未成熟脑缺血损伤中影响神经干细胞微环境的因素及其作用途径
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】神经干细胞(neural stem cell,NSC)微环境是调控神经干细胞增殖分化和自我更新的关键。目前对未成熟脑缺血性损伤中影响神经干细胞微环境的因素及其作用途径知之甚少。本课题通过研究未成熟脑缺血后神经干细胞的增殖分化及其微环境的相关变化,探讨缺血性损伤影响神经干细胞增殖分化的作用途径,并通过对血管内皮细胞分泌因子影响神经干细胞增殖分化的研究,进一步阐明其影响神经干细胞微环境的信号通路。此外,通过研究碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)干预对未成熟脑缺血后神经新生的作用,为早产儿脑损伤的治疗探索新的途径。
     【方法】一.采用3日龄新生SD大鼠96只,随机分为实验组和对照组。实验组分离并结扎双侧颈总动脉,制备脑缺血模型;对照组仅分离,不结扎。两组大鼠分别于术后24h、4d、7d、14d处死取脑:1.采用免疫荧光染色方法,观察缺血对脑室下区(subventricular zone,SVZ)不同时点神经干细胞新生和增殖分化的影响;2.利用基因芯片技术,分析SVZ缺血后基因表达的变化,寻找缺血性损伤调控SVZ微环境变化的信号通路;3.采用real-time PCR、Western blot方法分别从基因和蛋白水平对发现的信号分子进行验证。
     二.应用transwell共培养系统,建立3日龄新生SD大鼠SVZ脑片培养模型,随机分为三组:共培养组(血管内皮细胞+脑片)、共培养+siRNA组(血管内皮细胞+脑片+VEGF siRNA)和对照组(仅培养脑片)。其中血管内皮细胞采用ATCC鼠脑微血管内皮细胞株(bEnd.3,No.CRL-2299~(TM)),siRNA干扰采用脂质体转染法。脑片分别培养至第4d、7d、10d:1.采用免疫荧光染色的方法,观察血管内皮细胞分泌因子对脑片中神经干细胞增殖,及其向不同功能神经细胞分化的影响;2.通过基因芯片技术,分析在此过程中血管新生与神经新生相关基因表达的变化,探讨血管内皮细胞影响神经干细胞增殖分化的作用途径与机制,并采用real-time PCR方法对关键信号分子进行验证。
     三.通过结扎3日龄新生SD大鼠双侧颈总动脉方法制备脑缺血模型后,随机分为治疗组(54只)和非治疗组(54只)。治疗组给予bFGF(10ng/g)侧脑室注射,非治疗组注射2μl生理盐水。另取54只3日龄新生SD大鼠作为假手术对照组(仅分离双侧颈总动脉,不结扎,不给予药物)。三组大鼠分别于术后第4d、7d、14d获取脑组织标本,采用免疫荧光双标、Western blot和real-time PCR的方法,观察三组大鼠不同时点SVZ巢蛋白(Nestin)、NeuN、胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)和少突胶质细胞NG2蛋白及其mRNA的表达变化,研究bFGF对神经干细胞新生和增殖分化的作用。
     【结果】一.未成熟脑缺血性损伤后:1.脑组织病理切片可见SVZ神经细胞变性、坏死,细胞层次紊乱、排列松散,部分神经细胞固缩、胞浆深染、核浓缩,结构不清,以术后第4d损伤最重;2.免疫荧光标记结果显示SVZ新生细胞显著增加,包括神经干细胞(BrdU+/Nestin+)、神经元(BrdU+Tuj1+)、星形胶质细胞(BrdU+/GFAP+)和少突胶质细胞(BrdU+/O4+)数目均较对照组增加(P<0.01),7d达高峰;3.基因芯片分析发现,与缺血后SVZ神经干细胞增殖分化相关的基因主要涉及VEGF、TGF-β1两条信号通路,定量分析结果显示VEGF、TGF-β1 mRNA和蛋白表达在缺血后均增加,7d达高峰,与对照组比较差异有统计学意义(p<0.01)。
     二.血管内皮细胞对未成熟脑神经干细胞的影响:1.共培养组神经干细胞(Nestin+)明显增加,在共培养7d达高峰,并且神经元(Tuj1+)、星形胶质细胞(GFAP+)和少突胶质细胞(O4+)数量亦增加,在共培养10d达高峰,与对照组和共培养+siRNA组相比,差异显著(P<0.01)。2.与血管和神经新生相关的基因表达谱变化显示,共培养组有112个基因表达较对照组2倍以上升高,给予siRNA干预后,这112个上调的基因中有81个表达呈2倍以上降低。利用基因芯片显著性分析方法(significance analysis of microarray,SAM)筛选具有显著性表现的基因,并利用KEGG数据库将这些差异表达基因按照信号通路进行映射,发现显著性表现的基因主要涉及Notch和Pten信号通路,这两条信号通路与血管新生和神经干细胞增殖分化的调控有关。采用real-time PCR方法对这两条通路中主要基因进行验证,得到与芯片数据一致的结果。
     三.未成熟脑缺血损伤后给予bFGF干预组:1.SVZ病理改变较对照组明显减轻;2.SVZ各种新生细胞(BrdU+)数量均较对照组显著增加,其中新生神经干细胞(BrdU+/Nestin+)在7d达高峰,而新生的神经元(BrdU+/NeuN+)、星形胶质细胞(BrdU+/GFAP+)和少突胶质细胞(BrdU+/NG2+)在14d达高峰,与非干预缺血组相比,差异均有显著意义(P<0.01);3.Nestin蛋白和mRNA表达都在7d达高峰,NeuN、GFAP和NG2的蛋白和mRNA表达均在14d达高峰,与非干预缺血组相比,差异均有显著意义(P<0.01)。
     【结论】1.缺血促进未成熟脑SVZ神经干细胞的增殖及其向功能神经细胞的分化;2.VEGF和TGF-β信号通路参与调控缺血后神经干细胞的增殖分化,是缺血性损伤影响未成熟脑神经干细胞微环境的重要途径;3.血管内皮细胞分泌的可溶性细胞因子和对血管新生相关基因的抑制可影响神经干细胞的微环境,调节神经干细胞的增殖和分化;4.血管内皮细胞与神经干细胞的相互作用涉及多条通路,主要与Notch和Pten信号通路有关;5.bFGF干预可促进未成熟脑缺血后的神经新生,可能有助于缺血性损伤后的神经修复。
Objectives:Neural stem cell niche is a key factor to regulate the self-renewal, proliferation and differentiation of neural stem cells.However,little is known about how ischemia affects the neural stem cell niche in the premature brain.In order to clarify the mechanisms how ischemia effect on the neurogensis in the premature brain, we observed the proliferation and differentiation of neural stem cells and the changes of neural stem cell niche in a 3-day-old rat model following brain ischemia in this study.Furthermore,we elucidated the pathways which related to the neural stem cell niche through observing the effects of soluble factors secreted by vascular endothelial cells on proliferation and differentiation of neural stem cells.Besides,the effect of basic fibroblast growth factor(bFGF) on the proliferation and differentiation of neural stem cells after brain ischemia were investigated.The study will provide novel evidence for intervention of ischemic premature brain injury.
