MCMV感染对神经干细胞分化和细胞周期进程的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】
     ①在体外细胞水平研究巨细胞病毒感染对神经干细胞(NSCs)分化的影响及其机制;
     ②探讨巨细胞病毒感染对神经干细胞Wnt信号途径分化相关基因转录水平的影响;
     ③研究巨细胞病毒感染对神经干细胞细胞周期蛋白cyclinA、cyclinB1、cyclinD1、cyclinE和细胞周期进程的影响并探讨其机制。
     【方法】
     ①小鼠神经干细胞的分离培养、鉴定和分化潜能的检测:剖宫取出孕13.5d的BALB/c胎鼠脑组织,制备单细胞悬液,过滤后用含EGF、bFGF和B27的DMEM/F12培养基培养;传4~5代后用nestin免疫荧光鉴定;用添加2%胎牛血清的DMEM/F12分化培养基(不含EGF、bFGF和B27)诱导NSCs分化,7天后采用免疫荧光法检测(nestin)、神经元特异性烯醇酶(NSE)和胶质纤维酸性蛋白(GFAP)的表达。
     ②MCMV感染NSCs分化培养模型的建立:用感染复数(MOI)分别为5、1和0.1的MCMV感染NSCs,并改用分化培养基进行分化培养。
     ③观察MCMV感染分化培养NSCs形态学的变化并示踪感染过程:采用免疫荧光法分别于分化培养后3d、6d、9d、12d、15d、18d和21d观察NSCs及其分化细胞标记物nestin、GFAP和NSE表达的变化,并用MCMV EA示踪感染过程。
     ④MCMV感染对NSCs分化细胞比率的影响:采用流式细胞术分别于分化培养后3d、6d和9d检测NSCs及其分化细胞比率的变化。
     ⑤MCMV感染对NSCs Wnt信号途径分化相关基因mRNA表达的影响:采用Real-time PCR法检测分化培养后0.5、1、2、3、4和5d时NSCs Wnt信号途径上游基因Wnt-3、Wnt-7a和下游基因Ngn-2、c-myc及CyclinD1 mRNA水平的动态变化。
     ⑥MCMV感染对NSCs cyclinA、cyclinB1、cyclinD1、cyclinE和细胞周期进程的影响:用感染复数(MOI)分别为5、1和0.1的MCMV感染NSCs,并用含EGF、bFGF和B27的DMEM/F12培养基继续培养,采用Cyclins/DNA双参数流式细胞术检测感染细胞cyclinA、cyclinB1、cyclinD1、cyclinE的表达和细胞周期时相的动态变化。
     【结果】
     ①成功体外分离培养NSCs,NSCs呈球样生长,神经干细胞特异性标记nestin表达阳性,并可进一步分化为NF-200阳性的神经元和GFAP阳性的星形胶质细胞。
     ②分化培养后,感染组NSCs不能贴壁分化生长并逐渐出现肿胀,甚至崩解死亡;细胞nestin表达下调缓慢,显著高于对照组,GFAP和NSE表达显著低于对照组(P<0.05),分化细胞中可检测到MCMV EA(早期抗原)的阳性表达。
     ③分化培养后3~9d,感染组Nestin阳性细胞比率均显著高于对照组(P<0.05),而GFAP和NSE阳性细胞比率显著低于对照组(P<0.05),并随MOI增加差异越明显。
     ④分化培养后,感染组Wnt-3 mRNA的表达水平在第1~2d显著低于正常对照组(P<0.05),其后逐渐升高但未超过正常水平;感染组Wnt–7a和Ngn-2 mRNA水平分别在第0.5~2d和第1d明显低于正常组(P<0.05),均至第3d开始升高,但其总体峰值水平均低于正常组;感染组c-myc mRNA水平在第1~4d显著低于正常组(P<0.05);感染组CyclinD1 mRNA水平在第0.5~1d明显低于正常组,在第2d(MOI=5)和第3d(MOI=5、1、0.1)高于正常组(P<0.05);这五种基因表达变化的幅度随MOI的增加而增大。
     ⑤感染后,NSCs cyclinA、cyclinB1、cyclinD1和cyclinE的表达均上调,其中MOI=0.1表达逐渐上升,在第6d达峰值,MOI=1组表达高峰在第4d,MOI=5组表达高峰在第3d;感染组G0/G1期细胞比率减少,S期和G2/M期细胞比率显著增加,出现S期和G2/M期阻滞,并随MOI的增加变化越明显。
     【结论】
     ①MCMV感染可明显抑制NSCs向神经元和星形胶质细胞方向分化,导致分化细胞比率减少,分化发育过程中的神经元和星形胶质细胞对MCMV易感。
     ②MCMV可下调NSCs Wnt信号途径分化相关基因Wnt-3、Wnt-7a、Ngn-2、c-myc的表达并干扰CyclinD1基因表达,这可能是MCMV感染抑制NSCs分化的重要作用机制。
     ③MCMV抑制NSCs分化的效应及对其Wnt信号途径分化相关基因表达的影响与MOI大小存在一定量效依赖关系,MCMV可通过干扰分化相关基因的表达来抑制NSCs分化,可能与CMV感染致脑发育异常密切相关。
     ④MCMV可上调cyclinA、cyclinB1、cyclinD1、cyclinE的表达,诱导NSCs从G0/G1期进入S期,出现S期和G2/M期偏移和阻滞,影响NSCs细胞周期进程,并与MOI存在一定量效依赖关系,这可能是CMV抑制NSCs增殖的主要原因。
     ⑤CMV感染对NSCs细胞周期进程和分化的抑制作用可能是先天性CMV感染致脑发育异常的重要机制。
Objectives:The purposes of the present study are:①to study the influence of cytomegalovirus infection on differentiation of neural stem cells (NSCs) in vitro.②to explore the effect of cytomegalovirus infection on the transcription of differentiation related genes in Wnt signal passway of NSCs.③to investigate the influence of cytomegalovirus infection on cyclins expression and cell cycle progression of NSC.
