落叶松林分生长枝条躲让效应计算机模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北落叶松是华北地区主要造林树种,具有速生、丰产、材质好等特点。但在其生长规律的研究中,由于周期较长,林木形态结构复杂,环境条件难以控制,表现为显著的区域性和时空变异性,使得难以综合考虑其多因子互作、预测其生长趋势、量化管理措施。本文以华北落叶松生理生态学理论为依据,基于河北省塞罕坝机械林场的实测单木形态基本数据,采用遗传规划算法,建立了落叶松胸径和树高理论生长方程,采用层次包围盒方法沿坐标轴包围盒检测碰撞原理,进行了落叶松枝条碰撞检测,给出了落叶松枝条躲让效应的算法及其伪代码,编程实现了枝条躲让效应的动态模拟,并以两根起点在同一水平但不同生长速率的枝条碰撞为例,验证了枝条躲让的运动过程。
     在林分平均胸径和树高模型中增加了立地指数和植林密度因素,采用遗传规划进行数据拟合。遗传规划不依赖问题域,无需对输入的数据进行预处理,可避免过早地陷入局部最优群体现象,不依赖梯度信息,使得收敛速率加快,模型表达简单、精度高、适用范围广。落叶松植林密度是影响森林生长量和林木质量的重要因素,林分过密会影响林木径生长,争夺阳光养份会造成偏冠,同时树冠下部枝条由于通风透光不良易慢慢死亡,在木材上形成大的节疤;林分过稀会使树木削度大,影响出材量和公顷蓄积量,造成林地浪费。本文将树枝的躲让效应分为碰撞检测和实体移动两部分,对枝条碰撞检测算法采用层次包围盒法,可尽可能减少基本几何元素对的数目。结果认为落叶松枝条碰撞后自然向上偏移极小角度形成躲让效应,从而得到落叶松枝条躲让效应的算法及其伪代码。文中分析了树干、枝、叶、叶丛及球果等拓扑结构并给出了华北落叶松形态结构参数表。采用L-系统进行可视化编程,选用基于图改写的软件实现工具L-studio作为实现工具,编写了枝条躲让效应的动态模拟软件。
     随着信息技术的发展,数字林业正在崛起,用数字化技术重塑现代林业,将从根本上改变林业传统落后的面貌,有力地推动林业增长方式转变和林业生产与林业经济结构调整优化,对大力发展林业,解决我国木材日趋尖锐的供需矛盾以及改善人类生存环境质量具有重要意义。
Larix Principis-rupprechtii Mayr is the main tree species of north China, which has many characteristics such as fast-growing, high yield, material quality and so on.But in its study of growth pattern, because of Longer cycle, trees form the structure of complex, difficult to control environmental conditions, growth pattern showed significant regional and temporal and spatial variability, so it is hard to consider multi-factor interaction, forecast growth trend and quantitative management. The paper has physiology and ecology theory of Larix Principis-rupprechtii Mayr as basis, according to the integration of observed morphological structural data from Hebei Saihanba Forest Farm, use the Genetic Programming to simulate, and get the better theoretical stand mean diameter at breast height and stand mean tree height growth functions, Adopt the theory of Collision Detection by the axis-aligned bounding boxes method of hierachical bounding boxes detect branches collision. We consider as branches will spontaneously move up a teeny angle after collision, and get arithmetic of shyness effect and pseudocode and according to algorithm of the shyness effect write environment procedures code to simulate the shyness effect, and with two branches which have same level and different growth rate, we test the algorithm of the shyness effect.
     We add another two factors Site Index and Afforestation Density to the growth functions in the stand mean diameter at breast height and stand mean tree height growth functions of Larix Principis-rupprechtii Mayr, use the Genetic Programming to simulate. Genetic Programming does not rely on problem domain, not pre-process data, avoid the premature phenomenon of a group of local optimum and not rely on gradient information, that speeds up the convergence rate and the models are simple expression, high-accuracy and wide-applicable. Density of tree is an important factor to impact of forest growth and wood quality, too dense stand of tree will affect the growth of diameter, competition for nutrients will cause the sun partial crown, and at same time the lower crown branches will slowly died because of bad ventilation and light, form the scars in timber; Too sparse stand of tree will make big taper of trees, affect timber volume and hectares of volume, and caused forest waste. The paper divided the shyness effect of branches into collision detection and mobile entities, we use the hierachical bounding boxes to detect collision, which can reduce the number of basic geometric elements as much as possible. We consider that branchers will move upon a very small angle after collision, and get arithmetic of shyness effect and pseudocode. The paper also analyzes the geometrical and topological structures of the whole tree, branche, leaf, leaf bunches and cone, and get the table of morphological structural parameters. We write visual programming by L-system, selecte L-studio which base on graph rewriting as a tool to get the dynamic simulation software branches shyness effects.