     Methods:Part 1.The bilateral common carotid artery of rats was occluded to prepare the premature brain ischemia models.Proliferating cells were labeled by bromodeoxyuridine(BrdU) through intraperitoneal injection.By immunfluorescence staining,we observed the proliferation and differentiation of neural stem cells in the subventricular zone(SVZ) at 24h,4d,7d,and 14d after ischemic injury.And by used cDNA microarry chip,we monitored the changes of genes expression profile after brain ischemia.The significant change genes were testified by real-time quantitative polymerase chain reaction(PCR) and Western blot analysis.Part 2.SVZ brain slices of 3-day-old SD rats were cultured in vitro,they were divided into 3 groups randomly, named co-culture group(co-culture with vascular endothelial cells),co-culture and siRNA group(co-culture with vascular endothelial cells and siRNA) and control group(only culture brain slices),respectively.A mouse vascular endothelial cell line (bEnd.3,No.CRL-2299~(TM)) was used in the co-culture.RNA interference for knock-down VEGF gene expression was synthesized and transfection by liposome methods.At 4d,7d,and 10d of cultured,the proliferation and differentiation of neural stem cells in the brain slices were detected by immunfluorescence stain. Synchronously,the changes of genes involved neurogenesis and angiogenesis were analyzed by GeneChip and the relative signal pathways were further confirmed by real-time PCR.Part 3.One hundred and eight 3-day-old SD rats with brain ischemia were used in this experiment and half of them were received bFGF 10ng/g through lateral ventricles injection.Besides,fifty four 3-day-old SD rats without brain ischemia were used as normal control.Proliferating cells in brain were labeled by BrdU through intraperitoneal injection in a pulsed or a cumulative protocol.Rats were killed at 4d,7d,and 14d after operation,and the proliferation and differentiation of neural stem cells in the SVZ were observed by immunfluorescence assays,real-time PCR and Western blot analysis to evaluate the impact of bFGF on bain injury repair.
     Results:Part 1:(1) There were cerebral edema widely;neuronal cells necrosis and focal cerebromalacia formation in the ischemic rats.These damages were the most serious at the 4th day after the operation.(2) In brain ischemic rats, BrdU+/Nestin+ cells in the SVZ were significantly increased at all four time points and more neural stem cells differentiated into neurons,astrocytes,and oligodendrocytes,compared with the rats without brain ischemia(P<0.01).(3) GeneChip analysis showed a 3- to 10-fold increase in the mRNA expression of vascular endothelial growth factor(VEGF),transforming growth factor-beta (TGF-beta),and their receptors in the brain SVZ of ischemic rats,compared with that of without ischemic rats.PCR and Western blot analyses also confirmed these results. The data indicated that vascular endothelial growth factor and transforming growth factor-beta might be two important factors that involved post-ischemic neural stem cell proliferation and differentiation.Part 2:(1) The positive stain cells of Nestin, Tuj1,GFAP and O4 in brain slices were significantly increased in the co-culture group,compared with that in the control group(P<0.01).But,when VEGF siRNA was added into the co-culture all these four type cells were decreased markedly (P<0.01 vs the control group and co-culture group).(2) GeneChip analysis showed that the expressions of 112 genes were up-regulated more than 2-fold,however, among them 81 genes were down-regulated more than 2-fold after administration with VEGF siRNA.(3) Analyzed by "significance analysis of microarray" software,we found these noticeable altered genes were classified into notch and pten signal pathways on the ground of KEGG database,and these changes were further confirmed by real-time PCR assayes.Part 3:(1) The brain pathological damages in ischemic rats described in part 1 were alleviative in bFGF group.