用户名: 密码: 验证码:
高固含量石蜡稳定乳状液的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在人造板行业,高固含量、稳定性好的石蜡乳液防水剂具有生产效率高、运输成本低、干燥快、能耗低等优点,目前已成为该领域的研究热点,越来越受到市场的重视。但高固含量石蜡乳液存在石蜡不易乳化、乳液不稳定且粘度大等缺点。本论文以高固含量的非离子型和阴离子型石蜡乳液为研究对象,探讨了石蜡乳液的稳定性、流变性及其影响因素,研究制备出高固含量的石蜡乳液。
     论文第二章研究采用转相乳化法制备高固含量的非离子型石蜡乳液。利用亲水亲油平衡(HLB)法选择乳化剂种类,同时从乳化剂的结构方面讨论了不同类型乳化剂对乳液性能的影响,结果表明以单硬脂酸甘油酯与聚氧乙烯醚100单硬脂酸酯复配成HLB值为13.0的复合乳化剂制得的乳液性能较好,复合乳化剂用量仅为5%;采用正交实验设计方法获得乳液的最佳制备工艺:乳化时间为20min、乳化温度为85℃、剪切速率为5000rad/min、分3次加入乳化水。研究得到的石蜡乳液固含量约为51.6%、乳液粒径分布范围0.3-5.0μm,涂-4杯法测得黏度为15s、离心稳定性为99.8%;利用Malvern旋转流变仪研究乳液的流变性能,稳态速率扫描结果表明非离子型石蜡乳液为非牛顿流体,具有剪切变稀的性质,显示出假塑性。随着乳液固含量增大,体系的非牛顿指数m逐渐变小,动态应变扫描结果表明,在剪切应变小于0.02%时,乳液以弹性为主,具有较好的稳定性;大于0.02%时,乳液则表现为黏性。
     论文第三章研究采用初生皂法制备高固含量的阴离子型石蜡乳液。以硬脂酸为乳化剂,氨水为皂化剂,研究了皂化率(n硬脂酸:n氨水)对乳液性能的影响,结果表明皂化率为1.2:1时制得的乳液综合性能较好,乳化剂用量为4.5%;利用电导率法研究了乳液电导率与相行为的关系,获得石蜡乳液的相转变规律;采用正交实验方法得到乳液的最佳制备工艺为乳化时间20min、乳化温度85℃、剪切速率8000rad/min、分3次加水。所得乳液的固含量为48.9%、乳液粒径分布3.5-11.0μm、涂-4杯法测得黏度为17s、离心稳定性为89.5%;研究表明当加入0.25wt%的聚乙烯醇1799与0.25wt%的硅酸镁锂作为稳定剂,乳液的离心稳定性提高至98.8%;研究了乳液制备过程中泡沫的消除方法,在出料前添加0.5wt%的改性聚硅氧烷乳液消泡剂能起到较好的消泡效果,同时冷却后采用真空脱泡,能完全除去乳液中的泡沫;研究表明阴离子型石蜡乳液为非牛顿流体,具有剪切变稀的性质,显示出假塑性。随着乳液固含量增大,非牛顿指数m逐渐变小,动态应变扫描结果表明,在剪切应变小于0.02%时,乳液以弹性为主,具有较好的稳定性;大于0.02%时,乳液则表现为黏性。
     论文第四章研究了低熔融粘度C-5石油树脂水基乳液的制备及性能。以56#半精炼石蜡为粘度调节剂,系统考察了非离子型复合乳化剂的HLB值和用量对C-5石油树脂乳液的稳定性、粒径分布、粘度和表面张力的影响。研究结果表明,添加30%的石蜡可以明显降低石油树脂的熔融粘度,使物料在较低温度下实现均匀混合;复合乳化剂的最佳HLB值为10.75;最佳用量为m乳化剂/m油相=16%。通过正交实验确定了优选乳化工艺条件为:乳化温度98℃、乳化时间20min、剪切速率5000r/min、乳化水占水相的比例为1/3。该条件下可制得固含量约为40.0%,稳定性好、粒径小、黏度低的O/W型C-5石油树脂乳液,该乳液也可作为人造板防水剂。
Paraffin emulsion as a waterproof agent is generally used in the wood-based panel industry. Compared with solid paraffin, people do not need to melt or dissolve when use paraffin emulsion, and it has anti-acid-base and other excellent performance, besides, it has a safe, efficient and economical advantages. Two types of paraffin emulsion (Non-ionic paraffin emulsion and Anionic paraffin emulsion) were prepared in this thesis and the stability and rheological properties of different types of paraffin emulsion were researched, too.
