胶质细胞源性神经营养因子及Cajal间质细胞在先天性巨结肠中的表达和分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验背景及目的
     GDNF基因编码胶质细胞源性神经营养因子( glial cell derived neurotrophic factor,GDNF),它的编码产物GDNF参与细胞生长分化、增殖和凋亡有关的信号传导。近年研究表明,GDNF与众多疾病关系密切,其异常表达不仅导致某些中枢神经系统疾病,而且也是众多肠神经系统疾病的重要机制之一[1,2,3]。
     Cajal间质细胞(interstitial cells of Cajal,ICC)广泛分布于消化道,是胃肠慢波活动的起搏细胞及其基本电节律的主要传播细胞[4],并参与胃肠道神经信息的传递[5]。有关ICC的胚胎起源争论较多,多认为起源于间充质细胞,近年研究表明,ICC与众多胃肠道疾病关系密切,其分布异常、数目减少可能是这些疾病发病的重要病理生理机制之一。
     先天性巨结肠(Hirschsprung's disease,HD)是一种肠神经系统先天性异常疾病,其具体致病因素及发病机制目前尚未完全阐明。一般认为与遗传、肠壁内环境改变、免疫及感染等因素有关。近年研究发现,HD患儿有多种基因突变,其基因的编码产物在肠道表达异常。ICC作为胃肠道基本电活动的起搏细胞,对其形态、生理功能已有较多的研究,在HD,一些基因编码产物(神经营养因子)表达异常,ICC在肠壁分布异常,HD成为深入研究ICC和某些因子关系的良好模型。但迄今为止,国内外文献尚未见有关神经营养因子和ICC比较的研究。
     本实验通过收集HD的标本,全部取材经组织病理学检测符合HD诊断。应用半定量RT-PCR及免疫组化技术检测HD患儿结肠手术标本组织中GDNFmRNA表达水平和ICC的分布,分析并统计其在不同肠段的表达及其两者间的关系,为进一步研究HD的发病机制和深入研究ICC提供必要的实验依据。
     试验方法
     收集42例经病理诊断为先天性巨结肠的标本,其中男33例,女9例,年龄2月-10岁,全部实验标本均为散发病例,取材经组织病理学检测符合HD诊断,5例肠套叠患儿(术前取得家属同意)结肠手术标本作为正常对照。分别收集HD患儿手术切除肠管狭窄段、移行段和扩张段全层标本,一部分液氮保存,对应部分多聚甲醛固定保存。
     第一部分:GDNFmRNA在HD不同肠段的表达研究。应用半定量RT-PCR技术检测42例HD患儿手术标本狭窄段、移行段和扩张段组织中GDNFmRNA水平,及5例肠套叠患儿结肠手术标本组织中GDNFmRNA水平,分析并统计其与临床病理特点之间的关系。
     第二部分:ICC在HD不同肠段的分布观察。分别取42例HD患儿不同肠段组织标本,多聚甲醛固定、脱水、包埋,常规超薄切片,采用特异性酪氨酸激酶受体(c-kit)抗体免疫组织化学法观察ICC分布。
     实验结果
     1. 5例正常对照肠管GDNFmRNA均表达阳性(100%);42例新鲜标本,狭窄段11例GDNFmRNA表达阳性(26.2%);移行段15例GDNFmRNA表达阳性(35.7%);扩张段40例GDNFmRNA表达阳性(95.2%)。与扩张段和正常对照结肠相比,狭窄段结肠组织中GDNFmRNA水平明显降低,差异具有显著性(P〈0.05);扩张段结肠和正常对照GDNFmRNA水平相当,差异无显著性(P >0.05)。
     2.免疫组化观察结果:(1)正常对照组结肠组织中ICC主要分布于粘膜下丛(IC-SM)和肌间丛(IC-MY),IC-MY在切面上几乎呈现连续性分布,相互连接形成网络状结构。(2)在HD患儿结肠,①狭窄段组结肠组织内ICC的分布较正常对照组和扩张段组显著减少(P<0.001),IC-MY的网络状结构完全破坏,残存ICC形态也出现异常;②移行段组结肠组织内ICC的分布较正常对照组和扩张段组减少(P<0.05),但较狭窄段组显著增加(P<0.001),其形态部分接近正常,但IC-MY缺乏连续性分布,未能形成正常的网络状结构;③扩张段组与正常对照组结肠组织内ICC分布相当,差异无显著性(P>0.05)。
     结论
     1. HD患儿结肠不同肠段GDNFmRNA表达有差异。GDNFmRNA在狭窄段表达量较扩张段和正常对照肠段明显减少,甚至无表达;在扩张段和正常对照肠段的表达无明显差异;在移行段的表达量与狭窄段和扩张段比较均有差异。
     2. HD患儿结肠不同肠段ICC的数量、形态、分布不同。在狭窄段肌间丛偶见残存的ICC,其形态变钝、突起减少或者消失;在扩张段和正常对照肠段粘膜下丛和肌间丛均可见连续分布的ICC,呈梭形有2-3个突起;在移行段ICC主要分布于肌间丛,数量居于狭窄段和扩张段之间。
     3. HD患儿结肠不同肠段,GDNF表达量和ICC数量存在正相关性。在狭窄段,GDNFmRNA表达减少,ICC的数量亦减少,结构破坏;两者在移行段与其在狭窄段和扩张段之间的表达量或分布均有差异;两者在扩张段的表达或分布与正常对照无明显差异。提示GDNF表达异常可能是HD发病的机制之一;ICC分布减少可能是HD胃肠动力障碍的原因之一。
Background and Objective
     The GDNF gene encode glial cell derived neurotrophic factor, GDNF participate signal conduction associated with cell growth, differentiation, generation and apoptosis. Recent studies have indicated that the abnormal expression of GDNF have relations with many diseases, not only with central nervous system but also with enteric nervous system.