(2) Treatment with bFGF significantly increased the number of new cells(BrdU positive stain) in the SVZ at all three time points(P<0.01).The new neural stem cells(BrdU/Nestin double positive cells) were peaked at 7d after operation,and amount in the bFGF group was more than that in the control group(P<0.01).While,the new neurons(BrdU/NeuN double positive cells),astrocytes(BrdU/GFAP double positive cells),and oligodendrocytes(BrdU/NG2 double positive cells) were peaked at 14d.Treatment with bFGF significantly enhanced the number of these three group cells at all three time points(P<0.01).Moreover,Real-time PCR and Western blot assay confirmed these results.
     Conclusion:1.Ischemia induced the proliferation and differentiation of neural stem cells in the SVZ,which involved vascular endothelial growth factor and transforming growth factor-beta pathways.2.The soluble factors secreted by vascular endothelial cells enhance the proliferation and differentiation of neural stem cells in the SVZ.Moreover,inhibition of the expression of genes for angiogenesis attenuated the efficacy of vascular endothelial cells on neural stem cells.The effects of vascular endothelial cells on the neurogenesis were involved into many pathways,among them notch and pten signal pathways were important.3.bFGF stimulated the proliferation and differentiation of neural stem cells in neonatal rats after ischemic brain injury, which maybe is helpful for the neural repair after ischemia.
引文
1.Goldenberg RL,Culhane JF,Iams JD,et al.Epidemiology and causes of preterm birth[J].Lancet,2008,371(9606):75-84.
    2.Saigal S,Doyle LW.An overview of mortality and sequelae of preterm birth from infancy to adulthood[J].Lancet,2008,371(9608):261-9.
    3.中华医学会儿科学分会新生儿学组.中国城市早产儿流行病学初步调查报告[J].中国当代儿科杂志,2005,7(1):25-8.
    4.Imitola J.Prospects for neural stem cell-based therapies for neurological diseases [J].Neurotherapeutics,2007,4(4):701-14.
    5.Jiao J,Chen DF.Induction of neurogenesis in nonconventional neurogenic regions of the adult central nervous system by niche astrocyte-produced signals [J].Stem Cells,2008,26(5):1221-30.
    6.Moyse E,Segura S,Liard O,et al.Microenvironmental determinants of adult neural stem cell proliferation and lineage commitment in the healthy and injured central nervous system[J].Curr Stem Cell Res Ther,2008,3(3):163-84.
    7.Darsalia V,Kallur T,Kokaia Z.Survival,migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum.Eur J Neurosci,2007,26(3):605-14.
    8.Tonchev AB,Yamashima T,Chaldakov GN.Distribution and phenotype of proliferating cells in the forebrain of adult macaque monkeys after transient global cerebral ischemia[J].Adv Anat Embryol Cell Biol,2007,191(1):1-106.
    9.Vawda R,Woodbury J,Covey M,et al.Stem cell therapies for perinatal brain injuries[J].Semin Fetal Neonatal Med,2007,12(4):259-72.
    10.Fuchs E,Tumbar T,Guasch G.Socializing with the Neighbors:Stem Cells and Their Niche[J].Cell,2004,116(6):769-78.
    11.Weiss S,Reynolds BA,Vescovi AL,et al.Is there a neural stem cell in the mammalian forebrain[J]? Trends Neurosci,1996,19(9):387-93.
    12.Temple S,Alvarez-Buylla A.Stem cells in the adult mammalian central nervous system[J].Curr Opin Neurobiol,1999,9(1):135-41.
    13.Kuhn HG;Svendsen CN.Origins,functions,and potential of adult neural stem cells[J].Bioessays,1999,21(8):625-30.
    14.Romanko MJ,Rola R,Fike JR,et al.Roles of the mammalian subventricular zone in cell replacement after brain injury[J].Prog Neurobiol,2004,74(2):77-99.
    15. Levison SW, Rothstein RP, Romanko MJ, et al. Hypoxia/ischemia depletes the rat perinatal subventricular zone of oligodendrocyte progenitors and neural stem cells [J]. Dev Neurosci, 2001,23(3):234-47.
    
