槲皮素缓释化疗治疗脑胶质瘤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
局部缓释化疗是颅内胶质瘤治疗的一种重要方式,廉价适用的新型注射微球载体的研发和应用,为胶质瘤化疗提供了更大的方便。槲皮素是目前已知的最强的化疗药物之一,它对多种肿瘤的抑制作用已被国内外的许多学者所证实,但对于胶质瘤细胞的治疗作用机理仍不十分清楚,目前,脑胶质瘤应用槲皮素注射微球的缓释化疗尚未见报导。本文采用槲皮素对体外培养的大鼠C6胶质瘤细胞和采用槲皮素注射微球对荷瘤动物模型的脑C6胶质瘤进行了诱导凋亡、增殖抑制作用的实验研究,目的在于探讨大鼠C6胶质瘤凋亡相关基因表达的变化,为槲皮素治疗胶质瘤提供科学依据。
    本实验首次制备了槲皮素缓释剂并进行了红外吸收光谱定性分析及电镜观察,并且采用槲皮素对大鼠C6胶质瘤细胞增殖、四氮唑比色法、DNA电泳、电镜、流式细胞技术,免疫组织化学、末端脱氧核苷酸转移酶介导的dUTP切口末端标记(TUNEL法)等技术及槲皮素注射微球对C6胶质瘤模型治疗前后影像学变化进行了观察、免疫组化检测了C6胶质瘤相关基因的表达变化以及TUNEL法检测了凋亡。研究发现,槲皮素对体内外生长的肿瘤细胞均表现出明显的增殖抑制、诱导凋亡的作用,其对Bcl-2和PCNA表达有显著的抑制作用,对P53、Caspase-3表达有明显的激活作用,对C-myc在体内外的表达未发现明显影响。本实验研究结果表明槲皮素治疗胶质瘤的主要作用机理与上述基因变化导致的细胞凋亡有关。
The glioma is the most familiar malignant tumour of intracranial tumors,accouting for about 30-50%s of all encephalic tumours, because it grows in theattacked means without boundary between the normal brain and glioma, and thewhole tumour is impossibly cut off by the surgical operation, although surgicaloperation and radiotherapy could make long the life of parts of sufferers, the abilityof them is limited, most sufferers still die in the relapse or progress of their glioma,as one of the main therapeutical methods of the malignant tumor, chemotherapyplays an irreplaceable role by that of operation and radiotherapy. in the recent 30years, with the development of the new medicine and the furtherly foundational andclinical research of the tumors , the chemotherapy has been strengthened. theeffective rate of more than 10 kinds of malignant tumor has been over 50%currently.However,conflict between the tumor chemotherapy research and theclinical need are still obvious, as far as chemotherapy of intracranial tumors isconcerned, because of existence of the blood brain barrier, high-efficient andlow-poisonous chemotherapeutical medicines that can be used in clinic are too few,and the partial medicine density in tumor is too low, the increasing dose of drugbrings about the great side effect of the whole body.
     In the sieving researchment on low-poisonous and high-efficient chemotherapymedicine, we have found that the flavonoid compound has the very stronganti-tumor function and is from the natural plant directly, and is being payed anextensive attention among the researchers, as a kind of flavonoid compound, the
    research of quercetin to various kinds of tumors proved that quercetin is one of thestrongest anti-tumor medicines currently, and the toxicity of which is low, andwhich is the most important flavonoid in mankind's diet , the study on themechanism of anti-tumor about quercetin indicated that it might carry out the anti-tumor function by repressing the proliferation of tumor cell and inducing theapoptosis of tumor cell, and interferring the expression of related genes etc.But thereare few reports about the glioma treated by quercetin.The growth of the glioma shows its specific character: local growing in attackedmeans, and integrity of the blood brain barrier in the tumor edge. Moreover, therelapse of glioma within 2 cms from the primary tumour, without occurrence ofextracranial tumors. These characteristics are regarded as the obstacles of thetraditional chemotherapy of glioma, but strongly proved the basis for thedurative-releasing anti-tumor medicine without influence of the blood brain barrierand without the increase of the toxicity of the whole body, the partial medicinedensity was raised consumedly.the sustained -release chemotherapy is the effectivemethod of killing cell of tumour, which is to wrap medicine in a certain polymerloader, which is transplanted into the glioma, with the dissolvement of the polymerand released in a slow-continual way with high density in the part of tumour.Inrecent years, research and application of the dissolvable and injectable microspheresprovide the larger room of development in chemoterapy of glioma ,we adoptted thevaporizing method of the melting agent to prepare this kind of sustained–release themicrosphere .The research work of this experiment:1. In the preliminary experiment we make sure of the effective density ofquercetin used in vitro and in vito.2. My experiment in vitro, we used the MTT assay to examine the A value ofeach group and caculate the inhibited rate of cell, the flow cytometry was used to