     Interstitial cells of Cajal (ICC),origin of the mesenchymal cells,are widely distributed throughout the gastrointestinal tract, which are believed to have a crucial role in gastrointestinal tissues by generating and propagating electrical slow waves to gastrointestinal muscles and/or mediating signals from the enteric nervous system. Recent studies have indicated that the abnormal distribution and the loss or decrease of ICC might play an important role in several disorders of human gastrointestinal motility.
     Hirschsprung's disease(HD ) is a congenital disorder characterized by absence of enteric ganglia, its etiological facto and nosogenesis have not been completely elucidated. It is generally considered that the pathogenesis of HD have close relationship with heredity, the disorder of internal environment, immune function and infection. Recent studies have found several kinds of gene mutation, and the gene encoding productions have abnormal expression in intestinal tract. ICC, as the pacemaker cell in gastrointestinal tract, much studies focus on its morphology and physiologic function, its origin is still unknow .The abnormal expression of gene encoding production(neurotrophic factor) and the abnormal distribution of ICC in different segment of HD make it the perfect model to study the relationship between the neurotrophic factor and ICC. But until now, there are no correlative reports about the relationship between the distribution of ICC and neurotrophic factor in HD.
     In this study, we collected full thickness specimens from Hirschsprung’s disease patients which were proved by histopathologic diagnosis. The GDNF mRNA expression and the distribution of ICC in different parts of HD segments and non-HD segments were detected using semi-quantitative reverse transcriptase polymerase chain reaction(RT-PCR)and immunohistochemistry(IHC), then we analyzed the relationship between their expression and the clinical features, provide more experimental argument in studying pathogenesis of HD and ICC
     Methods
     Forty-two pairs of full thickness specimens(aganglionic segments and ganglionic segments)from Hirschsprung’s disease patients were collected from several hospitals soon after operation(male 33,female 9,aged from 2 months to 10 years). All the specimens were sporadic cases, and all the cases were proved by histopathologic diagnosis, including the common type 30 cases, short term type 12 cases. Another five colon specimens were obtained from intussusception patients as normal control(male 4,female1,aged from 30 days to 8 years).One part of the specimen was saved in liquid nitrogen(LN), the corresponding part was save in paraformaldehyde(PFA).
     Part one: The expression of GDNFmRNA in different segments of HD. The GDNF mRNA expression in different parts of HD segments of 42 cases were detected using semi-quantitative reverse transcriptase polymerase chain reaction(RT-PCR),then we analyzed the relationship between their expression and the clinical features, another five colon specimens were obtained from intussusception patients as normal control.