     Non-ionic paraffin emulsion was prepared with Phase Inversion Emulsification (PIE) method in Chapter2. The types of emulsifier were selected with Hydrophilic-Lipophilic Balance (HLB) method. And the effect of different emulsifier types to emulsion performance from the structure of the emulsifier was discussed. The results show that, with the composite emulsifier consisting of glycerol monostearate and polyoxyethylene (100) stearate and the HLB value is13.0, the emulsion with better performance can be obtained. The emulsifier dosage was determined at5%. The orthogonal experiment results showed that optimum conditions were, emulsifying time20minutes, emulsifying temperature85℃, stirring rate5000rad/min and emulsifying water was added by three times. The paraffin emulsion was prepared under this condition, with solid content is51.6%, emulsion particle size distribution range is0.3-5.Oμm, viscosity is15s, centrifuged stability is99.8%. Malvern rheometer was used to study the rheological properties of the emulsion, the paraffin emulsion usually show a non-Newtonian fluid, specifically a pseudoplastic behavior, with the nature of shear-thinning, with the addition of the solids content of the emulsion, the non-Newtonian index m tends to gradually decreases. The results of dynamic strain sweep show that emulsion demonstrated resilience with the strain less than0.02%, and emulsion demonstrated viscous with the strain more than0.02%.
     Anionic paraffin emulsion was prepared with saponification method in Chapter 3. Selecting stearic acid as emulsifier, ammonia as saponifier, the saponification rate on the properties of emulsion was studied. The results show that, with the saponification rate1.2:1, the emulsion with better performance can be obtained, the emulsifier dosage was determined at4.5%. The relationships between the emulsion conductivity and the phase behaviors were studied with the conductivity method. The orthogonal experiment results showed that optimum conditions were, emulsifying time20minutes, emulsifying temperature85℃, stirring rate8000rad/min and emulsifying water was added by three times. The solid content of the paraffin emulsion is48.9%, and the distribution range of the emulsion particle size is3.5-11.Oμm, And the viscosity of the paraffin emulsion is17s with centrifuged stability is89.5%. The appropriate stabilizer was added to improve the stability of the emulsion, when PVA1799used in conjunction with lithium magnesium silicate, the centrifuged stability of the emulsion increased to98.8%, Foam has a significant negative impact on the performance of the emulsion, the methods for eliminating foam during emulsion preparation process was researched, add silicone defoamer with0.5%mass fraction before discharge the material can play a better anti-foaming effect, the foam can be completely removed from the emulsion after cooling using a vacuum degassing. Malvern rheometer was used to study the rheological properties of the emulsion, the paraffin emulsion usually show a non-Newtonian fluid, specifically a pseudoplastic behavior, with the nature of shear-thinning, with the addition of the solids content of the emulsion, the non-Newtonian index m tends to gradually decreases. The results of dynamic strain sweep show that emulsion demonstrated resilience with the strain less than0.02%, and emulsion demonstrated viscous with the strain more than0.02%.
     Preparation of petroleum resin emulsion and its performance were discussed in Chapter4. An O/W type C-5petroleum resin emulsion was prepared with paraffin wax as viscosity regulator and blend of nonionic emulsifier. Effect of HLB value and concentration of emulsifier on stability, droplet size, viscosity and surface tension of the petroleum resin emulsion were examined. The results showed that when the paraffin added with30%percentage composition, the C-5petroleum resin melt viscosity decreased obviously and the material in the low temperature mixing uniformly. The suitable HLB value is about10.75and emulsifier concentration is16%. The orthogonal experiment results showed that optimum conditions were, emulsifying temperature98℃, emulsifying time20minutes, stirring rate5000rpm and emulsifying water quantity1/3. The O/W type C-5petroleum resin emulsion which solid content is40.0%was prepared under this condition; it showed excellent stability, small droplet size and low viscosity.