    check the cycle of cell and apoptotic ratio of cell C6 treated by 50 and 100μmol·L-1quercetin for 48 hs, the DNA electrophoresis and the observation of themicrostructure under electron microscope and the function of quercetin to induce theapoptosis of C6 cell was proved by using TUNEL method, the methods ofimmunohistochemistry was used to examine the expression of P53, Bcl-2, Caspase-3,C-myc and PCNA genes.3. In the third part of experiment, we prepare the sustained -releasechemomicrosphere by the vaporization of melting agent, and we still make use of theinfrared spectrum instrument to authenticate the chemotherapy medicine, by electronmicroscope and make an observation on the microsphere.4. In the experiment in vito, we prepare the rat brain tumor model of the gliomaC6 cell, and we still observed the state of rat, the picture of tumour growth throughMRI, by the immuno*histochemical method, we still examine the expression of theP53, Bcl-2, Caspase-3, C-myc and PCNA gene .we also use the TUNEL method toexamine the apoptosis, by the experiment in vitro and in vito, we aim at clarifyingthe mechanism tha. quercetin inhibits the proliferation of glioma C6 cell andproviding the proof for the clinical apply of quercetin.The result of this experiment:1. in the preliminary experiment, we discover the quercetin can inhibit theproliferation of rat glioma cell in vitro from 25 to 100μmol·L-1, with the increase ofdrug concentration and the extension of treatment time, the trend of the inhibitationis obviously enhansed, the untreated cell presents the shuttle form or triangles, closearranging, clear boundary, strong reflet light, the axon intertexture to form the net,smooth cell membrane without tuber, the circular cell nucleus in the center withoutvisible nucleolus, but with active propagate, after we treated the cells, the cellnumber along with the wall reduces with the medicine density increase, undermicroscope it is clear that the cell becomes circular with the grain material inside the
    cell, a little part of cell membrane breaks, the boundary of most cell is not clear, withthe grain material in the cytoplasm and split tuber.DSMO group is similar ininhibitation of cell with the natri chlorid group, the cells still grow actively in the twogroups;The effective medical concentration from 25 to 100 mmol·L-1can treat thetumour under skin, with the medicine density increase and the extension of treatmenttime, the tumour turns small gradually, we observe that from the 50 mmol·L-1of thequercetin and above ,the tumour treated by quercetin is obviously inhibited, butDSMO make no differnce to the tumour2. In the experiment in vitro, the inhibited proliferation of C6 cell treated bydifferent density quercetin is dependent on time of treatment and medical dosage.3. The MTT method is used to examine the A value of the C6 cell treated byquercetin of different concentration, we find that the A value becomes gradually litlebut IR becomes large.4. By the flow cytometery, we find that, with the increase of concentration ofquercetin, apoptotic ratio of C6 cell increases, the cells stopping at G0/ G1 phaseincrease, but the cells stopping at S/ G2/ M phase reduce. the proportion of celltreated by 50μmol·L-1and 100μmol·L-1quercetin at G0/G1 is respectively 66.4±1.8%and 82.3±1.7%, compared with the 54.1±1.2% of control group, the difference ismarkedly showed;apoptotic rate of two group cells is respectively 13±2% and31±1.9%, compared with 3.5±1.6% of the control, the difference is markedlyshowed too.5. The immunohistochemical method that we used showed, Compared with thecontrol group, the low-expressions of Bcl-2 and PCNA, the high-expression ofCaspase-3 and P53, but the expression of C-myc is not obviously changed.6. Under the electron microscope, we saw that the cell of C6 treated byquercetin, becomes small and shrinkage with the separate chromatin and theconcentrated cytoplasm and crimpled cell membrane and nuclear membrane, and the