     Methods:
     ①NSCs were isolated, cultured and identified, and it’s differentiation potency were observed. NSCs were isolated from fetal brain of BALB/c mouse on day 13.5d of gestation and cultured in DMEM/F12 medium including EGF, bFGF and B27. Subcultured NSCs were identified by detecting nestin. NSCs were induced to differentiate in DMEM/F12 medium including 2% fetal bovine serum. Nestin, GFAP and NSE of cells were detected by immunofluorescence.
     ②A differentiation culture model of infected NSCs was established. The NSCs infected by MCMV with multiplicity of infection (MOI) equaled to 5, 1 and 0.1 respectively, were cultured in differentiation medium.
     ③Morphological changes of infected NSCs and infection process were observed. The expression changes of nestin, GFAP and NSE, markers of NSCs and its differentiated cells, were studied by immunofluorescence (MOI=1) at 3d, 6d, 9d, 12d, 15d, 18d and 21d. The EA expression of MCMV was detected to observe the infection process.
     ④The differentiated cells rate of infected NSCs was studied. Flow cytometry was employed to measure the rate changes of NSCs and its differentiated cells at 3d, 6d and 9d.
     ⑤The influence of MCMV on transcription of differentiation related genes in Wnt signal passway of NSCs in vitro were investigated. Real-time RT-PCR method was employed to measure the expression levels of the upperstream gene Wnt-3、Wnt-7a and the downstream gene Ngn-2、c-myc and CyclinD1 in Wnt signal pathway of NSCs at 0.5d, 1d, 2d, 3d, 4d and 5d.
     ⑥The influence of MCMV infection on cyclins expression and cell cycle progression of NSCs in vitro were investigated. The NSCs were infected by MCMV with multiplicity of infection (MOI) equaled to 5, 1 and 0.1 respectively and cultured in DMEM/F12 medium including EGF, bFGF and B27. The dynamic changes of cyclinA, cyclinB1, cyclinD1, cyclinE and cell cycle progression of infected NSCs were detected at 1d, 2d, 3d, 4d, 5d and 6d.
     Results
     ①NSCs were successfully isolated and cultured in vitro. NSCs could proliferate to form neurosphere and strongly expressed nestin, a specific marker of NSCs and had the capacity to differentiate into NF-200 and NeuN positive neurons or GFAP positive astrocytes.
     ②The infected NSCs couldn’t adhere to the wall and appear differentiation growth, but showed swelling gradually and disintegrated after differentiation culture. The nestin expression of the infected NSCs downregulated slowly and was higher than the control group (P<0.05). The expression of GFAP and NSE were lower than the control (P<0.05). The early antigen (EA) of MCMV could be always detected in the differentiated cells.