引文
[1]徐济宏.木材及人造板表而防水改性研究[D];南京林业大学,2011.
    [2]LESAR B, STRAZE A, HUMAR M. Sorption Properties of Wood Impregnated with Aqueous Solution of Boric Acid and Montan Wax Emulsion[J]. Journal of Applied Polymer Science,2011,120(3):1337-45.
    [3]王丽君,张忠清.我国石油蜡类产品标准现状分析及研究进展[J].当代石油石化,2008,16(12):26-31.
    [4]王笃政,冯国琳,李仕强,等.乳化蜡的研究及应用[J].精细石油化工进展,2012,13(06):52-55.
    [5]冯国琳.乳化蜡的应用进展[J].精细与专用化学品,2012,20(02):23-25.
    [6]孙凤娇.乳化蜡的研究开发现状[J].化学与黏合,2011,33(05):60-2.
    [7]XU X W, YAO F, WU Q L, etal. The influence of wax-sizing on dimension stability and mechanical properties of bagasse particleboard[J]. Industrial Crops and Products,2009, 29(01):80-85.
    [8]李凤艳,刘嘉敏,孙桂大.纤维板专用乳化蜡防水添加剂的研制[J].精细化工,1996,13(05):55-57.
    [9]徐伟池,于春梅,郭金涛,等.国内乳化蜡制备及应用进展[J].化工中间体,2013,(01):5-8.
    [10]郑立辉,盛奎龙,潘金亮.石油蜡的生产及深加工[M].化学工业出版社.2008.
    [11]董艳勇.阳离子PE蜡乳液的制备及对皮革涂膜性能影响[D];陕西科技大学,2011.
    [12]强西怀,董艳勇,张辉.阳-非复合离子型氧化聚乙烯蜡乳液的制备[J].精细化工,2009,12):1221-1225.
    [13]王景芸,刘冬梅.新型乳化蜡的研制[J].应用化工,2009,38(02):310-313.
    [14]张启忠,张吉波,赵飞.刨花板用石蜡乳液防水剂的研制[J].吉林化工学院学报,2004,21(01):34-36.
    [15]欧阳瑞华.石蜡乳化工艺的研究[J].当代化工,2010,39(03):229-232.
    [16]刘贺.浅谈非离子表面活性剂的特点与应用[J].皮革与化1,2012,(02):20-26.
    [17]F.TADROS T. Emulsion Science and Technology[M]. WILEY-VCH Verlag GmbH& Co. KGaA.2009.
    [18]蒋金龙,黄铃.非离子型石蜡乳液的制备[J].广东化工,201 1,38(1]):45-46.
    [19]朱升干,朱春燕,郑典模.非离子型蜡乳液的制备工艺[J].化工中间体,2010,(04):55-59.
    [20]李静,焦纬洲,刘有智,等.乳化蜡的制备及应用进展[J].日用化学工业,2012,42(06):446-451.
    [21]崔小明.乳化蜡的生产和应用[J].四川化工与腐蚀控制,2000,3(02):55-57.
    [22]LEAL-CALDERON F, SCHMITT V, BIBETTE J E O. Emulsion Science Basic Principles[M]. Springer Science+Business Media, LLC.2007.
    [23]DAVID, SHELDAHL, GRIDDITH. WAX-IN-WATER EMULSIONS:US,3660128 [P]. 1972-05-02.
    [24]杨改霞,谢武,何佳正,等.巴西棕榈蜡乳液的制备[J].材料研究与应用,2012,6(01):75-77.
    [25]陇伟,宋哲玉,陆忠义.高剪切机在乳化沥青中的应用研究[J].公路与汽运,2009,(03):204-207.