    16. Caldwell MA, He X, Wilkie N, et al. Growth factors regulate the survival and fate of cells derived from human nerospheres [J]. Nat Biotechnol, 2001,19(5): 475-9.
    
    17. Cai Z, Pang Y, Xiao F, et al. Chronic ischemia preferentially causes white matter injury in the neonatal rat brain [J]. Brain Res, 2001, 898(1): 126-35.
    
    18. Sherwood NM, Timiras PS. A stereotaxic atlas of the developing rat brain [M]. Los Angeles: University of California Press; 1970.
    
    19. Parent JM, Valentin VV, Lowenstein DH. Prolonged seizures increase proliferating neuroblasts in the adult rat subventricular zone-olfactory bulb pathway [J]. JNeurosci, 2002,22(8): 3174-88.
    
    20. Yan YP, Sailor KA, Vemuganti R, Dempsey RJ. Insulin-like growth factor-1 is an endogenous mediator of focal ischemia-induced neural progenitor proliferation [J]. Eur J Neurosci, 2006,24(1): 45-54.
    
    21. Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood [J]. Lancet, 2008, 371(9608):261-9.
    
    22. Chang YS, Mu D, Wendland M, et al. Erythropoietin improves functional and histological outcome in neonatal stroke [J]. Pediatr Res, 2005, 58(1): 106-11.
    
    23. Goldman JE. Lineage, migration, and fate determination of postnatal subventricular zone cells in the mammalian CNS [J]. J Neurooncol, 1995, 24(1):61-4.
    
    24. Arvidsson A, Collin T, Kirik D, et al. Neuronal replacement from endogenous precursors in the adult brain after stroke [J]. Nat Med, 2002,8(9): 963-70.
    
    25. Tureyen K, Vemuganti R, Sailor KA, et al. Transient focal cerebral ischemia induced neurogenesis in the dentate gyrus of the adult mouse [J]. J Neurosurg, 2004,101(5):799-805.
    
    26. Levison SW, Rothstein RP, Romanko MJ, et al. Hypoxia/ischemia depletes the rat perinatal subventricular zone of oligodendrocyte progenitors and neural stem cells [J]. DevNeurosci, 2001,23(3): 234-47.
    
    27. Rothstein RP, Levison SW. Damage to the choroid plexus, ependyma and subependyma as a consequence of perinatal hypoxia/ischemia [J]. Dev Neurosci, 2002,24(5): 426-36.
    
    28. Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene exp ression patternswith a complementary DNA microarray[J].Science,1995,270:467-70.
    29.Heller RA,Schena M,Chai A,et al.Discovery and analysis of inflammatory disease-related genes using cDNA microarrays[J].Proc Natl Acad Sci USA,1997,94(6):2150-5.
    30.Tang Y,Lu A,Aronow BJ,et al.Genomic responses of the brain to ischemic stroke,intracerebral haemorrhage,kainite seizures,hypoglycemia and hypoxia[J].Eur J Neurosci,2002,15:1937-52.
    31.J in K,Mao XO,EshooMW,et al.Microarray analysis of hippocampal gene exp ression global cerebral ischemia[J].Ann Neural,2001,50(1):93-103.
    32.Yan YP,Sailor KA,Vemuganti R,et al.Insulin-like growth factor-1 is an endogenous mediator of focal ischemia-induced neural progenitor proliferation [J].Eur J Neurosci,2006,24(1):45-54.
    33.黄孝文,肖红俊,汪吉宝,等.用BrdU标记技术观察大鼠内淋巴囊的S期细胞[J].中国组织化学与细胞化学杂志,2002,11(4):403-4.
    34.Taupin P.BrdU immunohistochemistry for studying adult neurogenesis:paradigms,pitfalls,limitations,and validation[J].Brain Res Rev,2007,53(1):198-214.
    35.Lendahl U,Zimmerman LB,Mckay RD.CNS stem cells express a new class of intermediate filament protein[J].Cell,1990,60(4):585-95.
    36.Briones TL,Suh E,Hattar H,et al.Dentate gyrus neurogenesis after cerebral ischemia and behavioral training[J].Biol Res Nurs,2005,6(3):167-79.
    37.Fu SL,Hu JG;Li Y,et al.A simplified method for generating oligodendrocyte progenitor cells from neural precursor cells isolated from the E16 rat spinal cord [J].Acta Neurobiol Exp(Wars),2007,67(4):367-77.
    38.Sondell M,Lundborg G;Kanje M.Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth,enhancing cell survival and Schwann cell proliferation in the peripheral nervous system[J].J Neurosci,1999,19(14):5731-40.
    39.Yang ZJ,Bao WL,Qiu MH,et al.Role of vascular endothelial growth factor in neuronal DNA damage and repair in rat brain following a transient cerebral ischemia[J].J Neurosci Res,2002,70(2):140-9.
    40.Jin KL,Mao XO,Greenberg DA.Vascular endothelial growth factor:direct neuroprotective effect in in vitro ischemia[J].Proc Natl Acad Sci USA,2000, 97(18):10242-7.
    41.Zhang H,Vutskits L,Pepper MS,et al.VEGF is a chemoattractant for FGF-2-stimulated neural progenitors[J].J Cell Biol,2003,163(6):1375-84.
    42.Zhu Y,Jin K,Mao XO,Greenberg DA.Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2F expression [J].FASEB J,2003,17(2):186-93.
    43.Shi YG,Massague J.Mechanisms of TGF-beta signaling from cell membrane to the nucleus[J].Cell,2003,113(6):685-700.
    44.Vivien D,Ali C.Transforming growth factor-beta signalling in brain disorders[J].Cytokine Growth Factor Rev,2006,17(1-2):121-8.
    45.D'Antonio M,Droggifi A,Feltri ML,et al.TGF-beta type Ⅱ receptor signaling controls Schwann cell death and proliferation in developing nerves[J].J Neurosci,2006,26(33):8417-27.
    46.Wachs FP,Winner B,Couillard-Despres S,et al.Transforming growth factor-beta 1 is a negative modulator of adult neurogenesis[J].J Neuropathol Exp Neurol,2006,65(4):358-70.
    47.Miller MW.Expression of transforming growth factor-beta in developing rat cerebral cortex:effects of prenatal exposure to ethanol[J].J Comp Neurol,2003,460(3):410-24.
    48.Morgan TE,Rozovsky I,Sarkar DK,et al.Transforming growth factor-beta 1induces transforming growth factor-beta 1 and transforming growth factor-beta receptor messenger RNAs and reduces complement C1qB messenger RNA in rat brain microglia[J].Neuroscience,2000,101(2):313-21.
    49.Farkas LM,Dunker N,Roussa E,et al.Transforming growth factor-beta(s) are essential for the development of midbrain dopaminergic neurons in vitro and in vivo[J].J Neurosci,2003,23(12):5178-86.
    50.Wurmser AE,Palmer TD,Gage FH.Cellular interactions in the stem cell niche [J].Science,2004,304(5675):1253-5.
    51.Fuches E,Tumbar T,Guasch G.Socializing with the neighbors:stem cells and their niche[J].Cell,2004,116(6):769-78.
    52.Xiao Z,Kong Y,Yang S,et al.Upregulation of Flk-1 by bFGF via the ERK pathway is essential for VEGF-mediated promotion of neural stem cell proliferation[J].Cell Res,2007,17(1):73-9.
    53.Wang Y,Jin K,Mao XO,et al.VEGF-overexpressing transgenic mice show enhanced post-ischemic neurogenesis and neuromigration [J]. J Neurosci Res, 2007, 85(4):740-7.
    