    nuclear is splited into the part, finally the apoptotic body is formed in differentnumber7. TUNEL examination: Compared with the control group, the cells treated by100μmol·L-1 and 50μmol·L-1quercetin, in which the nuclear and cytoplasm of thecell are dyed into yellow, become increasing8. The DNA electronphoresis of cell treated by the 100μmol·L-1 quercetin for48hs shows the ladder of DNA after it is added into gelose gelatin9. The sustained-release microspheres of quercetin and PLGA are the multilayerones, the size of which is in uniformity, and the diameter of which is about 25 nm.10. By the stereostatic inject method, we establishes glioma C6 model, rate ofmaking tumour is 84%, compared with the method that researchers always used ofestablishing the animal model by the empty-handed means or abidingly embeddedstainless steel tuber in the past, the rate of forming tumour is high, without thetransferred tumour outside and the need of the pipe to planted11. The situation of growth of the rat with or without tumour, life time andpicture of MRI of the rat with tumour: most rats shows cachexia and lazy and weakappetite, etc.after the rats are injected with glioma C6 cell into their brain. But therats treated by the drug for three days or five days showes active and good appetite.MRI is done at the 7th day, the average diameter of the rat cerebraltumour is 4.3±0.6mm, the average diameter of the rat treated by the sustained -releasechemotherapeutical medicine for a week is 3.1±0.4 mm and 1.4±0.3 mm for threeweeks, compared with the control group tumor average diameter 5.4±0.8 mm at the14th day, we find the tumour turns small obviously, the average life time of the rat isof 19.3±2.8 days in control group but of 60.5±12.8 days in the treated rats12. compared with the control group, there is high expression of P53 andCaspase-3, low the expression of Bcl-2 and PCNA, the c-myc does not changeobviously, the increasing number of apoptotic cells is also proved by the TUNEL,
    the experimental results are in accordance in vitro and in vito.Creative point of this experiment:1. The first study of the quercetin used for treatment of glioma is made on theinhibited proliferation though the P53, Bcl-2, Caspase-3, C-myc, PCNA genes2. The sustained -release chemotherapeutical microsphere of PLGA andquercetin is first prepared by the melting agent vaporization and first applied to treatthe C6 glioma through sustained -release chemotherapy
引文
1. 周良辅, 主编. 现代神经外科学. 复旦大学出版社, 2004年第1版376.
    2. 尹震. 恶性胶质瘤局部控释化疗的研究进展. 中华神经外科杂志, 2000,16(16):399-401.
    3. 张胜本, 张连阳, 主编. 肿瘤化学治疗:敏感性与抗药性. 四川科技出版社, 1995年9月第1版:1-5.
    4. 张蕈沐. 抗肿瘤药物的药理与临床应用. 河南医科大学出版社, 1999年9月第1版:152-153.
    5. 徐萌, 主编. 恶性肿瘤化疗及其对策. 北京: 军事医学科技出版社, 2002年9月第1版:1.
    6. 黄强, 兰青, 董军, 等. 人脑胶质瘤研究20年. 中国肿瘤, 2001,10(1) 34-36.
    7. 胥彬, 许建华, 主编. 抗癌药物与肿瘤化学治疗进展, 北京科学出版社. 2001年9月第1版:2-5.
    8. 农朝赞, 黄华艺, 黄酮类化合物抗肿瘤作用的研究应用. 民族医药, 2004,2(1):109-111.
    9. 曹良启, 王晓黎. 黄酮类化合物诱导肿瘤细胞凋亡的研究进展, 中药材, 2004,27(10):785-787.
    10. 朱蕾, 何丽雅. 槲皮素抗癌作用的分子机制. 武汉大学学报, 2004:27(2):194-197.
    11. Bravo L Polyphenols chemistry, Dietary Sources, Metaolism and Nutritional Signficance[J]. Nutr Rev, 1998,56:317-33.
    12. 余戟, 莫丽儿, 康铁邦, 等. 槲皮素水溶性衍生物的制备及其生物活性. 中国药物化学杂志, 1998,28(4):287-289.
    13. 王艳芳, 王新华. 槲皮素的药理作用研究进展. 天然产物研究与开发, 2003:15(2):171-173.