     ③The rate of nestin positive cells was higher than the control group and the rate of GFAP and NSE positive cells were lower than it from 3d to 9d during differentiation culture(P<0.05).The changes of the infected groups were obvious following the MOI increased
     ④The levels of Wnt-3 mRNA of infected groups decreased from 1d to 2d, obviously lower than that of normal control group (P<0.05), then increased but still not higher than the control. The levels of Wnt-7a and Ngn-2 mRNA were markedly lower than the control from 0.5d to 2d and at 1d, respectively (P<0.05) and both increased at 3d, but the general peak value were significantly lower than the control. The levels of c-myc mRNA were lower than the control from 1d to 4d (P<0.05). The levels of CyclinD1 mRNA were obviously lower than the control from 0.5d to 1d (P<0.05), and higher than it at 2d (MOI=5) and at 3d (MOI=5, 1, 0.1) (P<0.05). The expression change range of these genes increased following the MOI increase of MCMV.
     ⑤The expression of cyclinA, cyclinB1, cyclinD1 and cyclinE of infected NSCs upregulated. The expression of cyclins of the infected NSCs with MOI=0.1 gradually increased and reached to the peak at 6d. The peak expression of cyclins of the infected NSCs with MOI=1 and 5 appeared at 4d and 3d post infection. The cell rate of G0/G1 phase decreased and the rate of S phase and G2/M phase increased. The infected NSCs migrated to and blocked at S phase and G2/M phase. These changes were more obvious following the MOI increased.
     Conclusions
     ①MCMV could inhibit significantly NSCs differentiate into neurons and astrocytes and lead to the decrease of differentiated cells. The neurons and astrocytes during differentiation development period were both susceptible to MCMV.
     ②MCMV could downregulate or interfere the expression of differentiation related genes Wnt-3, Wnt-7a, Ngn-2, c-myc and CyclinD1 in Wnt signal pathway of NSCs, which may be involved in the inhibitory effect of MCMV on NSCs differentiation.
     ③The inhibitory effect of MCMV on NSCs differentiation and the influence of MCMV on the transcription of differentiation related gene of NSCs showed dose-dependent with MOI. MCMV could inhibit differentiation of NSCs by inhibiting the transcription of differentiation related gene, which may be one of primary causes of brain development disorders caused by congenital CMV infection.
     ④MCMV could influence the cell cycle processes of NSCs by upregulating expression of cyclinA, cyclinB1, cyclinD1, cyclinE and inducing NSCs enter into S phase from G0/G1 phase and appear S phase arrest and G2/M phase arrest. The effect showed certain dose dependence relationship with MOI, which may be major causes of MCMV inhibit the proliferation of NSCs.
     ⑤The inhibitory effect of MCMV infection on differentiation and cell cycle progression of nerve stem cells maybe the important mechanisms of congenital encephalodysplasia induced by CMV.
引文
1.方峰.母婴传播性疾病——经母婴传播的巨细胞病毒感染.中国实用儿科杂志, 2004, 19(4):195-197.
    2. Griffiths PD, Walter S. Cytomegalovirus. Curr Opin Infect Dis, 2005, 18(3):241-245.
    3. Hollier LM, Grissom H. Human herpes viruses in pregnancy: cytomegalovirus, Epstein-Barr virus, and varicella zoster virus. Clin Perinatol, 2005, 32(3):671-696.
    4. Whitley RJ. Congenital cytomegalovirus infection: epidemiology and treatment. Adv Exp Med Biol, 2004, 549:155-160.
    5. Boppana S B, Rivera L B, Fowler K B, et al. Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N Engl J Med, 2001, 344(18):1366~1371.
    6.王芬,曹云霞.先天性巨细胞病毒感染的研究进展.国外医学:妇产科学分册,2005, 32(3):139-141.
    7. Fowler KB, Boppana SB. Congenital cytomegalovirus (CMV) infection and hearing deficit. J Clin Virol, 2006, 35(2):226-231.
    8.朱一冰,潘世模.巨细胞病毒宫内感染对新生儿心肌的影响.新生儿科杂志, 2001, 16(5):198-199.
    9.刘楠,张龑,闻良珍.巨细胞病毒宫内感染与预后研究现状.中国优生与遗传杂志, 2005, 13(5):111-112.
    10. Revello MG, Gerna G. Pathogenesis and prenatal diagnosis of human cytomegalovirus infection. J Clin Virol, 2004, 29(2):71-83.
    11. Van den Pol AN, Reuter JD, Santarelli JG. Enhanced cytomegalovirus infection of developing brain independent of the adaptive immune system. J Virol, 2002, 76(17):8842-8854.
    12. Kawasaki H, Kosugi I, Arai Y, et al. The amount of immature glial cells in organotypic brain slices determines the susceptibility to murine cytomegalovirus infection. Lab Invest, 2002, 82(10):1347-1358.
