1、GEP蛋白在骨骼肌分化过程中的功能研究 2、ADAMTS-12抑制软骨分化的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GEP(granulin-epithelin precursor)蛋白是一种自分泌生长因子,也被称为progranulin,proepithelin,acrogranin或者PC细胞衍生生长因子,是一个68.5-kDa大小的分泌性生长因子。它的序列高度保守,几乎在所有真核生物中均表达。该蛋白高度糖基化,在SDS-PAGE上呈现为分子量大小约90-kDa。结构上,它属于生长因子家族。GEP可以以完整蛋白形式分泌,或者被蛋白水解,以多肽的形式分泌,即组成GEP蛋白的多肽片段一颗粒体蛋白(granulin)。GEP蛋白作为一种具有较大分子量的自分泌生长因子,参与多种生理性和病理性过程。GEP蛋白在代谢较快的上皮细胞,免疫系统的各种细胞和神经细胞中丰富表达。同时,在人类几种癌组织中也有报道GEP蛋白高度表达,有理由相信,GEP蛋白会导致乳腺癌,透明细胞肾癌,侵袭性卵巢癌,成胶质细胞瘤,脂肪畸胎瘤,多发性骨髓瘤和骨肉瘤。同时,越来越多的证据表明GEP蛋白也参与分化、发育和病理过程中的调节。
     本文主要研究GEP蛋白在骨骼肌分化中的作用和机制。骨骼肌分化过程是受一些转录因子所调控的(成肌因子家族),包括MyoD,Myf5,myogenin和MRF4。成肌因子在肌分化过程中起着重要的作用,如果在任何非成肌细胞(例如10T1/2成纤维细胞)中异位表达这些成肌因子,将会导致多种肌分化基因的表达,促使其向肌管分化。本研究以GEP蛋白为主要研究对象,系统的探讨了GEP蛋白在成肌细胞分化中的调节作用及机制,首次揭示了GEP蛋白在成肌细胞分化中的调节作用及其相应的分子机制:
     1.我们利用免疫组织化学染色的方法,显示GEP蛋白在胚胎肌肉组织中表达,应用细胞免疫荧光和实时荧光定量PCR方法,证明GEP在C2C12细胞向肌管分化过程中,GEP表达量是增高的,无论是mRNA水平还是蛋白水平。提示GEP在调节骨骼肌分化中起作用。
     2.应用细胞免疫荧光和实时荧光定量PCR方法,证明MyoD可以诱导内源性GEP的表达,无论在转录水平还是蛋白水平都增加。
     3.通过对GEP基因核酸序列的分析,发现其转录调控区有5个潜在的MyoD结合位点,我们使用了4个GEP特异性报告基因质粒,含有不同数量的MyoD结合位点,共转染上述报告基因与MyoD的真核表达质粒,通过检测荧光素酶表达活性研究MyoD对于GEP表达的影响。结果显示,MyoD可以激活GEP特异报告基因,MyoD在成肌细胞分化过程中具有调节GEP转录的功能。
     4.应用点突变技术,我们在报告基因271GEP-luc中GEP的转录调控区引入了MyoD结合位点的点突变,结果发现MyoD失去激活作用,同时应用凝胶电泳迁移实验及染色质免疫共沉淀,证明在成肌细胞分化过程中MyoD对GEP基因转录调控的作用通过MyoD直接结合到GEP基因转录调控区的MyoD结合位点上实现。
     5.我们研究了GEP过表达与低水平对成骨细胞分化的影响。结果显示,在成肌细胞分化过程中,高水平GEP能够抑制成肌细胞的分化,而在低GEP的细胞环境中,分化被促进了。
     6.为了揭示GEP抑制骨骼肌分化的分子机制,我们进一步研究了GEP在肌分化过程中,对成肌因子家族的作用。实验证明GEP在成肌细胞分化过程中抑制MyoD、Myf5、Myogenin、MHC基因的表达。
     7.JunB可以抑制骨骼肌分化。我们在肌分化的早期,应用实时荧光定量PCR,免疫印迹和细胞免疫荧光检测GEP对JunB表达的调控,发现GEP诱导JunB的表达。成功构建JunB表达质粒及JunB siRNA质粒,通过检测荧光素酶表达活性及MHC的表达证明GEP抑制成肌细胞分化的作用部分依赖于JunB。
     本研究针对骨骼肌发生中的分子调节,首次阐述了GEP蛋白抑制骨骼肌分化的作用和分子机制,进一步揭示骨骼肌生长与修复的机理,为提出更多的治疗肌肉疾病、肌肉创伤修复的方法奠定生物学基础。
     金属蛋白酶ADAMTS-12属于ADAMTS家族(含TSP结构的去整合素金属蛋白酶,a disintcgrin and metalloproteas~with thromospondin motifs,ADAMTS),其对降解软骨细胞外基质蛋白和关节炎具有非常重要的作用。ADAMTS家族含有分泌性锌指蛋白,并且有较严谨的分子结构,至少包括一个thrombospondinmotifs重复结构。这个家族具有重要的功能,ADAMTS-1、ADAMTS-4、ADAMTS-5、ADAMTS-8、ADAMTS-9、ADAMTS-1 6和ADAMTS-1 8可以降解多聚蛋白糖,ADAMTS-5在小鼠关节炎模型中蛋白多聚糖的丢失上起着重要的作用。ADAMTS-2、ADAMTS-3和ADAMTS-14胶原前肽。ADAMTS-2突变会导致皮肤脆裂症,一种严重的皮肤遗传病。ADAMTS-13是VW因子清除蛋白酶,它的突变会导致遗传性的致命疾病,血小板减少性紫癜。ADAMTS-7和ADAMTS-12具有相同的结构域组成,构成ADAMTS家族的亚型。我们最初报道ADAMTS-7和ADAMTS-12直接结合降解软骨寡聚基质蛋白(cartilageoligomcric matrix protein,COMP)),一种软骨最主要的非胶原组成物。COMP是由五个l 10-kDa的多结构域糖蛋白亚基,通过二硫键构成一个524-kDa的复合体。COMP基因突变和常染色体显性肢断短小症…-假性软骨发育不全和多发性骨骺发育不良…-的发生有关。在膝关节损伤、创伤、原发性骨性关节炎(osteoarthritis,OA)和风湿性关节炎(rheumatoid arthritis,RA)的患者软骨、关节滑液和血清中,都可以检测到COMP的片段。我们知道只要能够抑制降解软骨的蛋白酶类就可以滞后或阻止疾病的进展,因此有人从病理生理学或治疗学的观点上提出隔离蛋白酶或使用抑制剂来抑制病情的进展。研究发现,纯化的COMP蛋白在体外可以被几种基质蛋白酶(matrix metalloproteinases,MMPs)所降解,包括间质胶原酶-1(interstitial collagenase-1,MMP-1)、胶原蛋白酶-3(collagenase-3,MMP-13)、基质溶解素-1(stromelysin-1,MMP-3)、明胶酶B(gelatinase-B,MMP-9)、MMP·19和釉质溶解素(enamelysin,MMP-20)。另外,ADAMTS家族中的ADAMTS-4被发现也具有体外酶切COMP的功能。然而我们体外酶切试验中所应用的蛋白酶和底物的浓度,都比人体生理、病理条件下的浓度要高。虽然体内COMP的量和ADAMTS的水平之间没有相关的数据支持他们的关联性,但是很有可能COMP的降解正是由这些金属蛋白酶调节的,至少部分受他们调节。另外,我们研究发现a-2-巨球蛋白可以抑制COMP蛋白的降解。最近还有研究发现ADAMTS-12也能够降解软骨聚集蛋白多糖。
     研究发现,在软骨分化过程中ADAMTS-12的表达量显著增高,意味着在骨骼发育中ADAMTS-12的表达量在时间、空间上都有变化。ADAMTS-12蛋白不但在体外软骨分化中被诱导表达,研究发现在体内的生长板软骨细胞中同样可以发现ADAMTS-12的表达增高。ADAMTS-12能够抑制软骨细胞的分化及软骨成骨,此抑制分化的功能是依赖于ADAMTS-12的蛋白酶活性的。ADAMTS-12的cysteine-fich结构域对于ADAMTS-12与细胞外基质相互作用和细胞膜表面定位是必不可少的,C一末端的4个TSP结构域对于ADAMTS-12的蛋白水解酶活性和抑制软骨细胞分化功能也是必需的。因此,ADAMTS-12对于软骨细胞分化和软骨成骨起负调控功能,这种抑制功能严格地依赖于ADAMTS-12的酶切活性。而当ADAMTS-12发生点突变后,则完全丧失了酶切活性-同时也丧失了对软骨细胞的抑制作用。
     ADAMTS-12由多个功能性亚基构成,包括:ADAMTS-12包括一个锌离子催化结构域和其他几个非催化结构域,包括:1个disintegrin结构域、1个thrombospondin结构域、1个cystdne-dch结构域(CRD)、1个spaccr-I结构域、3个thrombospondin motifs、1个space~-2结构域和C-末端4个thrombospondinmotifs。研究发现C-末端的4个thrombospondin motifs具有结合底物的功能,如结合COMP,而ADAMTS-12的其他功能结构域的生物学功能却还都不清楚。为了揭示各个结构域的功能,我们构建了一系列的ADAMTS-12的C-末端缺失突变体,发现ADAMTS-12的cysteine-rich结构域对于ADAMTS-12与软骨细胞外基质相互作用和细胞膜表面定位是必不可少的。ADAMTS-12的酶切活性受到非催化亚基的调控,尤其是C-末端的4个thrombospondin motifs和抑制性spacer-2结构域。另外,ADAMTS-12的抑制软骨分化功能同样也受到非催化亚基的调控,尤其是C-末端的4个thrombospondin motifs重复结构。