    54. Zhu W, Fan Y, Frenzel T, et al. Insulin growth factor-1 gene transfer enhances neurovascular remodeling and improves long-term stroke outcome in mice [J]. Stroke, 2008,39(4): 1254-61.
    
    55. Sumioka T, Ikeda K, Okada Y, et al. Inhibitory effect of blocking TGF-beta/Smad signal on injury-induced fibrosis of corneal endothelium [J]. Mol Vis, 2008, 14(2):2272-81.
    
    56. Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis [J]. J Comp Neurol, 2000,425(4):479-94.
    
    57. Doetsch F. A niche for adult neural stem cells [J]. Curr Opin Genet Dev, 2003, 13(5): 543-550.
    
    58. Fabel K, Toda H, Fabel K, et al. Copernican Stem Cells: Regulatory Constellations in Adult Hippocampal Neurogenesis [J]. J Cell Biochem, 2003, 88(1):41-50.
    
    59. Shen Q, Goderie SK, Jin L, et al. Endothelial Cells Stimulate Self-Renewal and Expand Neurogenesis of Neural Stem Cells [J]. Science, 2004, 304(5675): 1338-40.
    
    60. Xie K, Wei D, Shi Q, et al. Constitutive and inducible expression and regulation of vascular endothelial growth factor [J]. Cytokine Growth Factor Rev, 2004, 15(5): 297-324.
    
    61. Zhang HX, Vutskits L, Pepper MS, et al. VEGF is a chemoattractant for FGF-2 stimulated neural progenitors [J]. J Cell Biochem, 2003,163(6): 1375-84.
    
    62. Tan YZ. Basic fibroblast growth facror-mediated lymphangiogenesis of lymphatic endothelial cells isolated from dog thoracic ducts: effects of heparin [J]. Japan J Physiol, 1998,48(2): 133-41.
    
    63. Katakowski M, Zhang ZG, Chen J, et al. Phosphoinositide 3-kinase promotes adult subventricular neuroblast migration after stroke [J]. J Neurosci Res, 2003, 15;74(4):494-501.
    
    64. Elbashir SM, Harborth J, Weber K, et al. Analysis of gene function in somatic mammalian cells using small interfering RNAs [J]. Methods, 2002, 26(2): 199-213.
    
    65. Gerhold D, Lu M, Xu J, et al. Monitoring expression of genes involved in drug metabolism and toxicology using DNA microarrays [J]. Physiol Genomics, 2001, 5(4): 161-70.
    
    66. Jiao J, Chen DF. Induction of neurogenesis in nonconventional neurogenic regions of the adult central nervous system by niche astrocyte-produced signals [J]. Stem Cells, 2008,26(5): 1221-30.
    