    [26]张翠英,吴龙祥,王永斌.国内外乳化炸药专用乳化设备发展状况[J].现代矿业,2010,(05):10-14.
    [27]冯若,黄金兰,陈兆华,等.蜡与水的超声乳化[J].应用声学,1993,(05):12-14.
    [28]郑敏英,刘峰,王正武,等.鱼油乳状液的制备及其流变特性研究[J].上海交通大学学报(农业科学版),2010,(03):280-285.
    [29]SJ BLOM J. Encyclopedic Handbook of Emulsion Technology[M]. Marcel Dekker, Inc. 2001.
    [30]WC G. Classification of Surface-Active Agents by HLB[J]. Journal of the Society of Cosmetic Chemists,1949, (01):311-326.
    [31]WC G. Calculation of HLB Values of Non-Ionic Surfactants[J]. Journal of the Society of Cosmetic Chemists,1954, (05):249-273.
    [32]JT D. A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent [J]. Proceedings of the International Congress of Surface Activity,1957, 426-438.
    [33]LI C F, MEI Z, LIU Q, etal. Formation and properties of paraffin wax submicron emulsions prepared by the emulsion inversion point method[J]. Colloid Surface A,2010,356(03): 71-77.
    [34]SJ BLOM J. Emulsion and Emulsion Stability[M]. Taylor & Francis Group, LLC.2006.
    [35]霍姆博格.水溶液中的表而活性剂和聚合物[M].化学工业出版社.2005.
    [36]刘艳新,赵传山,韩玲.影响石蜡乳化的因素[J].造纸科学与技术,2004,23(4):35-38.
    [37]全红平,黄志宇,刘畅.高含蜡石蜡乳状液的研制及影响因素探讨[J].精细石油化工进展,2007,04):43-46.
    [38]邓锐,王智英,程琛,等.高固含量聚合物乳液流变性研究进展[J].高分子通报,2010,02):52-57.
    [39]暴军萍,王静,李凤艳,等.影响高固含量石蜡乳液颗粒度因素的考察[J].日用化学工业,2010,40(3):174-177.
    [40]Reynolds, Michael A, Lawrence P, et al. Stable compositions comprising aqueous wax emulsions and water borne urethane dispersions:US,5821298[P].1996-02-20.
    [41]Ratledge, Richard E,Edward L,et al.Stabilized wax emulsions:US,4043829[P].1975-10-31.
    [42]Yokoyama,Kawabata,Nobuak,et al.Wax emulsion:US,4339276[P].1980-12-03.
    [43]蒋金芝,阎智勇.超高浓度石蜡乳状液的研制[J].化工进展,2008,27(10):1632-1637.
    [44]暴军萍,李凤艳,赵天波.高固含量石蜡乳液乳化剂的研制[J].应用化工,2009,07):1025-1034.
    [45]李凤艳,暴军萍,赵天波,等.稳定剂对高固含量石蜡乳液稳定性的影响[J].应用化工,2009,38(9):1290-1294.
    [46]任俊,沈建,卢寿慈.颗粒分散科学与技术[M].化学工业出版社.2005.
    [47]梁文平.乳状液科学与技术基础[M].科学出版社.2001.
    [48]CAPEK I. Degradation of kinetically-stable o/w emulsions[J]. Adv Colloid Interface Sci, 2004,107(03):125-155.
    [49]VILASAU J, SOLANS C, GOMEZ M J, et al. Stability of oil-in-water paraffin emulsions prepared in a mixed ionic/nonionic surfactant system [J]. Colloid Surface A,2011,389(03): 222-229.
    [50]VILASAU J, SOLANS C, GOMEZ M J, et al. Phase behaviour of a mixed ionic/nonionic surfactant system used to prepare stable oil-in-water paraffin emulsions [J]. Colloid Surface A,2011,384(03):473-481.
    [51]ZHAO H, LI H P, LIAO K J. The Preparation of Wax Emulsions Stabilized by C5 Petroleum Resin[J]. Petroleum Science and Technology,2013,31(03):284-292.