     本文研究发现ADAMTS-12作为软骨分化的重要负调控因子,影响软骨细胞分化和软骨内成骨。这种抑制软骨分化的功能严格地依赖于ADAMTS-12的酶切活性,而当ADAMTS-12发生点突变后,则完全丧失了酶切活性,同时也丧失了对软骨细胞的抑制作用。ADAMTS—12的酶切活性受到非催化亚基的调控,尤其是C。末端的4个thrombospondin motifs和抑制性spac~-2结构域。另外,ADAMTS-12的抑制软骨分化功能同样也受到非催化亚基的调控,尤其是C-术端的4个thrombospondin motifs重复结构。
Granulin-epithelin precursor(GEP),an autocrine growth factor,also referred to as progranulin,proepithelin,PC cell derived growth factor,or acrogranin,is a 68.5-kDa secreted growth factor.It is highly conserved and ubiquitously expressed in eukaryotes.It is heavily glycosylated and appears as an~90-kDa protein on SDS-PAGE.Structurally,it belongs to one of the well established growth factor families.GEP is secreted in an intact form or undergoes proteolysis,eading to the release of its constituent peptides,the granulins.GEP itself is a secreted growth factor with high molecular weight that is involved in various biological and pathological processes.GEP is abundantly expressed in rapidly cycling epithelial cells,in cells of the immune system,and in neurons.High levels of GEP expression have been reported from several human cancers and are believed to contribute to tumorigenesisin breast cancer,clear cell renal carcinoma,invasive ovarian arcinoma, glioblastoma,adipocytic teratoma,multiple myeloma,and osteosarcoma.Increasing evidence has also implicated GEP in the regulation of differentiation,development, and pathological processes.
     These studies are mainly about the role of GEP in skeletal muscle differentiation and mechanism of regulating skeletal muscle differentiation.Myoblast differentiation is coordinated by a family of muscle-specific transcription factors(myogenic factors) that includes MyoD,Myf5,myogenin and MRF4.Ectopic expression of any of the myogenic factors in some nonmyogenic cell types(e.g.,10T1/2 fibroblasts) results in increases in the expression of various muscle differentiation genes and possibly in the fusion of the myoblasts to form myotubes.Our research takes GEP as the main object. We study the role of GEP during muscle differentiation and the mechanism of GEP regulating muscle differentiation.We firstly report that the effectiveness and molecular mechanism of GEP during skeletal muscle differentiation:
     1.To test the expression of GEP in muscle tissue,18-day embryo muscle was examined by immunohistochemistry.It shows that GEP is expressed in muscle tissue. We determined the endogenous GEP expression through real-time PCR and immunofluorescent cell staining on a time course of differentiation with C2C12 cells. During differentiation,GEP increases not only at mRNA leve but also at protein level. These data suggest that GEP expression is coordinately controlled with the process of myogenic differentiation.
     2.We determined the effect of MyoD on GEP expression through real-time PCR and immunofluorescent cell staining.It shows that MyoD induces endogenous GEP mRNA and protein expression.
     3.We analysis the transcriptional control region of GEP gene and find A 1.9-kb segment from the 5'-flanking region of the GEP gene contains at least five MyoD-specific sequences.Four reporter gene plasmids were used in which segments with MyoD-specific sequences.Different quantities of MyoD expression plasmid, GEP-specific reporter gene plasmids and PCMV-β-gal plasmid(internal control) were cotrnasfected into 10T1/2 cells.We found that luciferase gene was activated and expressed.These data shows that MyoD can drive the expression of GEP-specific reporter genes.