     Part two: Study of the distribution of ICC in different segments of HD.The samples from 42 HD cases were paraformaldehyde fixation, deaquation, embedment, normal extra thin section, using IHC by specific antibody(c-kit).
     Results
     1. In normal control, GDNF mRNA was positive in 5 out of 5(100%).Meanwhile, of all the 42 fresh samples of HD, GDNF mRNA was positive in 40(95.2%) in dilated segment.However, positive rate of GDNF mRNA was decreased to 15 in transitional zone(35.7%) and to 11 in spastic segment(26.2%) GDNF mRNA expression in the aganglionic segments were decreased,copared with the ganglionic segments and the control group(P<0.05〉.There were no statistical differences in GDNF mRNA expression between control group and the ganglionic segments group.
     2. IHC results: (1)ICC were mainly distributed in submucosal plexus (IC-SM) and myenteric plexus (IC-MY) of the distal colon, and also distributed in circular muscle layer and longitudinal muscle layer (IC-IM). IC-MY were distributed continuously between the circular and longitudinal muscle layers and formed a network;(2)In the segments of HD,①C ompared with the control group and the ganglionic segments group, ICC were decreased obviously in aganglionic segments group (P<0.001). The IC-MY network were disappeared, and the configuration of the residual ICC were abnormal.②In the transitional zone group, ICC were reduced than those of ganglionic segments group and the control group(P<0.05), but were more than those of the aganglionic segments group (P<0.001). Their configuration were close to normal, but the IC-MY did not form a normal network.③There were no difference of the distribution of ICC in ganglionic segments group and the control group (P>0.05).
     Conclusions
     1. The expression of GDNFmRNA is different in different segments of HD patients. It’s exprerssion is obvious less in aganglionic segments than that in the control and the ganglionic segments, even absence in some aganglionic segments. It’s exprerssion has no difference in control and the ganglionic segments.It has difference that the expression in transitional zone than in control and the ganglionic segments.
     2. The number,morphous and the distribution of ICC were different in each segments of HD. In most aganglionic segments,the ICC is absence, the relic ICC gets blunting, decreased or disappeared foot process. The ICC can be obviously found in control and the ganglionic segments,most of ICC in submucosal plexus and IC-MY form network. The number of ICC in transitional zone is small than it in ganglionic segments,and greater in aganglionic segments.
     3. In each segments of HD,the expression of GDNFmRNA and thenumber of ICC have positive correlation. In aganglionic segments, the number of ICC and are both decreased,and in transitional zone,their expression and distribution are between that in aganglionic segments and ganglionic segments. This sussest that the abnormal expression may be one of the pathogenesy of HD ,and the decreased of ICC in HD may be one of the cause to gastrointestinal motility disorder.
引文
[1] Hisasue S,Kato R,Kobayashi K,et al.Alteration of glial cell linederived neurotrophic factor family receptor alpha-2 mRNA expression and its co-expression with neuronal nitric oxide synthase in pelvic ganglia following unilateral cavernous nerve injury. Int J Urol.2008,15(1):82-6.
    [2] Zhou HL,Yang HJ,Li YM,et al.Changes in Glial Cell Line-derived Neurotrophic Factor Expression in the Rostral and Caudal Stumps of the Transected Adult Rat Spinal Cord.Neurochem Res. 2008,33(5):927-37.
    [3] Uesaka T, Jain S,Yonemura S,et al.Conditional ablation of GFRalpha1 in postmigratory enteric neurons triggers unconventional neuronal death in the colon and causes a Hirschsprung's disease phenotype. Laboratory for Neuronal Differentiation and Regeneration,Development.2007,134(11): 2171-81.
    [4] Sanders KM,Koh SD,Ward SM.Interstitial cells of Cajal as pacemakers in the gastrointestinal tract.Annu Rev Physiol,2006,68:307-343.
    [5] Iino S,Horiguchi K.Interstitial cells of Cajal are involved in neurotransmission in the gastrointestinal tract. Acta Histochem Cytochem, 2006,39(6):145-153.
    [6] Maroldt H,Kaplinovsky T,Cunningham AM. Immunohistochemical expression of two members of the GDNF family of growth factors and their receptors in the olfactory system .J Neurocytol.2005,34(35):241-55.
    [7] Huizinga J D,Thuneberg L,Kluppel M,et al. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature,1995, 373(6512):347-349.