    [52]DAI D H, LI F Y, ZHAO T B. Effects of Preparation Parameters on Paraffin Wax Microemulsion[J]. China Petroleum Processing & Petrochemical Technology,2012,14(01): 15-19.
    [53]裘炳毅.化妆品和洗涤用品的流变特性[M].化学工业出版社.2004.
    [54]DE OLIVEIRA M C K, CARVALHO R M, CARVALHO A B, etal. Waxy Crude Oil Emulsion Gel:Impact on Flow Assurance[J]. Energ Fuel,2010, (24):2287-2293.
    [55]MIGLIORI M, GABRIELE D, LUPI F R, etal. The Effect of Waxes Addition on Rheological Properties of O/W Concentrated Model Emulsions[J]. Energ Source Part A, 2012,34(09):851-857.
    [56]石李明,王文俊,李伯耿,等.相变乳液的制备、性能与应用[J].材料科学与工程学报,2013,31(01):142-147.
    [57]陈德本,李俊,陈泽芳.SC-1苯丙乳液流变性的研究[J].涂料工业,1986,(02):1-4.
    [58]吴娜娜,杨晓泉,郑二丽,等.大豆油体乳液稳定性和流变性分析[J].农业工程学报,2012,(S1):369-374.
    [59]刘瑞.树枝状疏水改性碱溶丙烯酸乳液合成及其流变学行为[D];华南理工大学,2012.
    [60]HUI X. Thermal physical properties and key influence factors of phase change emulsion [J]. Chinese Science Bulletin,2005,50(01):88-93.
    [61]梁冰瑞,陈吕国,张洪武.复合乳化沥青的流,变特性研究[J].应用化工,2010,(07):1012-1015.
    [1]武华萍,孙永强,康保安.非离子表而活性剂的结构与性能的关系[J].日用化学品科学,2012,(06):17-21.
    [2]LI C F, MEI Z, LIU Q, etal. Formation and properties of paraffin wax submicron emulsions prepared by the emulsion inversion point method[J]. Colloid Surface A,2010,356(03): 71-777.
    [3]杨基和,陈敏,李肖,等.人造板用乳化石蜡研制工艺[J].天然气与石油,2002,20(04):34-36.
    [4]白静,冯彩霞,赵琳,等.乳液稳定性不同检测方法的应用[J].当代化工,2011,(10):1095-1097.
    [5]中华人民共和国国家标准.GB/T11543表面活性剂 中、高黏度乳液的特性测试及其乳化能力的评价方法[M].2008.
    [6]贺高红,陈国华.TG法测W/O乳化液中的含水量[J].石油化工,2000,29(06):526-529.
    [7]赵海龙,刘大顺,陈效鹏.一种基于数字图像的表面张力测量方法——悬滴法[J].实验力学,2010,25(01):100-105.
    [8]中华人民共和国国家标准.GB/T1723涂料粘度测定法[M].1993.
    [9]雷鸣.涂料粘度(涂-4法)测量的不确定度评定[J].计量与测试技术,2011,38(03):75-76.
    [10]HUANG L, PETERMANN M, DOETSCH C. Evaluation of paraffin/water emulsion as a phase change slurry for cooling applications [J]. Energy,2009,34(09):1145-1155.
    [11]霍姆博格.水溶液中的表面活性剂和聚合物[M].化学工业出版社.2005.
    [12]任智,陈志荣,吕德伟.非离子活性剂乳液稳定性HLB规则研究[J].浙江大学学报(工学版),2001,35(05):472-480.
    [13]梁文平.乳状液科学与技术基础[M].科学出版社.2001.
    [14]赵金,陈文艺,曹月坤,等.特种乳化石蜡的制备及应用进展[J].化工科技,2012,20(05):60-63.
    [15]涂渝娇,许立松.高效固体切片石蜡乳液制备工艺改进[J].造纸科学与技术,2008,27(4):49-51.
    [16]VICENTE J D. RHEOLOGY [M]. In Tech.2012.
    [17]裘炳毅.化妆品和洗涤用品的流变特性[M].化学工业出版社.2004.