     4.GEP reporter plasmid -271GEP-luc was mutated 3 base pair.MyoD protein lost the ability of activating luciferase gene.It shows that MyoD Activates GEP-Specific Reporter Genes directly,depending on MyoD-Specific Binding Sequences in the 5'-Flanking Region of the GEP Gene Driving the Expression of GEP.We also use EMSA and ChIP to establish the sequence-specific binding of MyoD to the MyoD-specific sequences in the 5'-flanking region of GEP,MyoD activates GEP gene directly.
     5.We studied the Effects of Overexprssion and Knockdown of GEP on Myoblast Cells Differentiation.These data shows that GEP inhibits myotube information. SiRNA-targeting GEP stimulats myotube information.
     6.Differentiation of mhyoblasts is regulated by a family of muscle-specific transcription factors such as MyoD,Myf5,Myogenin and MRF4.To investigate the molecular mechanism of GEP inhibiting muscle differentiation,we used real-time PCR and western blotting to detect the expression of MyoD,Myf5,Myogenin and MHC.The data shows that GEP inhibits the expression of MyoD,Myf5,Myogenin and MHC during muscle differentiation.
     7.It was reported that JunB can inhibit muscle differentiation.We use real-time PCR, Western blot and cell immunofluorescent cell staining to detect the change of JunB regulated by GEP at early stage of muscle differentiaton.GEP induces the expression of JunB.We construct JunB expression plasmid and pSuser-JunB plasmid and used luciferase and real-time PCR detecting MHC mRNA expression.It was found that GEP inhibits myogenesis partly through JunB.
     In this study,we fist report that GEP inhibit muscle differentiation and the molecular mechanism of GEP regulating muscle differentiation.It reveals the mechanism of skeletal muscle growth and repair.It establish the biological basis of raising more methods of curing muscle disease and repairing muscle trauma.
     ADAMTS-12, a metalloproteinase that belongs to ADAMTS family, is important for the degradation of cartilage extracellular matrix proteins and its level is significantly levated in arthritis. The ADAMTS (a disintegrin and metalloproteinase with thrombospondin type I motifs) family consists of secreted zinc metalloproteinases with a precisely ordered modular organization that includes at least one thrombospondin type I repeat. Important functions have been established for several members of the ADAMTS family. ADAMTS-1, ADAMTS-4, ADAMTS-5, ADAMTS-8, ADAMTS-9, ADAMTS-16 and ADAMTS-18 degrade aggrecan and ADAMTS-5 plays a primary role in aggrecan loss in murine arthritis. ADAMTS-2, ADAMTS-3, and ADAMTS-14 are procollagen N-propeptidases. ADAMTS-2 mutations cause dermatosparaxis, an inherited disorder characterized by severe skin fragility. ADAMTS-13 is a von Willebrand factor-cleaving protease, and its mutations lead to heritable life-threatening thrombocytopenic purpura. ADAMTS-7 and ADAMTS-12 share the same domain organization and form a subgroup with unique properties within ADAMTS family. Our previously reports demonstrate that ADAMTS-7 and ADAMTS-12 directly associate with and degrade cartilage oligomeric matrix protein, COMP), a prominent noncollagenous component of cartilage. COMP is a 524-kDa disulfide-bonded, multidomain glycoprotein composed of five 110-kDa subunits. Mutations in the human COMP gene have been linked to the development of pseudoachondroplasia and multiple epiphyseal dysplasia, which are autosomal-dominant forms of short-limb dwarfism. Fragments of COMP have been detected in the diseased cartilage, synovial fluid, and serum of patients with knee iniuries. nost-traumatic. nrimarv osteoarthritis fOA^ and rheumatoid arthritis (H.AY Since the inhibition of cartilage degradative enzymes should slow or block disease progression, the isolation of these enzymes and their inhibitors is of great interest from both a pathophysiological and a therapeutic standpoint. Purified COMP has been reported to be digested by several matrix metalloproteinases (MMPs) in vitro, including