    [8] Sanders KM,Ward SM. Kit mutants and gastrointestinal physiology. JPhysiol, 2007, 578(1):33-42.
    [9] Kitamura Y, Hirotab S. Kit as a human oncogenic tyrosine kinase. Cell Mol Life Sci,2004 ,61(23):2924-2931.
    [10] G.D.H. Croaker, A Cook's tour around Hirschsprung's disease.Current Paediatrics, 2006,16(3):182-191.
    [11] Burzynski GM, Nolte IM, Osinga J, et al. Localizing a putative mutation as the major contributor to the development of sporadic Hirschsprung disease to the RET genomic sequence between the promoter region and exon 2.Eur J Hum Genet. 2004,12(8):604-12.
    [12] Garcia-BarcelóM, Sham MH, Lee WS, et al. Highly recurrent RET mutations and novel mutations in genes of the receptor tyrosine kinase and endothelin receptor B pathways in Chinese patients with sporadic Hirschsprung disease. Clin Chem. 2004,50(1):93-100.
    [13] Baloh R H,Enomoto H, Johnson E M, et al. The GDNF family ligands and receptors– implications for neural development. Curr Opin. Neurobiol. 2000, 10: 103–110.
    [14] Sehuchardt A,D’Agati V,Larsson-Blomberg L,et al.Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor RET. Nature,1994,367:378—380.
    [15] Asai N, Jijiwa M, Enomoto A, et al. Ichiahara M, Murakumo Y, Takahashi M. RET receptor signaling: dysfunction in thyroid cancer and Hirschsprung's disease. Pathol Int. 2006,56(4):164-72.
    [16] Emison ES, McCallion AS, Kashuk CS et al. A common sex dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 2005; 43: 857–63.
    [17] Maroldt H,Kaplinovsky T,Cunningham AM. Immunohistochemicalexpression of two members of the GDNF family of growth factors and their receptors in the olfactory system.J Neurocytol. 2005,34(3-5):241-55.
    [18] Ramaswamy S, McBride JL, Herzog CD, et al Neurturin gene therapy improves motor function and prevents death of striatal neurons in a 3-nitropropionic acid rat model of Huntington's disease.Neurobiol Dis. 2007,26(2):375-84.
    [19] Baynash AG,Hosoda K,Giaid A,et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons.Cell.1994,79(7):1277-85.
    [20] Herbaah B,Pingauh V,Bondurand N,et a1.Mutation of the Sty-related SOX10 gene in dominant megacolon,a mouse modal for human Hirschepung disease[J].Proc Natl Acad Sci.1998,95:5161—5165.
    [21] Maka M, Stolt CC, Wegner M.. Identification of Sox8 as a modifier gene in a mouse model of Hirschsprung disease reveals underlying molecular efect. Dev Biol.2005,277(1):155-69.
    [22] Sham MH, Lui VC, Fu M, et al. SOX10 is abnormally expressed in aganglionic bowel of Hirschsprung's disease infants.Gut. 2001,49(2):220-6.
    [23] Shimotake T,Tanaka S,Fukui R,et al. Neuroglial disorders of central and peripheral nervous systems in a patient with Hirschsprung's disease carrying allelic SOX10 truncating mutation. J Pediatr Surg.2007,42(4):725-31.
    [24] Dastot-Le Moal F, Wilson M, Mowat D, Collot N, et al..ZFHX1B mutations in patients with Mowat-Wilson syndrome. Hum Mutat.2007,28(4):313-21.
    [25] Adam MP, Schelley S, Gallagher R, et al. Clinical features and management issues in Mowat-Wilson syndrome. Am J Med Genet A. 2006,140 (24):2730-41.
    [26] Van de Putte T, Maruhashi M, Francis A,et al.Mice lacking ZFHX1B, thegene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am J Hum Genet. 2003,72(2):465-70.
    [27] Méchine-Neuville A, Lefebvre O, Bellocq JP,et al..Increased expression of HOXA9 gene in Hirschsprung disease.Gastroenterol Clin Biol. 2002,26 (12):1110-7.
    [28] Ngan ES, Lee KY, Sit FY, et al.Prokineticin-1 modulates proliferation and differentiation of enteric neural crest cells. .Biochim Biophys Acta. 2007,1773(4):536-45.