    13. Panchision DM, McKay RD. The control of neural stem cells by morphogenic signals. Curr Opin Genet Dev, 2002, 12(4):478-487.
    14. Abramova N, Charniga C, Goderie SK, et al. Stage-specific changes in gene expression in acutely isolated mouse CNS progenitor cells. Dev Biol, 2005, 283(2):269-281.
    15. Krmpotic A, Bubic I, Polic B, et al. Pathogenesis of murine cytomegalovirus infection. Microbes Infect, 2003, 5(13):1263-1277.
    16. Reddehase MJ, Podlech J, Grzimek NK. Mouse models of cytomegalovirus latency: overview. J Clin Virol, 2002, 25 Suppl 2:S23-36.
    17. Wolowiec D. Cyclins and proliferative pathology. Acta Haematol Pol ,1994 ,25 :195-203.
    18. Golias CH , Charalabopoulos A , Charalabopoulos K. Cell proliferation and cell cycle control :a mini review. Int J Clin Pract ,2004 ,58 :1134-1141.
    19.周玉峰,方峰,甄宏,付劲蓉,易文龙,李革,董永绥.小鼠巨细胞病毒感染神经干细胞的体外研究.中华微生物和免疫学杂志.2006,26(2):169-173.
    20. Rao M. Stem and precursor cells in the nervous system. J Neurotrauma, 2004, 21(4):415-427.
    21. Vats A, Bielby RC, Tolley NS, et al. Stem cells. Lancet, 2005, 366(9485):592-602.
    22. Kanatani S, Tabata H, Nakajima K. Neuronal migration in cortical development. J Child Neurol, 2005, 20(4):274-279.
    23. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 1992, 255(5052):1707-1710.
    24. Reynolds BA, Tetzlaff W, Weiss S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci, 1992, 12(11):4565-4574.
    25. Markmann JF, Campos L, Velidedeoglu E, et al. Annual literature review--clinical transplants 2000. Clin Transpl, 2000:411-465.
    26. Singh SK, Clarke ID, Hide T, et al. Cancer stem cells in nervous system tumors. Oncogene, 2004, 23(43):7267-7273.
    27. Reynolds BA,Weiss s.Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell.Deve Bio.1996,175:1-13.
    28. Klein T , Ling ZD , Heimberg H , et al. Nestin Is Expressed in Vascular Endothelial Cells in the Adult Human Pancreas. Journal of Histochemist ry and Cytochemist ry ,2003 ,51 :697-706.
    29. Lin HJ, Oshaughnessy TJ, Kelly J, et al. Neural stem cell differentiation in a cell-collagen-bioreactor culture system. Brain Res Dev Brain Res,2004,153 (2):163-173.
    30. Hideki Kanaya , Ryu Takeya , Kosei Takeuchi. Fhos2 , a novel forming-related actin-organizing protein, probably associates with the Nestin intermediate filament.Genes to Cells.2005,10 :665-678.
    1. Nelson WJ, Nusse R. Convergence of Wnt,β-catenin, and cadherin pathways. Science, 2004, 303(5663):1483-1487
    2. Li F, Chong ZZ, Maiese K. Winding through the WNT pathway during cellular development and demise. Histol Histopathol, 2006, 21(1):103-124.
    3. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature, 2005, 434(7035):843-850.
    4. Ille F, Sommer L. Wnt signaling: multiple functions in neural development. Cell Mol Life Sci, 2005, 62(10):1100-1108.
    5. Lie DC, Colamarino SA, Song HJ, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature, 2005, 437(7063):1370-1375.
    6. Chong ZZ, Maiese K. Targeting WNT, protein kinase B, and mitochondrial membrane integrity to foster cellular survival in the nervous system. Histol Histopathol, 2004, 19(2):495-504.
    7. Manoukian AS, Woodgett JR. Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adv Cancer Res, 2002, 84:203-229.
    8. Kuhl M. The WNT / calcium pathway: biochemical mediators , tools and future requirements. Font Biosci 2004, 9: 967-974.
    9. Huelsken J , BirchmeierW. New aspects ofWnt signaling pathways in higher vertebrates. Curr Opin Genet Dev. 2001, 11(5): 547-553.
    10.周玉峰,方峰,董永绥,等.小鼠巨细胞病毒抑制神经干细胞分化及其机制研究.中华儿科杂志. 2006, 44(7):505-508.
    11. Muroyama Y, Kondoh H, Takada S. Wnt proteins promote neuronal differentiation in neural stem cell culture. Biochem Biophys Res Commun, 2004, 313: 915-921.