interstitial collagenase-1 (MMP-1), collagenase-3 (MMP-13), stromelysin-1 (MMP-3), gelatinase-B (MMP-9)[l], MMP-19, and enamelysin (MMP-20). In addition, a member of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family ADAMTS-4, was reported to cleave purified COMP in vitro. All these assays, however, were performed using an in vitro digestion system with higher concentrations of enzymes and substrates than are found in physiological and pathological conditions. It is likely that COMP degradation in vivo is mediated, at least in part, by these metalloproteinases, although no relationship between COMP degradation and ADAMTS levels has been found to date. In addition, Alpha-2-Macroglobulin inhibits their degradation of COMP. Recent report revealed that ADAMTS-12 also degraded aggrecan.
     We found that ADAMTS-12 is strongly upregulated during chondrogenesis and demonstrates the temporal and spatial expression pattern during skeletal development. ADAMTS-12 protein was highly induced in the course of chondrogenesis in vitro and also demonstrated prominent expression in the growth plate chondrocytes in vivo. ADAMTS-12 potently inhibits chondrocyte differentiation and endochondral bone formation, and this inhibition depends on the proteolytic activity of ADAMTS-12. The cysteine-rich domain of ADAMTS-12 is required for its interaction with extracellular matrix and cell surface localization, and the C-terminal four thrombospondin motifs is necessary for its full proteolytic activity and inhibition of chondrocyte differentiation. ADAMTS-12 appears to be a potent negative regulator of chondrocyte differentiation and endochondral bone growth, and its inhibitory activities strictly depend on its enzymatic activities, since its point mutant lacking enzymatic activity completely lost these inhibitions.
     ADAMTS-12 is composed of multiple functional domains, including a prodomain, a catalytic domain, a disintegrin domain, a thrombospondin motif, a cysteine-rich domain, a spacer-1 domain, three thrombospondin motifs, a spacer-2 domain, and a C-terminal four thrombospondin motifs. In addition to its C-terminal four thrombospondin motifs known to bind to substrates, including COMP, the role of individual domain in regulating the biochemical properties of ADAMTS-12 remains unknown. To address this issue, we generated series of domain deletion mutants of ADAMTS-12 and found that The CRD is required for ADAMTS-12 binding to the cell surface and ECM in chondrocytes. The enzymatic activities of ADAMTS-12 are precisely regulated by its non-catalytic domains, specially its substrate-capturing C-terminal four thrombospondin motifs and an inhibitory spacer-2 domain. In addition, the ADAMTS-12-mediated chondrocyte differentiation are also precisely regulated by its non-catalytic domains, specially its substrate-capturing C-terminal four thrombospondin motifs.
     The study in this paper provides novel insights into the role of ADAMTS-12, a novel negative mediator in chondrogenesis, in regulating chondrocyte differentiation and endochondral bone formation. Its inhibitory activities strictly depend on its enzymatic activities, since its point mutant lacking enzymatic activity completely lost these inhibitions. The enzymatic activities of ADAMTS-12 are precisely regulated by its non-catalytic domains, specially its substrate-capturing C-terminal four thrombospondin motifs and an inhibitory spacer-2 domain. In addition, the ADAMTS-12-mediated chondrocyte differentiation are also precisely regulated by its non-catalytic domains, specially its substrate-capturing C-terminal four thrombospondin motifs.
引文
1. Shoyab, M., et al., Epithelins 1 and 2: isolation and characterization of two cysteine-rich growth-modulating proteins. Proc Natl Acad Sci U S A, 1990. 87(20): p. 7912-6.
    