    [29] Marcos Bettolli, Steven Z. Rubin, William Staines,et al.The use of rapid assessment of enteric ICC and neuronal morphology may improve patient management in pediatric surgery: a new clinical pathological protocol Pediatr Surg Int. 2006,22(1):78-83.
    [30] T.Taguchi1, S. Suita1, K. Masumoto,et al.An Abnormal Distribution of C-Kit Positive Cells in the Normoganglionic Segment Can Predict a Poor Clinical Outcome in Patients with Hirschsprung's Disease.Eur J Pediatr Surg 2005; 15: 153-158
    [31]吴晓娟,冯杰雄,魏明发等.先天性巨结肠症术后小肠结肠炎发生与合并神经节细胞减少症的相关性分析.中华小儿外科杂志-2007:28(12)-627-629
    [32]张华,李仲荣,朱利斌等.先天性巨结肠肠壁S-100蛋白的表达和神经元型一氧化氮合酶阳性神经的异常分布.实用儿科临床杂志.2006,21(12): 793-794
    [33]殷敏智,张忠德,沈萍.免疫组织化学方法在先天性巨结肠诊断中的应用,实用儿科临床杂志.2005,20(11):1159-1160.
    [34]黄焱磊,郑珊,肖现民.直肠肛管测压对新生儿先天性巨结肠诊断意义的研究.临床小儿外科杂. 2007,03:35-37
    [35]吴璇昭陈刚陈有望等.改良Swenson术治疗先天性巨结肠,中华小儿外科杂志-2006:27(6)-304-306.
    [36] LI Ai-wu, ZHANG Wen-tong et al.A new modification of transanal Soave pull-through procedure for Hirschsprung's disease.Chinese Medical Journal, 2006,119 (1):37-42
    [37] Nemeth L, Puri P. Three-dimensional morphology of c-Kit-positive cellular network and nitrergic innervation in the human gut. Arch Pathol Lab Med, 2001,125(7):899-904.
    [38] Isozaki K, Hirota S, Miyagawa J, et al. Deficiency of c-kit+ cells in patients with a myopathic form of chronic idiopathic intestinal pseudo-obstruction. Am J Gastroenterol, 1997, 92(2):332-334.
    [39] Huizinga JD,Robinson TL,Thomsen L.The search for the origin of rhythmicity in intestinal contraction:from tissue to single cells. Neurogastroenterol Motil,2000 ,12(1): 3-9.
    [40] Hirst GD, Edwards FR. Role of interstitial cells of Cajal in the control of gastric motility. J Pharmacol Sci, 2004, 96(1):1-10.
    [41] Bellier S, Da Silva NR, Aubin-Houzelstein G, et al. Accelerated intestinal transit in inbred mice with an increased number of interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol, 2005, 288(1):151-158.
    [42] Kito Y, Suzuki H. Electrophysiological properties of gastric pacemaker potentials. J Smooth Muscle Res, 2003, 39(5):163-173.
    [43] Kito Y, Suzuki H. Properties of pacemaker potentials recorded from myenteric interstitial cells of Cajal distributed in the mouse small intestine. J Physiol, 2003, 553(3):803-818.
    [44] Ward SM, Dixon RE, de Faoite, et al. A Voltage-dependent calcium entryunderlies propagation of slow waves in canine gastric antrum.J Physiol, 2004, 15; 561(3):793-810.
    [45] Salmhofer H, Neuhuber WL, Ruth P, et al. Pivotal role of the interstitial cells of Cajal in the nitric oxide signaling pathway of rat small intestine. Morphological evidence. Cell-Tissue-Res, 2001, 305(3): 331-340.
    [46] Liu HN, Ohya S, Furuzono S, et al. Co-contribution of IP3R and Ca2+ Influx Pathways to Pacemaker Ca2+ Activity in Stomach ICC. J Biol Rhythms, 2005, 20(1):15-26.
    [47] Aoyama M, Yamada A, Wang J, et al. Requirement of ryanodine receptors for pacemaker Ca2+ activity in ICC and HEK293 cells. J Cell Sci, 2004, 117(13):2813-2825.
    [48] Huizinga JD, Golden CM, Zhu Y, et al. Ion channels in interstitial cells of Cajal as targets for neurotransmitter action. Neurogastroenterol Motil, 2004, 16(1):106-111.