    12. Hirabayashi Y, Itoh Y, Tabata H et al . The Wnt/ beta -catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development, 2004, 131(12) :2791-2801.
    13. Kageyama R, Ohtsuka T, Hatakeyama J, et al. Roles of bHLH genes in neural stem celldifferentiation. Exp Cell Res, 2005, 306:343-348.
    14. Schuurmans C, Armant O, Nieto M, et al. Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways. EMBO J, 2004, 23: 2892- 2902.
    15. Blader P,Lam CS,rastegar S, et al.Conserved and acquired features of neurogeninl regulation. Development, 2004,131:5627-5637.
    16. Tonchev AB, Yamashima T, Sawamoto K, et al. Transcription factor protein expression patterns by neural or neuronal progenitor cells of adult monkey subventricular zone. Neuroscience, 2006.
    17. Seto ES, Bellen HJ. The ins and outs of Wingless signaling.Trends Cell Biol. 2004, 14(1) : 45-53.
    18. Roberta D, Erik AM, Susan JH, et al, Differential development of neuronal physiological responsiveness in two human neural stem cell lines.BMC Neuroscience, 2007, 8(5):36.
    19. Sato N, Meijer L, Skaltsounis L, et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med, 2004, 10(1):55-63.
    20. Ghazal P, Messerle M, Osborn K, et al. An essential role of the enhancer for murine cytomegalovirus in vivo growth and pathogenesis. J Virol, 2003, 77:3217-3228.
    21. Angulo A, Ghazal P, Messerle M. The major immediate-early gene ie3 of mouse cytomegalovirus is essential for viral growth. J Virol, 2000, 74: 11129- 11136.
    22. Arai Y, Ishiwata M, Baba S, et al. Neuron-Specific activation of murine cytomegalovirus early gene e1 promoter in transgenic mice. Am J Patho., 2003, 163:643-652.
    23. Li RY, Baba S, Kosugi I, et al. Activation of murine cytomegalovirus immediate-early promoter in cerebral ventricular zone and glial progenitor cells in transgenic mice. Glia, 2001, 35:41-52.
    1.邓琳.哺乳动物细胞中cyclin的转录调控.国外医学遗传学分册. 2001,24(3):158-161.
    2.庞静.第8章,细胞周期207-223.牛富文《医用分子细胞生物学》.河南医科大学出版社,1997,6.
    3. Pines J,Hunter I.Cyclin A and B1 in the human cell cycle.Ciba Found Synp,1992,170:187-196.
    4. Schickedanz J, Philipson L, Ansorge W, et al.The 89,000-Mr murine cytomegalovirus immediate-early protein stimulates c-fos expression and cellular DNA synthesis. J Virol. 1988;62(9):3341-3347.
    5. Lembo D, Gribaudo G, Hofer A, et al. Expression of an altered ribonucleotide reductase activity associated with the replication of murine cytomegalovirus in quiescent fibroblasts. J Virol. 2000;74(24):11557-11565.
    6. Lembo D, Angeretti A, Gariglio M, et al.Murine cytomegalovirus induces expression and enzyme activity of cellular dihydrofolate reductase in quiescent cells. J Gen Virol. 1998;79 ( Pt11):2803-2807.
    7. Gribaudo G, Riera L, Lembo D, et al.Murine cytomegalovirus stimulates cellular thymidylate synthase gene expression in quiescent cells and requires the enzyme for replication. J Virol. 2000;74(11):4979-4987.
    8. Cavallo R, Lembo D, Gribaudo G, Landolfo S. Murine cytomegalovirus infection induces cellular folylpolyglutamate synthetase activity in quiescent cells. Intervirology. 2001;44(4):224-226.
    9. Jault F, Jault J, Ruchti F, et al . Cytomegalovirus infection induced high levels of cyclins, phosphorylated Rb and p53, leading to cell cycle arrest. J Virol , 1995, 69 : 6697-6704.
    10. Ghazal P, Messerle M, Osborn K, et al. An essential role of the enhancer for murine cytomegalovirus in vivo growth and pathogenesis. J Virol, 2003, 77:3217-28.
    11. Angulo A, Ghazal P, Messerle M. The major immediate-early gene ie3 of mouse cytomegalovirus is essential for viral growth. J Virol, 2000, 74: 11129- 11136.
    12. Ciocco-Schmitt GM, Karabekian Z, Godfrey EW, et al. Identification and characterization of novel murine cytomegalovirus M112-113 (e1) gene products. Virology, 2002, 294:199-208.