    [1]陈娆,曹立民,孙彩兰.固体人造板乳化蜡的研制[J].当代化工,2012,41(03):230-232.
    [2]焦学舜,贺明波.乳化剂与破乳剂性质、制备与应用[M].化学工业出版社.2008.
    [3]丁可力.乳化石蜡对中密度纤维板防水性能影响的研究[D].福建农林大学.2009.
    [4]夏茹,朱辉,郝家宝,等.一种快速检测水性乳液起泡性能的方法[P].中国专利.CN201310092306.9.2013-03-22.
    [5]陈鹏,夏茹,郝家宝,等.一种快速检测水性乳液起泡性能的装置[P].中国专利.CN201310093259.0.2013-03-22.
    [6]王景芸,刘冬梅.新型乳化蜡的研制[J].应用化工,2009,38(02):310-313.
    [7]翁建新,曹学功,黄婷婷.阴离子表面活性剂微乳液的电导和黏度[J].甘肃科学学报,2012,24(02):23-26.
    [8]李凤艳,暴军萍,赵天波,等.稳定剂对高固含量石蜡乳液稳定性的影响[J].应用化工,2009,38(09):1290-1294.
    [9]郭志伟,徐昌学,路遥,等.泡沫起泡性、稳定性及评价方法[J].化学工程师,2006,127(04):51-54.
    [10]VICENTE J D. RHEOLOGY [M]. InTech.2012.
    [11]裘炳毅.化妆品和洗涤用品的流变特性[M].化学工业出版社.2004.
    [1]邢仁卫,邱化玉,刘成.石油树脂在造纸工业中的应用[J].黑龙江造纸,2005,(3):18-20.
    [2]董和滨,张美云,赵婉淞.石油树脂在造纸工业中的应用[J].江苏造纸,2011,(6):31-35.
    [3]荆鹏,刘峰,王晓蕾,等.一种新型防水涂料的制备[J].化工科技,2011,19(4):19-22.
    [4]于洪波,丛玉凤,廖克俭,等.C-5石油树脂改性及其在胶黏剂中的应用[J].化工科技,2009,17(2):28-30.
    [5]郑文博,廖克俭,丛玉凤,等.新型刨花板用石蜡乳液的制备[J].石油化工高等学校学报,2010,23(3):41-44.
    [6]朱书琴.C-9石油树脂乳液的研制[J].辽宁化工,1991,(4):31-33.
    [7]赵红.C-5石油树脂的性能及发展趋势[J].炼油与化工,2010,21(6):9-12.
    [8]杜新胜,李延,张霖.C-5石油树脂的研究与进展[J].上海涂料,2009,47(1):32-35.
    [9]黎文部,马红霞,刘云霞,等.阳离子改性石油树脂乳液的制备[J].化学与粘合,2008,30(4):44-46.
    [10]陈均志,唐宏科,郭斌.改性C-5石油树脂乳液型防锈涂料的研究[J].化学与粘合,2003,(4):162-164.
    [11]蒋方红.石油树脂乳液的研制[J].金山油化纤,2003,22(4):9-11.
    [12]卢言成,童听,孙向东.C5石油树脂改性研究状况[J].化工生产与技术,2007,14(5):38-42.
    [13]孟勇,赵飞平,尹笃林.离心系数表征丙烯酰胺反相乳液的稳定性[J].应用化学,2010,27(10):1134-1138.
    [14]Li C F, Mei Z, Liu Q, et al. Formation and properties of paraffin wax submicron emulsions prepared by the emulsion inversion point method [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2010,356 (1/2/3):71-77.
    [15]Liu W R, Sun D J, Li C F, et al. Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method [J]. Journal of Colloid and Interface Science,2006,303(2):557-563.
    [16]李凯,张弘,周梅村,等.紫胶蜡纳米乳液的制备[J].精细化工,2011,28(2):166-171.
    [17]周梅村,曹铭,杨波,等.石蜡丙烯酸复合乳液的制备与性能[J].精细化工,2005,22(4):300-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700