    14. Soleas G J, Goldberg D M, Grass L, et al. Do wine polyphrnols Modulate Gene Expression in Human Cancer Cell Line[J]. Clin Biochem, 2001,34(5): 415-420.
    15. Csokay B, Prajsa N, Weber C. et, al. Molecular Mechanisms in the Antiproliferative Action of Quercetin[J]. life Sci, 1997,60(24):2157-2163.
    16. Weber G. Shen F.Prajda N. et al. Regulation of the Signal Transduction Program by Drugs[J] Adv Earyme Regul. 1997,37:33-35.
    17. Kawada N, Seki S, Inoue M. et al. Effect of Antioxidents, Resveratrol, Quercetin, N-acctylcysteine on the Functions of Cultured Rat Hepatic Stellate Cells and Keffer Cells[J]. Hepatology, 1998.27(5):1265-1274.
    18. 高进喜, 王守森, 王如密. 胶质瘤化疗进展. 中国微侵袭神经外科杂志, 2004,9(5)233-235.
    19. Hochberg FH, Pruitt A.Assumptions in the radiotherapy of glioblastoma [J]. Neurology, 1980,30:907-911.
    20. 田新华. 脑胶质瘤缓释型BCNU局部化疗. 上海医药, 1995,18:613-616.
    21. Tamargo RJ, Sills AK, Reinhard CS, et al. Interstitial dexamethasone delivery in the brain for the reduction of peritumoraledema[J]. Neurosurg, 1991,74:956-961.
    22. 胡永明, 王立根. 脑胶质细胞瘤的间质化疗. 陕西医药杂志, 1997,26: 95-98.
    23. 王洪武主编. 现代肿瘤靶向治疗技术. 北京中国医药科技出版社, 2005年1月第1版367-373.
    24. Weinart JD. Thompson RC, Tyler B, et al. Local delivery of the topoisomerase 1 inhibitor camptothecin sodium prolongs survival in the rat intracranial 9L gliosaicoma model .int J, cancer, 1995,62:605-609.
    25. 宋盛山. 药物新剂型[M]. 北京:化学工业出版社, 2003:471,474,490.
    26. 陈莉, 赵保中, 杜锡光. 聚羟基乙酸及其共聚物研究进展[J]. 化工新材料, 2002,30(3):11-15.
    27. 陆彬. 药物新剂型与新技术[M]. 北京: 人民卫生出版社, 1998:525.
    28. 朱悦, 贾叙东, 丁安伟. 载药聚乳酸类纳米粒子的修饰研究进展. 上海医药, 2004:25(11):502-504.
    29. 刘春英 . 细胞凋亡与肿瘤及其中医药研究的思考 . 中医药学刊 , 2002:20(1):45-46.
    30. Searle J, L aw son TA, A bbo t t PJ, et al. A n electron microscope study of the mode of cell death induced by cancer chemotherapeutic agents in populations of proliferating normal and neoplastic cells [J]. J P athol, 1975, 116(3):129-138.
    31. Kerr JFR, W yllie AH, Currie AR. Apop to sis: a basic biological phenomenon with ranging in placations in tissue k inet ics[J]. Br J Cancer, 1972,26(4):239-257.
    32. 宋淑芳, 王俊霞, 宋静慧. 细胞凋亡的研究进展. 内蒙古医学院学报, 2004,26(3)233-237.
    33. Tsujimoto Y, Croce CM.Analysis of the structure, transcrupts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Sci USA, 1986,83:5214-5218.
    34. Weller M, Malipiero U, Aguzzi A, et al. protooncogene bcl-2 gene transfer abrogates Fas/APO-1 antibody-mediated apoptosis of human malignant glioma cells and confers resistance to chemotherapeutic drugs and therapeutic irradiation. J Clin Invest, 1995,95:2633-2643.
    35. Gross A, Mcdonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis GenesDev, 1999,13(15):1899-1911.
    36. Kelekar A, Thompson CB, Bcl-2 family proteins: the role of the BH3 domain in apoptosis Trends Cell Bid, 1998,8(8):324-330.
    37. Adams JM;Cory S, The Bcl-2 protein family: arbiters of cell survival. Science, 1998,281(5381):1322-1326.
    38. Tan KO, Tan KM, Chan SL, Yee KS, Bevort M, Ang KC, Yu VC. MAP-1, a novel proapoptosis protein containing a BH3-like motif that associates with Bax through its Bcl-2 homology domains J Biochem, 2001, 276(4): 2802-2807.