    13. Arai Y, Ishiwata M, Baba S, et al. Neuron-Specific activation of murine cytomegalovirus early gene e1 promoter in transgenic mice. Am J Patho., 2003, 163:643-652.
    14. Li RY, Baba S, Kosugi I, et al. Activation of murine cytomegalovirus immediate-early promoter in cerebral ventricular zone and glial progenitor cells in transgenic mice. Glia, 2001, 35:41-52.
    1.段恕诚,董永绥,朱启镕.小儿肝胆系统疾病.北京,人民卫生出版社,2002, p238.
    2. Khanna R, Diamond DJ.Human cytomegalovirus vaccine: time to look for alternative options.Trends Mol Med 2006;12(1):26-33.
    3. Prichard MN, Penfold ME, Duke GM, Spaete RR, Kemble GW. A review of genetic differences between limited and extensively passaged human cytomegalovirus strains. Rev Med Virol 2001;11:191–200.
    4. Murphy E, Yu D, Grimwood J,Schmutz J, Dickson M, Jarvis MA et al. Coding potential of laboratory and clinical strains of human cytomegalovirus. Proc Natl Acad Sci USA 2003;100:14976–14981.
    5. Wang D, Shenk T. Human cytomegalovirus UL131 open reading frame is required for epithelial cell tropism. J Virol 2005;79:10330–10338.
    6. Gerna G, Percivalle E, Lilleri D, Lozza L, Fornara C, Hahn G et al. Dendritic-cell infection by human cytomegalovirus is restricted to strains carrying functional UL131-128 genes and mediates efficient viral antigen presentation to CD8+T cells. J Gen Virol 2005;86:275–284.
    7. Hahn G, Revello MG, Patrone M, Percivalle E, Campanini G, Sarasini A et al. Human cytomegalovirus UL131-128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J Virol 2004;78:10023–10033.
    8. Schleiss MR, Heineman TC.Progress toward an elusive goal: current status of cytomegalovirus vaccines.Expert Rev Vaccines 2005;4:381–406.
    9. Heineman TC, Schleiss M, Bernstein DI, Spaete RR, Yan L, Duke G, et al.A phase 1 study of 4 live, recombinant human cytomegalovirus Towne/Toledo chimeric vaccines.J Infect Dis 2006;193(10):1350-1360.
    10. Pass RF, Duliege AM,Boppana S, Sekulovich R,Percell S, Britt W et al. A subunit cytomegalovirus vaccine based on recombinant envelope glycoprotein B and a new adjuvant. J Infect Dis 1999;180:970–975.
    11. Frey SE, Harrison C, Pass RF,Yang E, Boken D, Sekulovich RE et al. Effects of antigen dose and immunization regimens on antibody responses to a cytomegalovirus glycoprotein B subunit vaccine. J Infect Dis 1999;180:1700–1703.
    12. Mitchell DK, Holmes SJ, Burke RL, Duliege AM, Adler SP. Immunogenicity of a recombinant human cytomegalovirus gB vaccine in seronegative toddlers. Pediatr Infect Dis J 2002;21:133–138.
    13. Mach M, Kropff B, Dal Monte P, Britt W. Complex formation by human cytomegalovirus glycoproteins M (gpUL100) and N (gpUL73). J Virol2000;74:11881–11892.
    14. Mach M, Kropff B, Kryzaniak M, Britt W. Complex formation by glycoproteins M and N of human cytomegalovirus: structural and functional aspects. J Virol 2005;79:2160–2170.
    15. Varnum SM, Streblow DN, Monroe ME, Smith P, Auberry KJ, Pasa-Tolic L et al. Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J Virol 2004;78:10960–10966.
    16. Skinner MA, Laidlaw SM, Eldaghayes I, Kaiser P, Cottingham MG. Fowlpox virus as a recombinant vaccine vector for use in mammals and poultry. Expert Rev Vaccines 2005;4:63–76.
    17. Gonczol E, Plotkin S.Development of a cytomegalovirus vaccine: lessons from recent clinical trials.Expert Opin Biol Ther. 2001;1(3):401-412.
    18. Adler SP, Plotkin SA, Gonczol E, Cadoz M, Meric C, Wang JB et al. A canarypox vector expressing cytomegalovirus (CMV) glycoprotein B primes for antibody responses to a live attenuated CMV vaccine (Towne). J Infect Dis 1999;180:843–846.
    19. Bernstein DI, Schleiss MR, Berencsi K, Gonczol E, Dickey M, Khoury P et al. Effect of previous or simultaneous immunization with canarypox expressing cytomegalovirus (CMV) glycoprotein B (gB) on response to subunit gB vaccine plus MF59 in healthy CMV-seronegative adults. J Infect Dis 2002;185:686–690.