    67. Moyse E, Segura S, Liard O, et al. Microenvironmental determinants of adult neural stem cell proliferation and lineage commitment in the healthy and injured central nervous system [J]. Curr Stem Cell Res Ther, 2008,3(3): 163-84.
    
    68. Oqunshola OO, Stewart WB, Mihalcik V, et al. Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain[J] .Brain Res Dev Brain Res, 2000,119(1):139-53.
    
    69. Chow J, Oqunshola O, Fan SY, et al. Astrocyte-derived VEGF mediates survival and tube stabilization of hypoxic brain microvascular endothelial cells in vitro[J].Brain Res Dev Brain Res, 2001,130(1):123-32.
    
    70. Sondell M, Sundler F, Kanje M. Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor [J]. Eur J Neurosci, 2000,12(12):4243-54.
    
    71. Jin KL, Mao XO, Greenberg DA.Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia [J]. Proc Natl Acad Sci USA, 2000, 97(18): 10242-7.
    
    72. Reich SJ, Fosnot J, Kuroki A, et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model [J]. Mol Vis, 2003, 9(3):210-6.
    
    73. Filleur S, Courtin A, Ait-Si-Ali S, et al. SiRNA-mediated Inhibition of Vascular Endothelial Growth Factor Severely Limits Tumor Resistance to Antiangiogenic Thrombospondin-1 and Slows Tumor Vascularization and Growth [J]. Cancer Res, 2003, 63(14): 3919-22.
    
    74. Shen Q, Goderie SK, Jin L, et al. Endothelial cells stimulates self-renewal and expand neurogenesis of neural stem cells [J]. Science, 2004,304(5675): 1338-40.
    
    75. Alexson TO, Hitoshi S, Coles BL, et al. Notch signaling is required to maintain all neural stem cell populations—irrespective of spatial or temporal niche [J]. Dev Neurosci, 2006,28(1-2):34-48.
    
    76. Malaterre J, Ramsay RG, Mantamadiotis T. Wnt-Frizzled signalling and the many paths to neural development and adult brain homeostasis [J]. Front Biosci, 2007, 12: 492-506.
    77.Pozniak CD,Pleasure SJ.A tale of two signals:Wnt and Hedgehog in dentate neurogenesis[J].Sci STKE,2006,2006(319):pe5.
    78.Greenberg DA,Jin K.From angiogenesis to neuropathology[J].Nature,2005,438(7070):954-9.
    79.Otaegi G,Yusta-Boyo MJ,Vergano-Vera E,et al.Modulation of the PI 3-kinase-Akt signalling pathway by IGF-I and PTEN regulates the differentiation of neural stem/precursor cells[J].J Cell Sci,2006,119(Pt13):2739-48.
    80.Li J,Yen C,Liaw D,et al.PTEN,a putative protein tyrosine phosphatase gene mutated in human brain,breast,and prostate cancer[J].Science,1997,275:1943-7.
    81.Cho KW,Cho SW,Lee JM,et al.Eprexssion of phosphorylated forms of ERK,MEK,PTEN and PI3K in mouse brian development[J].Gene Expr Patterns,2008,8:284-90.
    82.Cai QY,Chen XS,Zhong SC,et al.Differential Expression of PTEN in Normal Adult Rat Brain and Upregulation of PTEN and p-Akt in the Ischemic Cerebral Cortex[J].Anat Rec(Hoboken),2009,292(4):498-512.
    83.Gage FH.Mammalian neural stem cell[J].Science,2000,287(5457):1433-8.
    84.DeCoster MA,Schabelman E,Tombran-Tink J,et al.Neuroprotection by PEDF against glutamate toxicity in developing primary hippocampal neurons[J].J Neurosci Res,1999,56(6):604-10.
    85.Flores C,Stewart J.Basic fibroblast growth factor as a mediator of the effects of glutamate in the development of long-lasting sensitization to stimulant drugs:studies in the rat[J].Psychopharmacology,2000,151(2-3):152-65.
    86.胡晓红,栾佐.bFGF与缺氧缺血性脑损伤的修复.国外医学儿科学分册[J],2002,29(4):197-9.
    87.Cuevas P,Carceller F,Munoz-willery I,et al.Intravenous fibroblast growth factor penetrates the blood-brain barrier and protects hippocampal neurons against ischemia-reperfusion injury[J].Surg Neurol,1998,49(1):77-83.
    88.Volpe JJ.Neurobiology of periventdcular leukomalacia in the premature infant [J].Pediatr Res,2001,50(5):553-62.
    89.Pitkanen A.Clinical Trials in Neuroprotection.23-25 January 2003,Key Biscayne,FL,USA[J].IDrugs,2003,6(3):200-2.
    90.Jacobs S,Hunt R,Tarnow-Mordi W,et al.Cooling for newboms with hypoxic ischaemic encephalopathy[J].Cochrane Database Syst Rev,2007,4:CD003311.
    91. Levison SW, Rothstein RP, Romanko MJ, et al. Hypoxia/ischemia depletes the rat perinatal subventricular zone of oligodendrocyte progenitors and neural stem cells [J]. Dev Neurosci, 2001,23(3): 234-47.
    