    [49] Strege PR, Ou Y, Sha L, Rich A, et al. Sodium current in human intestinal interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol, 2003, 285(6):1111-1121.
    [50] Ibba Manneschi L, Pacini S, Corsani L, et al. Interstitital cells of Cajal in the human stomach: distribution and relationship with enteric innervation.Histol Histopathol. 2004,19(4):1153-1164.
    [51] Koh SD,Kim TW,Jun JY, et al. Regulation of pacemaker currents in interstitial cells of Cajal from murine small intestine by cyclic nucleotides. J Physiol, 2000, 527(1): 149-162.
    [52] Ward SM, Sanders KM. Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. Am J Physiol Gastrointest Liver Physiol, 2001, 281(3): 602-611.
    [53] Vannucchi MG. Receptors in interstitial cells of Cajal: identification and possible physiological roles. Microsc Resea Tech, 1999, 47(5):325-335.
    [54] Torihashi S, Nishi K, Tokutorni Y, et al. Blockade of kit signaling induces transdifferentiation of interstitial cells of Cajal to a smooth muscle phenotype. Gastroenterology, 1999, 117:140-148.
    [55] Torihashi S, Ward SM, Sanders KM. Development of c-kit positive cells and the onset of electrical rhythmicity in murine small intestine. Gastroenterology, 1997, 112(1):144-155.
    [56] Daigo Y, Takayama I, Ward SM, et al. Isolation of novel mouse genes thar were differentially expressed in W/WV mouse fundus. J gastroenterol, 2004, 39(3):238-241.
    [57] Daigo Y, Takayama I, Ponder BA, et al. Novel human, mouse, and xenopus genes encoding a member of the RAS supergamily of low-molicular-weight GTP-binding proteins and its downregulation in W/WV mouse jejunum. J gastroenterol Hepatol, 2004, 19(2):211-217.
    [58] Zhu Y, Golden CM, Ye J, et al. ERG K+ currents regulate pacemaker activity in ICC. Am J Physiol Gastrointest Liver Physiol, 2003, 285(6):1249-1258.
    [59] Daigo Y, Takayama I, Ponder BA, et al. Differential gene expression profile in the small intestines of mice lacking pacemaker interstitial cells of Cajal. BMC Gastroenterol, 2003, 3(1):13-17.
    [60] Koh SD, Sanders KM, Ward SM. Spontaneous electrical rhythmicity in cultured interstitial cells of Cajal from the murine small intestine. J Physiol. 1998, 513(1): 203-213.
    [61]李春穴,童卫东,刘宝华,等. Cajal间质细胞的分离、培养方法探讨.消化外科, 2004, 3(4): 267-269.
    [62]刘勇,齐清会.大鼠胃Cajal间质细胞的分离和培养.世界华人消化杂志.2005, 13(4): 495-498.
    [63] Shafik A,El-Sibai O,Shafik I,et al. Electroesophagogram in gastroesophageal reflux disease with a new theory on the pathogenesis of its electric changes. BMC Surg, 2004, 4(1):13-17.
    [64] Langer JC,Berezin I,Daniel EE. Hypertrophic pyloric stenosis: ultrastructural abnormalities of enteric nerves and the interstitial cells of Cajal. J Pediatr Surg, 1995, 30(11):1535-1543.
    [65] Ohshiro K, Yamataka A, Kobayashi H, et al. Idiopathic gastric perforation in neonates and abnormal distribution of intestinal pacemaker cells. J Pediatr Surg, 2000, 35(5): 673-676.
    [66] Ordog T, Takayama I, Cheung WK, et al. Remodeling of networks of interstitial cells of cajal in a murine model of diabetic gastroparesis. Diabetes, 2000, 49:1731-1739.
    [67] Zarate N, Mearin F, Wang XY, et al. Severe iopathic gastroparesis due to neuronal and interstitial cells of Cajal degeneration: Pathological findings and management. Gut, 2003, 52(7):966-970.
    [68] Forster J, Damjanov I, Lin Z, et al. Absence of the interstitial cells of Cajal in patients with gastroparesis and correlation with clinical findings. J Gastrointest Surg, 2005, 9(1):102-108.