    20. Wang Z, La Rosa C, Maas R, Ly H, Brewer J, Mekhoubad S et al. Recombinant modified vaccinia virus Ankara expressing a soluble form of glycoprotein B causes durable immunity and neutralizing antibodies against multiple strains of human cytomegalovirus. J Virol 2004;78:3965–3976.
    21. Berencsi K, Gyulai Z, Gonczol E, Pincus S, Cox WI, Michelson S et al. A canarypox vector-expressing cytomegalovirus (CMV) phosphoprotein 65 induces long-lasting cytotoxic T cell responses in human CMVseronegative subjects. J Infect Dis 2001;183:1171–1179.
    22. Wang Z, La Rosa C, Mekhoubad S, Lacey SF, Villacres MC, Markel S et al. Attenuated poxviruses generate clinically relevant frequencies of CMV-specific T cells. Blood 2004;104:847–856.
    23. Endresz V, Kari L, Berencsi K, Kari C, Gyulai Z, Jeney C et al. Induction of human cytomegalovirus (HCMV)- glycoprotein B (gB)-specific neutralizing antibody and phosphoprotein 65 (pp65)-specific cytotoxic T lymphocyte responses by naked DNA immunization.Vaccine 1999;17:50–58.
    24. Endresz V, Burian K, Berencsi K, Gyulai Z, Kari L, Horton H et al. Optimization of DNA immunization against human cytomegalovirus. Vaccine 2001;19:3972–3980.
    25. Temperton NJ, Quenelle DC, Lawson KM, Zuckerman JN, Kern ER, Griffiths PD et al. Enhancement of humoral immune responses to a human cytomegalovirus DNA vaccine: adjuvant effects of aluminum phosphate and CpG oligodeoxynucleotides.J Med Virol 2003;70:86–90.
    26. Arvin AM, Fast P, Myers M, Plotkin S, Rabinovich R; National Vaccine Advisory Committee.Vaccine development to prevent cytomegalovirus disease: report from the National Vaccine Advisory Committee.Clin Infect Dis 2004 15;39(2):233-239.
    27. Paston SJ, Dodi IA, Madrigal JA. Progress made towards the development of a CMV peptide vaccine. Hum Immunol 2004;65:544–549.
    28. BenMohamed L, Krishnan R, Longmate J, Auge C, Low L, Primus J et al. Induction ofCTL response by a minimal epitope vaccine in HLA A*0201/DR1 transgenic mice: dependence on HLA class II restricted T(H) response. Hum Immunol 2000;61: 764–779.
    29. Zaia JA, Gallez-Hawkins G, Li X, Yao ZQ, Lomeli N, Molinder K et al. Infrequent occurrence of natural mutations in the pp65(495-503) epitope sequence presented by the HLA A*0201 allele among human cytomegalovirus isolates.J Virol 2001;75:2472–2474.
    30. Pepperl S, Munster J, Mach M, Harris JR, Plachter B. Dense bodies of human cytomegalovirus induce both humoral and cellular immune responses in the absence of viral gene expression. J Virol 2000;74:6132–6146.
    31. Pepperl-Klindworth S, Frankenberg N, Riegler S, Plachter B. Protein delivery by subviral particles of human cytomegalovirus. Gene Ther 2003;10:278–284.
    32. Cobbold M, Khan N,Pourgheysari B, Tauro S, McDonald D, Osman H et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 2001;202:379–386.
    33. Nigro G, Adler SP, La Torre R,Best AM. Passive maternal immunization during pregnancy for congenital cytomegalovirus infection.N Engl J Med 2005;353:1350–1362.
    1.周玉峰,方峰.抗病毒药物在儿科的应用.中国处方药. 2005, 12(45):81-85.
    2. Balfour HH Jr. Antiviral drugs. New Engl J Med, 1999, 340(16):1255-1268.
    3. Pescovitz MD, Rabkin J, Merion RM, et al. Valganciclovir results in improved oral absorption of ganciclovir in liver transplant recipients. Antimicrob Agents Chemother, 2000,44:2811-2815.
    4. Boeckh M, G. Boivin. Quantitation of cytomegalovirus: methodologic aspects and clinical applications. Clin Microbiol Rev,1998,11:533-554.
    5. Boeckh M., Leisenring W, Riddell SR, et al. Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood, 2003, 101:407-414.