    2. Plowman, GD., et al., The epithelin precursor encodes two proteins with opposing activities on epithelial cell growth. J Biol Chem, 1992. 267(18): p. 13073-8.
    
    3. Baba, T., et al., Acrogranin, an acrosomal cysteine-rich glycoprotein, is the precursor of the growth-modulating peptides, granulins, and epithelins, and is expressed in somatic as well as male germ cells. Mol Reprod Dev, 1993. 34(3): p. 233-43.
    
    4. Zhou, J., et al., Purification of an autocrine growth factor homologous with mouse epithelin precursor from a highly tumorigenic cell line. J Biol Chem, 1993. 268(15): p. 10863-9.
    
    5. Wright, W.E., D.A. Sassoon, and V.K. Lin, Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell, 1989. 56(4): p. 607-17.
    
    6. Lu, R. and G Serrero, Inhibition of PC cell-derived growth factor (PCDGF, epithelin/granulin precursor) expression by antisense PCDGF cDNA transfection inhibits tumorigenicity of the human breast carcinoma cell line MDA-MB-468. Proc Natl Acad Sci U S A, 2000. 97(8): p. 3993-8.
    
    7. Davidson, B., et al., Granulin-epithelin precursor is a novel prognostic marker in epithelial ovarian carcinoma. Cancer, 2004. 100(10): p. 2139-47.
    
    8. Zanocco-Marani, T., et al., Biological activities and signaling pathways of the granulin/epithelin precursor. Cancer Res, 1999. 59(20): p. 5331-40.
    
    9. Lu, J., et al., Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci U S A, 2000. 97(8): p. 4070-5.
    
    10. Anakwe, O.O. and GL. Gerton, Acrosome biogenesis begins during meiosis: evidence from the synthesis and distribution of an acrosomal glycoprotein, acrogranin, during guinea pig spermatogenesis. Biol Reprod, 1990. 42(2): p. 317-28.
    
    11. Daniel, R., et al., Cellular localization of gene expression for progranulin. J Histochem Cytochem, 2000. 48(7): p. 999-1009.
    
    12. He, Z. and A. Bateman, Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J Mol Med, 2003. 81(10): p. 600-12.
    
    13. Bateman, A., et al., Granulins, a novel class of peptide from leukocytes. Biochem Biophys Res Commun, 1990. 173(3): p. 1161-8.
    
    14. Gonzalez, E.M., et al., A novel interaction between perlecan protein core and progranulin: potential effects on tumor growth. J Biol Chem, 2003. 278(40): p. 38113-6.
    15. Jones, M.B., M. Spooner, and E.C. Kohn, The granulin-epithelin precursor: a putative new growth factor for ovarian cancer. Gynecol Oncol, 2003. 88(1 Pt 2): p. S136-9.
    
    16. Wang, W., et al., PC cell-derived growth factor (granulin precursor) expression and action in human multiple myeloma. Clin Cancer Res, 2003. 9(6): p. 2221-8.
    
    17. Zhang, H. and G Serrero, Inhibition of tumorigenicity of the teratoma PC cell line by transfection with antisense cDNA for PC cell-derived growth factor (PCDGF, epithelin/granulin precursor). Proc Natl Acad Sci U S A, 1998. 95(24): p. 14202-7.
    
    18. Sell, C, et al., Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts. Mol Cell Biol, 1994.14(6): p. 3604-12.
    
    19. Xu, S.Q., et al., The granulin/epithelin precursor abrogates the requirement for the insulin-like growth factor 1 receptor for growth in vitro. J Biol Chem, 1998. 273(32): p. 20078-83.
    
    20. Sun, X., M. Gulyas, and A. Hjerpe, Mesothelial differentiation as reflected by differential gene expression. Am J Respir Cell Mol Biol, 2004. 30(4): p. 510-8.
    
    21. Suzuki, M. and M. Nishiahara, Granulin precursor gene: a sex steroid-inducible gene involved in sexual differentiation of the rat brain. Mol Genet Metab, 2002. 75(1): p. 31-7.
    
    22. Barreda, D.R., et al., Differentially expressed genes that encode potential markers of goldfish macrophage development in vitro. Dev Comp Immunol, 2004. 28(7-8): p. 727-46.
    
    23. Justen, H.P., et al., Differential gene expression in synovium of rheumatoid arthritis and osteoarthritis. Mol Cell Biol Res Commun, 2000. 3(3): p. 165-72.
    
    24. Zhu, J., et al., Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell, 2002. 111(6): p. 867-78.
    
    25. Davis, R.L., H. Weintraub, and A.B. Lassar, Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell, 1987. 51(6): p. 987-1000.
    
    26. Braun, T., et al., A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. Embo J, 1989. 8(3): p. 701-9.
    
    27. Edmondson, D.G and E.N. Olson, A gene with homology to the myc similarity region of MyoDl is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev, 1989. 3(5): p. 628-40.
    
    28. Miner, J.H. and B. Wold, Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc Natl Acad Sci U S A, 1990. 87(3): p. 1089-93.
    
    29. Rhodes, S.J. and S.F. Konieczny, Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev, 1989. 3(12B): p. 2050-61.
    30. Lassar, A.B., S.X. Skapek, and B. Novitch, Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Curr Opin Cell Biol, 1994. 6(6): p. 788-94.
    
    31. Molkentin, J.D. and E.N. Olson, Defining the regulatory networks for muscle development. Curr Opin Genet Dev, 1996. 6(4): p. 445-53.
    
    32. Olson, E.N. and W.H. Klein, bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev, 1994. 8(1): p. 1-8.
    
    33. Rawls, A. and E.N. Olson, MyoD meets its maker. Cell, 1997. 89(1): p. 5-8.
    
    34. Lassar, A.B., et al., Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell, 1991. 66(2): p. 305-15.
    
    35. Buskin, J.N. and S.D. Hauschka, Identification of a myocyte nuclear factor that binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol Cell Biol, 1989. 9(6): p. 2627-40.
    
    36. Aurade, F., et al., Myf5, MyoD, myogenin and MRF4 myogenic derivatives of the embryonic mesenchymal cell line C3H10T1/2 exhibit the same adult muscle phenotype. Differentiation, 1994. 55(3): p. 185-92.
    
    37. Choi, J., et al., MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc Natl Acad Sci U S A, 1990. 87(20): p. 7988-92.
    
    38. Schafer, B.W., et al., Effect of cell history on response to helix-loop-helix family of myogenic regulators. Nature, 1990. 344(6265): p. 454-8.
    
    39. Olson, E.N., Interplay between proliferation and differentiation within the myogenic lineage. Dev Biol, 1992. 154(2): p. 261-72.
    