    [69] Horvath VJ, Vittal H, Ordog T. Reduced insulin and IGF-I signaling, not hyperglycemia, underlies the diabetes-associated depletion of interstitial cells of Cajal in the murine stomach. Diabetes, 2005, 54(5):1528-1533.
    [70] Jain D, Moussa K, Tandon M, et al. Role of interstitial cells of Cajal in motility disorders of the bowel. Am J Gastroenterol, 2003, 98(3): 618-624.
    [71] Huizinga JD, Berezin I, Sircar K, et al. Development of interstitial cells of Cajal in a full-term infant without an enteric nervous system.2005, 13(4): 495-498.
    [63] Shafik A,El-Sibai O,Shafik I,et al. Electroesophagogram in gastroesophageal reflux disease with a new theory on the pathogenesis of its electric changes. BMC Surg, 2004, 4(1):13-17.
    [64] Langer JC,Berezin I,Daniel EE. Hypertrophic pyloric stenosis: ultrastructural abnormalities of enteric nerves and the interstitial cells of Cajal. J Pediatr Surg, 1995, 30(11):1535-1543.
    [65] Ohshiro K, Yamataka A, Kobayashi H, et al. Idiopathic gastric perforation in neonates and abnormal distribution of intestinal pacemaker cells. J Pediatr Surg, 2000, 35(5): 673-676.
    [66] Ordog T, Takayama I, Cheung WK, et al. Remodeling of networks of interstitial cells of cajal in a murine model of diabetic gastroparesis. Diabetes, 2000, 49:1731-1739.
    [67] Zarate N, Mearin F, Wang XY, et al. Severe iopathic gastroparesis due to neuronal and interstitial cells of Cajal degeneration: Pathological findings and management. Gut, 2003, 52(7):966-970.
    [68] Forster J, Damjanov I, Lin Z, et al. Absence of the interstitial cells of Cajal in patients with gastroparesis and correlation with clinical findings. J Gastrointest Surg, 2005, 9(1):102-108.
    [69] Horvath VJ, Vittal H, Ordog T. Reduced insulin and IGF-I signaling, not hyperglycemia, underlies the diabetes-associated depletion of interstitial cells of Cajal in the murine stomach. Diabetes, 2005, 54(5):1528-1533.
    [70] Jain D, Moussa K, Tandon M, et al. Role of interstitial cells of Cajal in motility disorders of the bowel. Am J Gastroenterol, 2003, 98(3): 618-624.
    [71] Huizinga JD, Berezin I, Sircar K, et al. Development of interstitial cells of Cajal in a full-term infant without an enteric nervous system.2004, 19(5):467-473.
    [81]刘建生,田怡,冯丽,等.溃疡性结肠炎与一氧化氮和氧自由基及Cajal间质细胞关系研究.中华消化杂志, 2006, 26(11):785-786.
    [82] Ohlsson B, Veress B, Lindgren S, et al. Enteric ganglioneuritis and abnormal interstitial cells of Cajal: Features of inflammatory bowel disease. Inflamm Bowel Dis, 2007, 13(6):721-726.
    [83] Kinoshita K, Horiguchi K, Fujisawa M, et al. Possible involvement of muscularis resident macrophages in impairment of interstitial cells of Cajal and myenteric nerve systems in rat models of TNBS-induced colitis. Histochem Cell Biol, 2007, 127(1):41-53.
    [84]孙金山,江逊,仝海霞等. BALB/c小鼠溃疡性结肠炎远段结肠Cajal间质细胞分布变化研究.实用儿科临床杂志.2007,22(12):925-927.
    [85] Piotrowska AP, Rolle U, Chertin B, et al. Alterations in smooth muscle contractile and cytoskeleton proteins and interstitial cells of Cajal in megacystis microcolon intestinal hypoperistalsis syndrome. J Pediatr Surg, 2003, 38(5):749-755.
    [86] Midrio P, Faussone-Pellegrini MS, et al. Gastroschisis in the rat model is associated with a delayed maturation of intestinal pacemaker cells and smooth muscle cells. J Pediatr Surg, 2004, 39(10):1541-1547.
    [87] Robinson TL, Sircar K, Hewlett BR, et al. Gastrointestinal stromal tumors may originate from a subset of CD34-positive interstitial cells of Cajal. Am J Pathol, 2000, 156(4): 1157-1163.