    39. Kataota T, Holler N, Micheau O, Martinon F, Tinel A, Hofmann K, Tschopp J.Bcl-2-rambo, a novel Bcl-2 homologue that induces apoptosis via its unique c-terminal extension .J Biol Chem, 2001,276(22):19548-19554.
    40. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by Caspase8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 1998,94: 491-501.
    41. Zha J, Weber S, Oh KJ, Wei MC, Korsmeyer SJ, Posttranslational N-myristoylation of BID as a molecular switch for targetting mitochondria and apoptosis Science, 2000,290(5497):1761-1765.
    42. Vier J, Linsinger G, Hacker G, Cytochrome C is dispensable for fas-induced caspase activation and apoptosis. Biochem Biophys Res commun, 1999,261 (1):71-78.
    43. Kirsch DG, Doseff A, Chan BN, Lim DS, Souza-pinto NC, Hansford R, Kaston MB et al, Caspase-3 dependent cleavage of Bcl-2 promotes release of cytochrome C, J Bid chem, 1999,274(30):21155-21161.
    44. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ, Serine phosphorylation of death against BAD in response to survival factor results in binding to 14-3-3 not Bcl-x (l). Cell, 1996,87(4):619-628.
    45. Fan TJ, Xia L, Han YR.Mitochondrion and apoptosis Acta Biochim Biophys Sin, 2001,33(1):7-12.
    46. Lin QS. Mitochondria and apoptosis. Acta Biochim Biophys Sin,1999,31(2): 116-118.
    47. Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T, YuanJ, Identification of small molecule. inhibitors of interation between the BH3 domain and Bcl-xl. Nat. Cell Biol, 2001,3(2):173-182.
    48. Jacotot E, Costantini P, Laboureau E, Zamzami N, Susin SA, Kioemer G, Mitochondrial membrane permeabilization during the apoptotic process. Am NY. Acad. Sci, 1999,887:18-30.
    49. Pastorino JG, Tafani M, Rothmon RJ, Mortinkeviciute A, Hock JB, Farber JL Functional consequences of the sustained or transient activation by Bax of the mitochondrial permeability transition pore. J. Biol chem, 1999,274(44): 31734-31739.
    50. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J et al. Moleculor characterization of mitochondrial apoptosis-inducing factor. Nature, 1999,397(6718):441-446.
    51. Patterson SD, Spahr CS, Daugas E, Susin SA, Ieinopoulou T, Koehler Ckroemer G, Mass spectrometric identification of proteins released from mitochondrial undergoing permeability trnstion. Cell Death Differ, 2000, 7(2):137-144.
    52. Eskes R, Desaaher S, Antosson B, Mortinou GC. Bid induces the oligomerization and insertion of Bas into the outer mitochondria membrance. Mol Cell Biol, 2000,20(3):929-935.
    53. Wei MC, Lindsten T, Mootha VK, Weiler Sgross A. Asiya M, Thompson CB et al.tBID a membrance targeted death ligand oligomorizes BAK to releas cytochrome C.Genes Dev, 2000, 14(16):2060-2071.
    54. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA et al. Proapoptotic BAX and BAK a requisite gateway to mitochondrial dysfuntion and death. Science, 2001,292(5517):727-730.
    55. Nechushton A, Smith CL, Lamensdorf I, Yoon SH, Youle RJ. Bax and Bak coalesce into novel mitochondria-associated dusters during appoptose J Cell Bid, 2001, 543(6):1265-1276.
    56. Korsmeyer SJ, Wei MC, Saito M, Wailer, oh KJ, Schlesinger PH. pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochiome C.Cell Death Differ, 2000,7(12): 1166-1173.
    57. Jami N, EI Hameic, Maisse C, Brenner C, Munoz-pinedo C, Belzacq AS, Costantioi P, et al. Bid acts on the permeabilty transition pore comples to induce apoptosis, Oncogene, 2000,19(54):6342-6350.
    58. Martin SJ, Green DR. Apoptosis and cancer: the failure of contiolson cell death and cell survival. Crit Rev. Oncol. Hematol, 1995,18:137-158.