    40. Rudnicki, M.A. and R. Jaenisch, The MyoD family of transcription factors and skeletal myogenesis. Bioessays, 1995. 17(3): p. 203-9.
    
    41. Megeney, L.A. and M.A. Rudnicki, Determination versus differentiation and the MyoD family of transcription factors. Biochem Cell Biol, 1995. 73(9-10): p. 723-32.
    
    42. Kitzmann, M., et al., cdk1- and cdk2-mediated phosphorylation of MyoD Ser200 in growing C2 myoblasts: role in modulating MyoD half-life and myogenic activity. Mol Cell Biol, 1999. 19(4): p. 3167-76.
    
    43. Reynaud, E.G, et al., p57(Kip2) stabilizes the MyoD protein by inhibiting cyclin E-Cdk2 kinase activity in growing myoblasts. Mol Cell Biol, 1999. 19(11): p. 7621-9.
    
    44. Song, A., et al., Phosphorylation of nuclear MyoD is required for its rapid degradation. Mol Cell Biol, 1998. 18(9): p. 4994-9.
    
    45. Zhang, J.M., et al., Direct inhibition of G(l) cdk kinase activity by MyoD promotes myoblast cell cycle withdrawal and terminal differentiation. Embo J, 1999. 18(24): p. 6983-93.
    
    46. Sartorelli, V., et al., Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol Cell, 1999. 4(5): p. 725-34.
    47. Yaffe, D. and O. Saxel, A myogenic cell line with altered serum requirements for differentiation. Differentiation, 1977. 7(3): p. 159-66.
    
    48. Katagiri, T., et al., Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol, 1994. 127(6 Pt 1): p. 1755-66.
    
    49. CA, R., Quantitative and qualitative studies of chemical transformation of cloned C3H mouse embryo cells sensitive to postconfluerice inhibition of cell division. Cancer Res, 1973. 33: p. 3239-3249.
    
    50. Rapp, U.R., et al., Endogenous oncornaviruses in chemically induced transformation. I. Transformation independent of virus production. Virology, 1975. 65(2): p. 392-409.
    
    51. Blau, H.M., C.P. Chiu, and C. Webster, Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell, 1983. 32(4): p. 1171-80.
    
    52. Stockdale, RE., Myogenic cell lineages. Dev Biol, 1992.154(2): p. 284-98.
    
    53. King, GL., et al., Direct demonstration of separate receptors for growth and metabolic activities of insulin and multiplication-stimulating activity (an insulinlike growth factor) using antibodies to the insulin receptor. J Clin Invest, 1980. 66(1): p. 130-40.
    
    54. Olson, E.N., MyoD family: a paradigm for development? Genes Dev, 1990. 4(9): p. 1454-61.
    
    55. Weintraub, H., et al., The myoD gene family: nodal point during specification of the muscle cell lineage. Science, 1991. 251(4995): p. 761-6.
    
    56. Wright, W.E., Muscle basic helix-loop-helix proteins and the regulation of myogenesis. Curr Opin Genet Dev, 1992. 2(2): p. 243-8.
    
    57. Edmondson, D.G and E.N. Olson, Helix-loop-helix proteins as regulators of muscle-specific transcription. J Biol Chem, 1993. 268(2): p. 755-8.
    
    58. Li, L., et al., Fos and Jun repress transcriptional activation by myogenin and MyoD: the amino terminus of Jun can mediate repression. Genes Dev, 1992. 6(4): p. 676-89.
    
    59. Chalaux, E., et al., JunB is involved in the inhibition of myogenic differentiation by bone morphogenetic protein-2. J Biol Chem, 1998. 273(1): p. 537-43.
    
    60. Sharp, P.A., RNAi and double-strand RNA. Genes Dev, 1999. 13(2): p. 139-41.
    
    61. Hunter, T., et al., The characteristics of inhibition of protein synthesis by double-stranded ribonucleic acid in reticulocyte lysates. J Biol Chem, 1975. 250(2): p. 409-17.
    
    62. Elbashir, S.M., et al., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001. 411(6836): p. 494-8.
    
    63. Brummelkamp, T.R., R. Bernards, and R. Agami, A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002. 296(5567): p. 550-3.
    
    64. Brummelkamp, T.R., R. Bernards, and R. Agami, Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell, 2002. 2(3): p. 243-7.
    
    65. Sreeramaneni, R., et al., Ras-Raf-Arf signaling critically depends on the Dmp1 transcription factor. Mol Cell Biol, 2005. 25(1): p. 220-32.
    
    66. Liu, C, et al., MyoD-dependent induction during myoblast differentiation of p204, a protein also inducible by interferon. Mol Cell Biol, 2000. 20(18): p. 7024-36.
    
    67. He, Z. and A. Bateman, Progranulin gene expression regulates epithelial cell growth and promotes tumor growth in vivo. Cancer Res, 1999. 59(13): p. 3222-9.
    
    68. Lu, R. and G Serrero, Mediation of estrogen mitogenic effect in human breast cancer MCF-7 cells by PC-cell-derived growth factor (PCDGF/granulin precursor). Proc Natl Acad Sci U S A, 2001. 98(1): p. 142-7.
    
    69. Tangkeangsirisin, W., J. Hayashi, and G Serrero, PC cell-derived growth factor mediates tamoxifen resistance and promotes tumor growth of human breast cancer cells. Cancer Res, 2004. 64(5): p. 1737-43.
    