    6. Litter E, Stuart AD, Chee MS. Human cytomegalovirus UL97 open reading frame encodes a protein that phosphorylates the antiviral nucleoside analogue ganciclovir. Nature,1992, 358 :160-162.
    7. Chou S,Waldemer RH,Senters AE, et al.Cytomegalovirus UL97 phosphotransferase mutations that affect susceptibility to ganciclovir. J Infect Dis, 2002, 185:162-169.
    8. Lurain NS , Spafford LE , Thompson KD. Mutation in the UL97 open reading frame of human cytomegalovirus strains resistant to ganciclovir. J Virol, 1994, 68 :4427-4431.
    9. Baldanti FD, Michel L ,Simoncini M, Heuschmid A, et al.Mutations in the UL97 ORF of ganciclovir-resistant clinical cytomegalovirus isolates differentially affect GCV phosphorylation as determined in a recombinant vaccinia virus system. Antivir Res,2002, 54:59-67.
    10. Cihlar T, Fuller M,Cherrington J. Characterization of drug resistance-associated mutations in the human cytomegalovirus DNA poly-merase gene by using recombinant mutant viruses generated from overlapping DNA fragments. J Virol,1998, 72:5927-5936.
    11. Gilbert, C., J. Bestman-Smith, and G. Boivin. Resistance of herpesviruses to antiviral drugs: clinical impacts and molecular mechanisms. Drug Resist Update, 2002, 5:88-114.
    12. Chou S, Lurain NS,Thompson KD, et al. Viral DNA polymerase mutations associated with drug resistance in human cytomegalovirus. J Infect Dis, 2003, 188:32-39.
    13. Jabs DA, Martin BK, Forman MS, et al. Mutations conferring ganciclovir resistance in a cohort of patients with acquired immunodeficiency syndrome and cytomegalovirus retinitis. J Infect Dis,2001, 183:333-337.
    14. Erice A. Resistance of human cytomegalovirus to antiviral drugs. Clin Microbiol Rev, 1999, 12(2):286-297.
    15. Smith IL,Cherrington JM, Jiles RE, et al. High-level resistance of cytomegalovirus to ganciclovir is associated with alterations in both the UL97 and DNA polymerase genes. J Infect Dis,1997, 176:69-77.
    16. Landry ML, Stanat S, Biron K, et al. A standardized plaque reduction assay for determination of drug susceptibilities of cytomegalovirus clinical isolates.Antimicrob. Agents Chemother, 2000, 44:688-692.
    17. Gilbert C, G. Boivin. Discordant phenotypes and genotypes of cytomegalovirus (CMV) in patients with AIDS and relapsing CMV retinitis. AIDS,2003,17:337-341.
    18. Boivin G., Gilbert C, Gaudreau A, et al.Rate of emergence of cytomegalovirus (CMV) mutations in leukocytes of patients with acquired immunodeficiency syndrome who are receiving valganciclovir as induction and maintenance therapy for CMV retinitis. J Infect Dis, 2001, 184:1598-1602.
    19. Boivin G., Chou S, Quirk MR, et al.Detection of ganciclovir resistance mutations and quantitation of cytomegalovirus(CMV) DNA in leukocytes of patients with fatal disseminated CMV disease. J Infect Dis,1996, 173:523-528.
    20. Baldanti F, Lilleri D, Campanini G., et al.Human cytomegalovirus double resistance in a donor-positive/ recipient-negative lung transplant patient with an impaired CD4-mediated specific immune response. J Antimicrob Chemother, 2004, 53:536-539.
    21. Eckle T, Prix L, Jahn G, et al. Drug-resistant human cytomegalovirus infection in children after allogeneic stem cell transplantation may have different clinical outcomes. Blood. 2000, 96:3286-3289.
    22. Wolf DG., Yaniv I,Honigman A, et al. Early emergence of ganciclovir-resistant human cytomegalovirus strains in children with primary combined immunodeficiency. J Infect Dis, 1998, 178:535-538.
    23. Drew WL, Miner RC, Busch DF, et al. Prevalence of resistance in patients receiving ganciclovir for serious cytomegalovirus infection. J Infect Dis,1991, 163:716-719.
    24. Limaye AP, Corey L, Koelle DM, et al. Emergence of ganciclovir-resistant cytomegalovirus disease among recipients of solid-organ transplants. Lancet, 2000, 356:645-649.
    25. Mylonakis E, Kallas WM, Fishman JA. Combination antiviral therapy for ganciclovir-resistant cytomegalovirus infection in solidorgan transplant recipients. Clin Infect Dis, 2002, 34:1337-1341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700