    92. Rothstein RP, Levison SW. Damage to the choroid plexus, ependyma and subependyma as a consequence of perinatal hypoxia/ischemia [J]. Dev Neurosci, 2002,24(5): 426-36.
    
    93. Felling RJ, Levison SW. Enhanced neurogenesis following stroke [J]. J Neurosci Res, 2003, 73(3): 277- 83.
    
    94. Lindvall O, Kokaia Z. Recovery and rehabilitation in stroke: stem cells [J]. Stroke, 2004, 35(11): 2691-4.
    
    95. Brazel CY, Romanko MJ, Rothstein RP, et al. Roles of the mammalian subventricular zone in brain development [J]. Prog Neurobiol, 2003, 69(1): 49-69.
    
    96. Brazel CY, Rosti RT, Boyce S, et al. Perinatal hypoxia/ischemia damages and depletes progenitors from the mouse subventricular zone [J]. Dev Neurosci, 2004, 26(2-4): 266-74.
    
    97. Takahashi T, Nowakowski RS, Caviness VS. Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall [J]. J Neurosci, 1995,15(9): 6058-68.
    
    98. Tamamaki N, Fujimori KE, Takauji R. Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone [J]. J Neurosci, 1997, 17(21): 8313-23.
    
    99. Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors [J]. Cell, 2002,110(4): 429-41.
    
    100.Jin K, Sun Y, Xie L, et al. Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice [J]. Aging Cell, 2003,2(3): 175-83.
    
    101.Yeoh JS, de Haan G.Fibroblast growth factors as regulators of stem cell self-renewal and aging [J]. Mech Ageing Dev, 2007,128(1): 17-24.
    
    102.Kawamata T, Dietrich WD, Schallert T, et al. Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction [J]. Proc Natl Acad Sci USA, 1997, 94(15): 8179-84.
    103.Liu Y,Silverstein FS,Skoff R,et al.Hypoxic-ischemic oligodendroglial injury in neonatal rat brain[J].Pediatr Res,2002,51(1):25-33.
    1.Darsalia V,Kallur T,Kokaia Z.Survival,migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum.Eur J Neurosci,2007,26(3):605-14.
    2.Jin K,Galvan V.Endogenous neural stem cells in the adult brain.J Neuroimmune Pharmacol,2007,2(3):236-42.
    3.Tarnowski M,Sieron AL.Adult stem cells and their ability to differentiate.Med Sci Monit,2006,12(8):RA154-63.
    4.Quinoncs-Hinojosa A,Sanai N,Gonzalez-Percz O,et al.The human brain subventricular zone:stem cells in this niche and its organization.Neurosurg Clin N Am,2007,18(1):15-20.
    5.Taupin P.Neural progenitor and stem cells in the adult central nervous system. Ann Acad Med Singapore, 2006,35(11):814-20.
    
    6. Ihrie RA, Alvarez-Buylla A. Cells in the astroglial lineage are neural stem cells. Cell Tissue Res, 2008, 331(1):179-91.
    
    7. Eisch AJ, Harburg GC. Opiates, psychostimulants, and adult hippocampal neurogenesis: Insights for addiction and stem cell biology. Hippocampus, 2006, 16(3):271-86.
    
    8. Walker MR, Patel KK, Stappenbeck TS. The stem cell niche. J Pathol, 2009, 217(2): 169-80.
    
    9. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell, 2004,116(6):769-78.
    
    10. Ogawa D, Okada Y, Nakamura M, et al. Evaluation of human fetal neural stem/progenitor cells as a source for cell replacement therapy for neurological disorders: properties and tumorigenicity after long-term in vitro maintenance. J Neurosci Res, 2009, 87(2):307-17.
    
    11. Harkany T, Andang M, Kingma HJ, et al. Region-specific generation of functional neurons from naive embryonic stem cells in adult brain. J Neurochem, 2004, 88(5): 1229-39.
    
    12. Kerever A, Schnack J, Vellinga D, et al. Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu. Stem Cells, 2007,25(9):2146-57.
    
    13. Lledo PM, Merkle FT, Alvarez-Buylla A. Origin and function of olfactory bulb interneuron diversity. Trends Neurosci, 2008, 31(8):392-400.
    
    14. Kim BW, Son H. Neural cell adhesion molecule (NCAM) induces neuronal phenotype acquisition in dominant negative MEK1-expressing hippocampal neural progenitor cells. Exp Mol Med, 2006, 38(6):732-8.
    
    15. Garcion E, Halilagic A, Faissner A, et al. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development, 2004,131(14):3423-32.
    
    16. Zhan M, Zhao H, Han ZC. Signalling mechanisms of anoikis. Histol Histopathol, 2004,19(3):973-83.
    
    17. Campos LS, Leone DP, Relvas JB, et al. Beta1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance. Development, 2004, 131(14):3433-44.
    
    18. Wurmser AE, Palmer TD, Gage FH. Neuroscience. Cellular interactions in the stem cell niche. Science, 2004, 304(5675): 1253-5.
    
    19. Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature, 2002,417:39-44.
    