    59. Weller M, Malipiero U, Aguzzi A, et al. protooncogene bcl-2 gene transfer abrogates Fas/Apo-1 antiobdy-medicted apoptosis of human malignant gliom cells and confers resistance to chemotherapeutic diugh and therapeutic rradiation: J Clin Invest, 1995,95:2633-2643.
    60. Primdull G. apoptosis in the embryo and tumorigenesis. Eur J Cancer, 1995, 31 A:116-123.
    61. Wick W, Wagner S, Kenkan S, et al. Bcl-2 promotes migrantion and invasiveness of human glioma ceels, FEBS Lett, 1998,440:419-424.
    62. Ohgaki H, Watanbe K, Perand A, et al. A case histroy of glima progression. Acta Neuropathol (Berl), 1999,97:525-532.
    63. 朱明华. 肿瘤抑制基因p53的生物学功能研究进展和意义. 中华病理学杂志, 2000:29(1):60-62.
    64. 黄文生, 姚连生, 施产甫. 肿瘤相关基因在头颈肿瘤中的表达研究进展. 南京军医学院学报, 2002:24(3)177-179.
    65. Kaelin WJ. The emerging p53 family. J Natl Cancer Inst, 1999,91:594-598.
    66. Kamijo T, Weber JD, Zambetti G, et al. Functional and Physical interactions of the ARF tumor suppressor with p53 and mdm2. Proc Natl Acad Sci USA, 1998,95:8292-8297.
    67. Velculescu VE, EL-Deiry WS. Biological and clinical importance of the p53 tumor suppressor gene. Clin Chem, 1996,42:858-869.
    68. Schmale H, Shiratsuchi T, Urano T, et al. Anovel brain-specific p53-target gene, BALL, containing thrombospondin type 1 repeats inhibits experimental angiogenosis. Oncogene, 1997,15:2145-2150.
    69. Nishimori H, Shiratsuchi T, Urano T, et al. A novel brain-specific p53-target gene, BALL, containing thrombospondin type 1 repeats inhibits experimental angiogenosis. Oncogene, 1997,15:2145-2150.
    70. Israeli D, Tessler E, Haupt Y, et al. A novel p53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis. EMBO J, 1997,16:4384-4392.
    71. Somons A, Melamed-Bessudo C, Wolkowicz R, et al. PACT: cloning and characterization of cellular p53 binding protein that interacts with Rb. Oncogene, 1997,14:145-155.
    72. 朱明华. Feitelgon MA, london WT. HbxAg和p53蛋白结合在原发性肝癌发生中的意义. 中华医学杂志, 1993,73:325-327.
    73. Feitelson MA, Zhu MH, Duan LX, et al. Hepatitis BX antigen and p53 are associated in vitro and in liver tissues from patients with primary hepatocellular Carcinoma. Oncogene, 1993,8:1109-1117.
    74. Elizabeth A, Slee, Xin Lu.The ASPP family: deciding between life and death after DNA damage. Toxicology Letters, 2003,139:81-87.
    75. Garte SJ. The c-myc oncogene in tumor progression [J] Crit Rev Oncog, 1993,4(4):435-449.
    76. 廖唐东, 徐敏, 孙树勋. C-MYC蛋白的结构功能区域. Chinese Journalof Coal Industry Medicine August 2001,4(8)580-582.
    77. 方兴根. C-myc癌基因及其表达与胶质瘤. Foreign Medical Sciences Section on Neurology and Neurosurgery 2005,32(2):174-178.
    78. Jensen NA, Pedersen KM, Lihme F, et al. Astroglial c-Myc overexpression predisposes mice to primary malignant glioma. Biol Chem. 2003,278(10): 8300-8308.
    79. Willins GT, Smith CA. Molecular regulation of apoptosis: genetic control on cell death. Cell, 1993,74:777.
    80. Cleveland JL, Ihle JN. Contenders in FasL/TNF death signaling[J]. Cell, 1995, 81(4):479-482.
    81. Cheng EH, Kirsch DG, Clem RJ, et al. Conversion of Bcl-2 to a Bax-like death effector by caspases [J]. Science, 1997,278(5345):1966.
    82. Freytag SO. Definition of the activities and properties of C-myc required to inhibit cell differentiation [J]. Cell growth Differ, 1990,1:339.