    [88] Robinson TL, Sircar K, Hewlett BR, er al. Gastrointestinal stromal tumors may originate from a subset of CD34-positive interstitial cells of Cajal. Am J Pathol, 2000, 156(4): 1157-1163.
    [89] Barshack I, Fridman E, Goldberg I, et al.The loss of calretinin expressionindicates aganglionosis in Hirschsprung's disease. J Clin Pathol. 2004, 57(7):712-6.
    [90] Martucciello G, Brizzolara A, Favre A, et al.Neural crest neuroblasts can colonise aganglionic and ganglionic gut in vivo. Eur J Pediatr Surg. 2007,17 (1):34-40.
    [91] Uesaka T, Jain S, Yonemura S, et al.Conditional ablation of GFRalpha1 in postmigratory enteric neurons triggers unconventional neuronal death in the colon and causes a Hirschsprung's disease phenotype.Development. 2007, 134(11):2171-81.
    [92] Maroldt H,Kaplinovsky T,Cunningham AM. Immunohistochemical expression of two members of the GDNF family of growth factors and their receptors in the olfactory system.J Neurocytol. 2005,34(3-5):241-55.
    [93]胡晓丽,詹江华,王学文,先天性巨结肠神经胶质衍化亲神经营养因子的免疫组织化学观察,中华病理学杂志.2002,31(1) :56-57.
    [94] Nagy N, Goldstein AM.Intestinal coelomic transplants: a novel method for studying enteric nervoussystem development. Cell Tissue Res.2006,326 (1) :43-55.
    [95] Almond S,Lindley RM, Kenny SE,et al. Characterisation and transplantation of enteric nervous system progenitor cells. Gut. 2007,56(4):489-96.
    [96]吴小红,王宝西,王茂贵.胎儿肠道Cajal间质细胞的发育.第四军医大学学报.2005,26(21):1971-1974.
    [97] Rolle U, Piotrowska AP, Nemeth L, et al.Altered distribution of interstitial cells of Cajal in Hirschsprung disease.Arch Pathol Lab Med. 2002, 126(8): 928-33.
    [98] Immunolocalization of the gap junction protein Connexin43 in the interstitial cells of Cajal in the normal and Hirschsprung's disease bowel.J Pediatr Surg.2000 ,35(6):823-8.
    [99] Piotrowska AP, Solari V, Puri P.Distribution of interstitial cells of Cajal in the internal anal sphincter of patients with internal anal sphincter achalasia and Hirschsprung disease.Arch Pathol Lab Med. 2003 ,27(9):1192-5.
    [100] Taguchi T, Suita S, Masumoto K,et al.Universal distribution of c-kit-positive cells in different types of Hirschsprung's disease.Pediatr Surg Int. 2003,19 (4):273-9.
    [101] Taguchi T, Suita S, Masumoto K, et al.An abnormal distribution of C-kit positive cells in the normoganglionic segment can predict a poor clinical outcome in patients with Hirschsprung's disease.Eur J Pediatr Surg. 2005,5 (3):153-8.
    [102] Bettolli M, Rubin SZ, Staines W, et al.The use of rapid assessment of enteric ICC and neuronal morphology may improve patient management in pediatric surgery:a new clinical pathological protocol.1:Pediatr Surg Int. 2006,22 (1):78-83.
    [103] Lorincz A, Redelman D, Horváth VJ, et al.Progenitors of interstitial cells of cajal in the postnatal murine stomach.Gastroenterology.2008,134(4):1083 -93.
    [104] Related Articles, LinksAl-Muhsen SZ, Shablovsky G, et al.The expression of stem cell factor and c-kit receptor in human asthmatic airways.Clin Exp Allergy. 2004, 34(6):911-6.
    [105] Horváth VJ, Vittal H, L?rincz A, et al.Reduced stem cell factor links smooth myopathy and loss of interstitial cells of cajal in murine diabetic gastroparesis.Gastroenterology. 2006,30(3):759-70.
    [106] Streutker CJ, Huizinga JD, Driman DK, et al.Interstitial cells of Cajal in health and disease. Part I: normal ICC structure and function with associatedmotility disorders.Histopathology. 2007,50(2):176-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700