    70. Bhandari, V. and A. Bateman, Structure and chromosomal location of the human granulin gene. Biochem Biophys Res Commun, 1992. 188(1): p. 57-63.
    
    71. Liau, L.M., et al., Identification of a human glioma-associated growth factor gene, granulin, using differential immuno-absorption. Cancer Res, 2000. 60(5): p. 1353-60.
    
    72. Xia, X. and G Serrero, Identification of cell surface binding sites for PC-cell-derived growth factor, PCDGF, (epithelin/granulin precursor) on epithelial cells and fibroblasts. Biochem Biophys Res Commun, 1998. 245(2): p. 539-43.
    
    73. Culouscou, J.M., GW. Carlton, and M. Shoyab, Biochemical analysis of the epithelin receptor. J Biol Chem, 1993. 268(14): p. 10458-62.
    
    74. Lu, R. and G Serrero, Stimulation of PC cell-derived growth factor (epithelin/granulin precursor) expression by estradiol in human breast cancer cells. Biochem Biophys Res Commun, 1999. 256(1): p. 204-7.
    
    75. Diaz-Cueto, L., et al., Modulation of mouse preimplantation embryo development by acrogranin (epithelin/granulin precursor). Dev Biol, 2000. 217(2): p. 406-18.
    
    76. Bhandari, V., et al., Structural and functional analysis of a promoter of the human granulin/epithelin gene. Biochem J, 1996. 319 (Pt 2): p. 441-7.
    
    77. Sparro, G, et al., Isolation and N-terminal sequence of multiple forms of granulins in human urine. Protein Expr Purif, 1997. 10(2): p. 169-74.
    
    78. Daniel, V.C., C.D. Peacock, and D.N. Watkins, Developmental signalling pathways in lung cancer. Respirology, 2006. 11(3): p. 234-40.
    
    79. Kageyama, R., et al., Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res, 2005. 306(2): p. 343-8.
    
    80. Lassar, A.B., et al., MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell, 1989. 58(5): p. 823-31.
    81. Weintraub, H., The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell, 1993. 75(7): p. 1241-4.
    
    82. Fujisawa-Sehara, A., et al., Myogenin contains two domains conserved among myogenic factors. J Biol Chem, 1990. 265(25): p. 15219-23.
    
    83. Braun, T., et al., Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. Embo J, 1990. 9(3): p. 821-31.
    
    84. Puri, P.L. and V. Sartorelli, Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. J Cell Physiol, 2000.185(2): p. 155-73.
    
    85. Rudnicki, M.A., et al., Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell, 1992. 71(3): p. 383-90.
    
    86. Rudnicki, M.A., et al., MyoD or Myf-5 is required for the formation of skeletal muscle. Cell, 1993. 75(7): p. 1351-9.
    
    87. Maione, R. and P. Amati, Interdependence between muscle differentiation and cell-cycle control. Biochim Biophys Acta, 1997. 1332(1): p. M19-30.
    
    88. Kitzmann, M. and A. Fernandez, Crosstalk between cell cycle regulators and the myogenic factor MyoD in skeletal myoblasts. Cell Mol Life Sci, 2001. 58(4): p. 571-9.
    
    89. Nguyen, H.T., R.M. Medford, and B. Nadal-Ginard, Reversibility of muscle differentiation in the absence of commitment: analysis of a myogenic cell line temperature-sensitive for commitment. Cell, 1983. 34(1): p. 281-93.
    
    90. Tapscott, S.J., et al., MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science, 1988. 242(4877): p. 405-11.
    
    91. Murre, C, P.S. McCaw, and D. Baltimore, A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell, 1989. 56(5): p. 777-83.
    
    92. Davis, R.L., et al., The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell, 1990. 60(5): p. 733-46.
    
    93. Brennan, T.J. and E.N. Olson, Myogenin resides in the nucleus and acquires high affinity for a conserved enhancer element on heterodimerization. Genes Dev, 1990. 4(4): p. 582-95.
    
    94. Benezra, R., et al., Id: a negative regulator of helix-loop-helix DNA binding proteins. Control of terminal myogenic differentiation. Ann N Y Acad Sci, 1990. 599:p. 1-11.
    
    95. Benezra, R., et al., The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell, 1990. 61(1): p. 49-59.
    
    96. Vaidya, T.B., et al., Fibroblast growth factor and transforming growth factor beta repress transcription of the myogenic regulatory gene MyoDl. Mol Cell Biol, 1989. 9(8): p. 3576-9.
    
    97. Brunetti, A. and I.D. Goldfine, Role of myogenin in myoblast differentiation and its regulation by fibroblast growth factor. J Biol Chem, 1990. 265(11): p. 5960-3.
    
    98. Brennan, T.J., et al., Transforming growth factor beta represses the actions of myogenin through a mechanism independent of DNA binding. Proc Natl Acad Sci U S A, 1991. 88(9): p. 3822-6.
    1. Ganu, V., et al., Inhibition of interleukin-1-induced cartilage oligomeric matrix protein degradation in bovine articular cartilage by matrix metalloproteinase inhibitors. Arthritis Rheum, 1998. 41: p. 2143-2151.
    
    2. Hurskainen, T.L., et al., ADAM-TS5, ADAM-TS6, and ADAM-TS7, novel members of a new family of zinc metalloproteases. General features and genomic distribution of the ADAM- TS family. J Biol Chem, 1999. 274(36): p. 25555-63.
    
