis DN. Age-dependent prognostic effects of genetic alterations in glioblastoma. Clin Cancer Res. 2004, 10(1 Pt 1): 228-233.
    [48] Chipuk JE,Green DR. Dissecting p53-dependent apoptosis. Cell Death Differ. 2006, 13(6): 994-1002.
    [49] Marchenko ND, Zaika A,Moll UM. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem. 2000, 275(21): 16202-16212.
    [50] Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M,Green DR. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004, 303(5660): 1010-1014.
    [51] Chene P. Inhibition of the p53-MDM2 interaction: targeting a protein-protein interface. Mol Cancer Res. 2004, 2(1): 20-28.
    [52] Linke K, Mace PD, Smith CA, Vaux DL, Silke J,Day CL. Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ. 2008, 15(5): 841-848.
    [53] Okamoto K, Taya Y,Nakagama H. Mdmx enhances p53 ubiquitination by altering the substrate preference of the MDM2 ubiquitin ligase. FEBS Lett. 2009, 583(17): 2710-2714.
    [54] Jackson MW,Berberich SJ. MdmX protects p53 from MDM2-mediated degradation. Mol Cell Biol. 2000, 20(3): 1001-1007.
    [55] Stad R, Ramos YF, Little N, Grivell S, Attema J, van Der Eb AJ,Jochemsen AG. Hdmx stabilizes MDM2 and p53. J Biol Chem. 2000, 275(36): 28039-28044.
    [56] Tsvetkov P, Reuven N, Prives C,Shaul Y. Susceptibility of p53 unstructured N terminus to 20 S proteasomal degradation programs the stress response. J Biol Chem. 2009, 284(39): 26234-26242.
    [57] Ashcroft M, Taya Y,Vousden KH. Stress signals utilize multiple pathways to stabilize p53. Mol Cell Biol. 2000, 20(9): 3224-3233.
    [58] Latonen L, Taya Y,Laiho M. UV-radiation induces dose-dependent regulation of p53 response and modulates p53-HDM2 interaction in human fibroblasts. Oncogene. 2001, 20(46): 6784-6793.
    [59] Rinaldo C, Prodosmo A, Mancini F, Iacovelli S, Sacchi A, Moretti F,Soddu S. MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol Cell. 2007, 25(5): 739-750.
    [60] Stommel JM,Wahl GM. Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J. 2004, 23(7): 1547-1556.
    [61] Tang J, Qu LK, Zhang J, Wang W, Michaelson JS, Degenhardt YY, El-Deiry WS,Yang X. Critical role for Daxx in regulating MDM2. Nat Cell Biol. 2006, 8(8): 855-862.
    [62] Marchenko ND, Wolff S, Erster S, Becker K,Moll UM. Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J. 2007, 26(4): 923-934.
    [63] Gilkes DM, Chen L,Chen J. MDMX regulation of p53 response to ribosomal stress. EMBO J. 2006, 25(23): 5614-5625.
    [64] Chavez-Reyes A, Parant JM, Amelse LL, de Oca Luna RM, Korsmeyer SJ,Lozano G. Switching mechanisms of cell death in mdm2- and MDM4-null mice by deletion of p53 downstream targets. Cancer Res. 2003, 63(24): 8664-8669.
    [65] Moll UM, Wolff S, Speidel D,Deppert W. Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol. 2005, 17(6): 631-636.
    [66] Jin Y, Dai MS, Lu SZ, Xu Y, Luo Z, Zhao Y,Lu H. 14-3-3gamma binds to MDMX that is phosphorylated by UV-activated Chk1, resulting in p53 activation. EMBO J. 2006, 25(6): 1207-1218.
    [67] LeBron C, Chen L, Gilkes DM,Chen J. Regulation of MDMX nuclear import and degradation by Chk2 and 14-3-3. EMBO J. 2006, 25(6): 1196-1206.
    [68] Pereg Y, Lam S, Teunisse A, Biton S, Meulmeester E, Mittelman L, Buscemi G, Okamoto K, Taya Y, Shiloh Y,Jochemsen AG. Differential roles of ATM- and Chk2-mediated phosphorylations of Hdmx in response to DNA damage. Mol Cell Biol. 2006, 26(18): 6819-6831.
    [69] Galluzzi L, Morselli E, Kepp O, Tajeddine N,Kroemer G. Targeting p53 to mitochondria for cancer therapy. Cell Cycle. 2008, 7(13): 1949-1955.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700