    20. Recknor JB, Sakaguchi DS, Mallapragada SK. Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates. Biomaterials, 2006,27:4098-108.
    
    21. Gleason D, Fallon JH, Guerra M, et al. Ependymal stem cells divide asymmetrically and transfer progeny into the subventricular zone when activated by injury. Neuroscience, 2008,156(1):81-8.
    
    22. Stumm R, Hollt V. CXC chemokine receptor 4 regulates neuronal migration and axonal pathfinding in the developing nervous system: implications for neuronal regeneration in the adult brain. Mol Endocrinol, 2007, 38(3):377-82.
    
    23. Schonemeier B, Kolodziej A, Schulz S, et al. Regional and cellular localization of the CXC112/SDF-1 chemokine receptor CXCR7 in the developing and adult rat brain. J Comp Neurol, 2008, 510(2):207-20.
    
    24. Qiu R, Wang X, Davy A, et al. Regulation of neural progenitor cell state by ephrin-B. J Cell Biol, 2008,181(6):973-83.
    
    25. Otsuka S, Coderre JA, Micca PL, et al. Depletion of neural precursor cells after local brain irradiation is due to radiation dose to the parenchyma, not the vasculature. Radiat Res, 2006,165(5):582-91.
    
    26. Watts C, McConkey H, Anderson L, et al. Anatomical perspectives on adult neural stem cells. J Anat, 2005,207(3): 197-208.
    
    27. Doetsch F, Hen R. Young and excitable: the function of new neurons in the adultmammalian brain. Curr Opin Neurobiol, 2005,15 (1): 121-8.
    
    28. Gage FH. Mammalian neural stem cells. Science, 2000,287 (5457): 1433-8.
    
    29. Ramirez-Castillejo C, Sanchez-Sanchez F, Andreu-Agull6 C, et al. Pigment epithelium derived factor is a niche signal for neural stem cell renewal. Nat Neurosci,2006,9(3):331-9.
    
    30. Molofsky AV, Pardal R, Morrison SJ. Diverse mechanisms regulate stem cell self2renewal. Curr Opin Cell Biol, 2004,16 (6): 700-7.
    
    31. Shen Q, Goderie S K, Jin L, et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science, 2004, 304 (5675): 1338-40.
    
    32. Raab S, Plate KH. Different networks, common growth factors: shared growth factors and receptors of the vascular and the nervous system. Acta Neuropathol (Berl), 2007,113 (6): 607-26.
    
    33. Mathieu C, Fouchet P, et al. Coculture with endothelial cells reduces the population of cycling LeX neural precursors but increases that of quiescent cells with a side population phenotype. Exp Cell Res, 2006, 312 (6): 707-18.
    
    34. Menabde G, Gogilashvili K, Kakabadze Z, et al. Bone marrow-derived mesenchymal stem cell plasticity and their application perspectives. Georgian Med News, 2009, (167):71-6.
    
    35. Su L, Zhao B, Lv X, et al. Safrole oxide is a useful tool for investigating the effect of apop tosis in vascular endothelial cells on neural stem cell survival and differentiation in vitro. Bioorg Med Chem Lett, 2007,17 (11): 3167-71.
    
    36. Takasaki I, Takarada S, Fukuchi M, et al. Identification of genetic networks involved in the cell growth arrest and differentiation of a rat astrocyte cell line RCG-12. J Cell Biochem, 2007,102(6):1472-85.
    
    37. Sorescu G P, Song H, Tressel SL. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase. Circ Res, 2004, 95(8): 773-79.
    
    38. Wislet-Gendebien S, Bruyere F, Hans G, et al. Nestin positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4. BMC Neurosci, 2004, 5: 33.
    
    39. Wada T, Haigh JJ , Ema M, et al. Vascular endothelial growth factor directly inhibits p rimitive neural stem cell survival but promotes definitive neural stem cell survival. J Neurosci, 2006,26 (25): 6803-12.
    
    40. Mueller F J , Serobyan N, Schraufstatter I U, et al. Adhesive interactions between human neural stem cells and inflamed human vascular endothelium are mediated by integrins. Stem Cell, 2006, 24 (11): 2367-72.
    
    41. Imitola J, Raddassi K, Park K I, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell2derived factor 1alpha /CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA, 2004, 101 (52): 18117-22.
    
    42. Guo S, Kim WJ, Lok J, et al. Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons. Proc Natl Acad Sci USA, 2008, 105(21):7582-7.
    
    43. Wang L, Zhang Z G, Zhang RL, et al. Matrix metallop roteinase 2 (MMP2) and MMP9 secreted by erythropoietin activated endothelial cells promote neural progenitor cell migration.J Neurosci,2006,26(22):5996-6003.
    44.Sun Y,Jin K,Childs JT,et al.Vascular endothelial growth factor-B(VEGFB)stimulates neurogenesis:evidence from knockout mice and growth factor administration.Dev Biol,2006,289(2):329-35.45
    45.Drummond-Barbosa D.Stem cells,their niches and the systemic environment:an aging network.Genetics,2008,180(4):1787-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700