    83. Evan GI, Wyllie AH, Gilbert CS, et al. Induction of apoptosis in fibroblasts by c-myc protein[J]. Cell, 1992,69(1):119-128.
    84. Bissonnette RP, M cGahon A, Mahboubi A, et al. Functional Myc-Max heterodimer is required for activation-induced apoptosis in T cell hybridomas [J]. J Exp Med, 1994,180(6):2413-2418.
    85. Packham G, Cleveland JL, et al. O rnithine decarboxylase is a mediator of C-myc-induced apoptosis [J]. Mol Cell Biol, 1994,14(9):5741-5747.
    86. Kimura S, Maekawa T, Hirakawak, et al. A lterations of c-myc expression by antisense oligodeoxynucleotides enhance the induction of apoptosis in HL-60 cells[J]. Cancer Res, 1995,55:1379-1384.
    87. Thompson EB et al. Glucocoreticoid antagonist RU 486 reverses agonist induced apoptosis and c-myc retression in human leukemic CEM-C7 cells [J]. Ann N Y A cad Sci, 1995,12(761):261.
    88. Wang J, Lenardo MJ. Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies[J]. J Cell Sci , 2000,113(Pt5):753-757.
    89. 江涛, 任素梅, 孔德信, 等. Caspase-3抑制剂研究进展. 广东药学院学报, 2004,20(6):669-670.
    90. 高建芝, 张建龙, 王红梅, 等. 脓毒症大鼠Fas-L、Caspase-3和NF-κB的表达与肝细胞凋亡的关系[J]. 新乡医学院学报, 2004,21(2):96-99.
    91. Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic reticulum specific apoptosis and cytotoxicity by amyloid-beta. Nature, 2000,403:98.
    92. Tsujimoto Y, Shimizu S. Bcl-2 family: life-or-death switch [J]. FEBS Lett, 2000,466(1):6210.
    93. Karvinen J, Elomaa A, Makinen ML, et al. Caspase multiple-xing: simultaneous homogeneous time-resolved quenching assay (TruPoint) for caspases 1,3,and6[J]. Anal Biochem, 2004,325(2):317-325.
    94. Martin A G, Nguyen J, Wells JA, et al. Apocytochromec in-hibits caspases by preventing apoptosome formation [J]. Bio-chem Biophy Res Commun, 2004,319(6):944-950.
    95. Prabhakaran K, Li L, Borowitz JL, et al. Caspase inhibition switches the mode of cell death induced by cyanide by enhancing reactive oxygen species generation and PARP-1 activation[J]. Toxicol Appl Pharmacol, 2004,195(11):194-202.
    96. Ohba H, Moriwaki S, Bakalova R, et al. Plant-derived abrina induces apoptosis in cultured leukemic cell lines by different mechanisms[J]. Toxicol Appl Pharmacol. 2004,195(11):182-193.
    97. Honarpour N, Du C, Richardson JA, et al. Adult Apaf-1-deficient mice exhibit male infertility [J]. Dev Biol, 2000,218(2):248-258.
    98. Hakem R, Hakem A, Duncan GS, et al. Differential requirement for caspase-9 in apoptotic pathways in vivo [J]. Cell, 1998,94(3): 339 -352.
    99. Cain K, Bratton SB, Langlais C, et al. Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-MDa apoptosome complexes [J]. J Biol Chem, 2000,275(9):6067-6070.
    100. Zou H, Li Y, Liu X, et al. An APAF-1. cytochromec multimeric complex is a functional apoptosome that activates procaspase-9 [J]. J Biol Chem, 1999,274(17):11549-11556.
    101. Srinivasula SM, Fernandes-Alnemri T, Zangrilli J, et al. The Ced-3/ interleukin
    1beta converting enzyme-like homolog Mch6 and the lamin-cleaving enzyme Mch2alpha are substrates for the apoptotic mediator CPP32 [J]. J Biol Chem, 1996,271(43):27099-27106.
    102. 周伟, 赵洪洋, 姜晓兵, 等. NF-Κb、EFDR、PCNA 在人脑胶质瘤细胞中的表达及其相关性研究[J]. 中国临床神经外科杂志, 2004,9:255-258.
    103. 陈刚, 陈坚, 薛德麟. 脑膜瘤组织中EGFR、PCNA表达及其意义[J]. 中国临床神经外科杂志, 2002,6:339-340,337.