    3. Jones, GC. and GP. Riley, ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis Res Ther, 2005. 7(4): p. 160-9.
    
    4. Abbaszade, I., et al., Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J Biol Chem, 1999. 274(33): p. 23443-50.
    
    5. Collins-Racie, L.A., et al., ADAMTS-8 exhibits aggrecanase activity and is expressed in human articular cartilage. Matrix Biol, 2004. 23(4): p. 219-30.
    
    6. Glasson, S.S., et al., Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature, 2005. 434(7033): p. 644-8.
    
    7. Kuno, K., et al., ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan. FEBS Lett, 2000. 478(3): p. 241-5.
    
    8. Stanton, H., et al., ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature, 2005. 434(7033): p. 648-52.
    
    9. Tortorella, M.D., et al., Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science, 1999. 284(5420): p. 1664-6.
    
    10. Colige, A., et al., Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3. J Biol Chem, 2002. 277(8): p. 5756-66.
    
    11. Fernandes, R.J., et al., Procollagen II amino propeptide processing by ADAMTS-3. Insights on dermatosparaxis. J Biol Chem, 2001. 276(34): p. 31502-9.
    
    12. Colige, A., et al., Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. Am J Hum Genet, 1999. 65(2): p. 308-17.
    
    13. Levy, GG, et al., Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature, 2001. 413(6855): p. 488-94.
    
    14. Billington, C.J., Cartilage proteoglycan release assay. Methods Mol Biol, 2001. 151:p. 451-6.
    
    15. Somerville, R.P., et al., ADAMTS7B, the full-length product of the ADAMTS7 gene, is a chondroitin sulfate proteoglycan containing a mucin domain. J Biol Chem, 2004. 279(34): p. 35159-75.
    
    16. Luan, Y, et al., Inhibition of ADAMTS-7 and ADAMTS-12 degradation of cartilage oligomeric matrix protein by alpha-2-macroglobulin. Osteoarthritis Cartilage, 2008.
    
    17. Llamazares, M, et al., The ADAMTS12 metalloproteinase exhibits anti-tumorigenic properties through modulation of the Ras-dependent ERK signalling pathway. J Cell Sci, 2007. 120(Pt 20): p. 3544-52.
    
    18. Han, B., et al., Homozygous missense mutation in the ECM1 gene in Chinese siblings with lipoid proteinosis. Acta Derm Venereol, 2007. 87(5): p. 387-9.
    
    19. Jin, E.J., et al., Akt signaling regulates actin organization via modulation of MMP-2 activity during chondrogenesis of chick wing limb bud mesenchymal cells. J Cell Biochem, 2007. 102(1): p. 252-61.
    
    20. Melton, J.T., N.M. Clarke, and H.I. Roach, Matrix metalloproteinase-9 induces the formation of cartilage canals in the chondroepiphysis of the neonatal rabbit. J Bone Joint Surg Am, 2006. 88 Suppl 3: p. 155-61.
    
    21. Huang, W., et al., Phosphorylation of SOX9 by cyclic AMP-dependent protein kinase A enhances SOX9's ability to transactivate a Col2a1 chondrocyte-specific enhancer. Mol Cell Biol, 2000. 20(11): p. 4149-58.
    
    22. Liu, C.J., et al., ADAMTS-12 associates with and degrades cartilage oligomeric matrix protein. J Biol Chem, 2006. 281(23): p. 15800-8.
    
    23. Atkinson, B.L., et al., Combination of osteoinductive bone proteins differentiates mesenchymal C3H/10T1/2 cells specifically to the cartilage lineage. J Cell Biochem, 1997. 65(3): p. 325-39.
    
    24. Cal, S., et al., Identification, characterization, and intracellular processing of ADAM-TS12, a novel human disintegrin with a complex structural organization involving multiple thrombospondin-1 repeats. J Biol Chem, 2001. 276(21): p. 17932-40.
    
    25. Kashiwagi, M., et al., Altered proteolytic activities of ADAMTS-4 expressed by C-terminal processing. J Biol Chem, 2004. 279(11): p. 10109-19.
    
    26. Gendron, C, et al., Proteolytic activities of human ADAMTS-5: comparative studies with ADAMTS-4. J Biol Chem, 2007. 282(25): p. 18294-306.
    
    27. CA, R., Quantitative and qualitative studies of chemical transformation of cloned C3H mouse embryo cells sensitive to postconfluence inhibition of cell division. Cancer Res, 1973. 33: p. 3239-3249.
    
    28. Rapp, U.R., et al., Endogenous oncornaviruses in chemically induced transformation. I. Transformation independent of virus production. Virology, 1975. 65(2): p. 392-409.
    
    29. Reznikoff, C.A., D.W. Brankow, and C. Heidelberger, Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res, 1973. 33(12): p. 3231-8.
    
    30. Zhang, Y, et al., Cbfal-dependent expression of an interferon-inducible p204 protein is required for chondrocyte differentiation. Cell Death Differ, 2008. 15(11): p. 1760-71.
    
    31. Di Cesare, P.E., et al., Increased degradation and altered tissue distribution of cartilage oligomeric matrix protein in human rheumatoid and osteoarthritic cartilage. J Orthop Res, 1996. 14(6): p. 946-55.
    
    32. Di Cesare, P.E., et al., Localization and expression of cartilage oligomeric matrix protein by human rheumatoid and osteoarthritic synovium and cartilage. J Orthop Res, 1999. 17(3): p. 437-45.
    
    33. Liu, C.J., et al., ADAMTS-7: a metalloproteinase that directly binds to and degrades cartilage oligomeric matrix protein. FASEB J, 2006. 20(7): p. 988-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700