    104. Rodrigo B, Heather MB. Existence of two populations of cyclin/ PCNA during the cell cycle: Association with DNA replication sites [J]. Cell Biology, 1987,105:1549.
    105. 张建华, 陈勇, 张玉洪, 等. 膀胱癌组织中p53、PCNA及bcl-2基因表达及意义[J]. 重庆医学, 2005,34(8):1156-1159.
    106. Yao T, Tsuneyoshi M, Mat sumoto T, et al. Depressed alenoma of the colorectum: analysis of proliferative activity using Immunohistochemical staining for proliferating cell nuclear antigen (PCNA) [J]. Pathol Iaternational, 1994,44(7):520-527.
    107. Mottolese M, Natali P G, Coli A et al. Comparative analysis of proliferating cell nuclear antigen and epidermal growth factor receptor expression in glial tumours: correlation with histological grading [J]. Anticancer Res, 1998,18 (3B):1951-1956.
    108. 曹慧玲, 崔文, 高继发, 等. 脑胶质瘤增殖细胞核抗原和Cyclin Dl蛋白的表达及生物学意义[J]. 济宁医学院学报, 2005,28(3)11-12.
    109. Fendler J H, Membrane-Mimetic Approach to Advanced Materials, Springer-verlac BerlinHeidelberg, 1994: 中译本: 江龙等译, 尖端材料膜模拟, 北京科技出版社, 1999.
    110. 王晓刚, 魏学忠, 周定标. waster大鼠C6胶质瘤动物模型的肿瘤生长特点. 军医进修学院学报, 2001,22(4):300-302.
    111. Jakubowicz-Gil J, Rzymowska J, Paduch R, et al. The effect of quercetin on the expression of heat shock proteins and apoptosis induction in monkey kidney cell line GMK [J]. Folia Histochem Cytobiol. 2002,40(2):137-138.
    112. Garrido C, Bruey JM, Fromentin A, et al. HSP27 inhibits cytochrome C-dependent activation of procaspase-9 [J]. FAS EB J, 1999,13(14): 2061-2070.
    113. Liu L, Qin SK, Chen HY, et al. An experimental study on arsenitrioxide selectively induced human hepatocarcinoma cell lines apoptosis and its related genes [J]: chin J Hepatol (in chinese). 2000,8(6):367-369.
    114. Peterson DL, Sheoidan PL, Brown WE1 Animal models for brain tumors: historical perspectives and future directions [J]. 1 J Neuro-surg, 1994,80: 865-872.
    115. Frederick LM. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Caner Res, 1986,46:5276-5281.
    116. Aihara M, Scardino PT, Truong LD, et al. The frequency of apoptosis correlates with the prognosis of Gleason grade 3 adenocarcinoma of the prostate. Cancer, 1995,75(2):522-529.
    117. 吴凯南, 马双慰, 钟晓刚, 等. 槲皮素对人乳腺癌裸鼠移植瘤细胞周期的影响. 肿瘤防治研究, 2003,30(1):6-8.
    118. 肖东, 朱寿彭, 顾振纶. 槲皮素诱导人白血病HL-60细胞凋亡. 中国药理学报, 1997(3):280.
    119. Nishino H, Naito E, Iwashina A, et al. Interactions between quercetin and ca++-calinodulin complex: promoting action of the flavoniod. Gann, 1984, 75:311.
    120. 于士柱, 浦佩玉, 江德华, 等. 胶质瘤bcl-2基因表达水平与其细胞增殖和凋亡关系的研究. 中华病理学杂志, 2000,29(1)12-15.
    121. 王学荣, 孙涛, 马辉. caspase-3在脑肿瘤凋亡中的作用. 宁夏医学院学报, 2004,26(2):149-152.
    122. 王家银, 关向宏, 罗兵, 等. 脑胶质瘤组织PCNA和Ki267及p53的表达研究. 肿瘤防治杂志, 2005,12(10):753-755.
    123. 丁翔, 严春寅, 温端改, 等. COX-2/bcl-2和PCNA在前列腺癌中的表达及意义 SUZHOU UNIVERSITY JOURNAL OF MEDICAL SCIENCE 2005,25(1)110-112,130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700