     With the development of information technology, digital forestry is rising. Remodeling modern forestry with digital technology will fundamentally change the tradition and backward, effectively promote the growth patterns of forestry, and adjust and optimize forestry production and the economic structure of forestry. It has great significance to vigorously develop the forestry, solve China's timber sharp contradiction between supply and demand, and improve the environmental quality of human existence.
引文
[1]李锦涛,刘国香.虚拟现实技术及其应用[J].计算机工程,1994(S1):52-56,64.
    [2]赵星.忠于植物学的虚拟植物生长研究[D].中国科学技术大学,2001,4.
    [3]张占龙,罗辞勇,何为.虚拟现实技术概述[J].计算机仿真,2005,22(3):1-3.
    [4]郭炎,李保国.虚拟植物的研究进展[J].科学通报,2001,4:273-280.
    [5]de Wit C T.Photosynthesis of leaf canopies A gricultural Research Report 663 Pudoc Wageningen, The Netherlands, 1965: 1-57.
    [6]侯加林,王一鸣,董乔雪,等.虚拟植物生长的研究现状与发展趋势[J].农业机械学报,2004,35(3):159-163.
    [7]赵星,deREffye Phillippe,熊范纶,等.虚拟植物生长的双尺度自动机模型[J].计算机学报,2001,6: 608-615.
    [8]Lemmon H E.COMAX: An expert system for cotton crop management Science[J].Computer Science in Economics and Management, 1990: 177-185.
    [9]郭炎,李保国.玉米冠层的数学描述与三维重建研究[J].应用生态学报,1999,10:39-41.
    [10]熊海桥,蒋立华,罗轶先,等.基于粒子系统的物理约束植物根生长建模[J].计算机应用,2002,22 (7):39-41.
    [11]潘学标,韩湘玲,等.棉花生长发育模拟模型[J].棉花学报,1999,11(4):174-181.
    [12]胡包钢,赵星,严红平.植物生长建模与可视化一回顾与展望[J].自动化学报,2001,11:816-835.
    [13]孟宪宇.测树学[M].中国林业出版社,1996.
    [14]郭晓光,苗子旺,于秀春.华北落叶松生长过程的数学模拟[J].河北林业科技,2006,8(4):19-23.
    [15]John R.Koza.Genetic Programming: On the Programming of Computers by Means of Natural Selection.MIT Press, Cambridge, MA, USA, 1992: 68-819.
    [16]John R.Koza.Genetic Programming II: Automatic Discovery of Reusable Programs.MIT Press, Massachusetts, 1994: 103-324.
    [17]Wolfgang Banzhaf,Peter Nordin, Robert E.Keller, and Frank D.Francone.Genetic Programming: An Introduction on the Automatic Evolution of computer programs and its Applications.Morgan Kaufmann Publishers, 1998: 227-450.
    [18]John R.Koza and Martin A.Keane and Matthew J.Streeter and William Mydlowec and Jessen Yu and Guido Lanza.Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, 2003: 379-590.
    [19]张红.落叶松人工林冠动态的三维图形模拟[D].东北林业大学,2000:1-56.
    [20]白建含.白龙江林区华北落叶松人工林生长过程研究[J].甘肃林业科技,2001,26(4):32-35.
    [21]亢新刚.华北落叶松人工林生长过程表的编制[J].河北林业科技,2001,3:21-23.
    [22]陈传波,陆枫.计算机图形学基础[M].电子工业出版社,2003.
    [23]魏海涛.计算机图形学[M].电子工业出版社,2001.
    [24]陈学文,丑武胜,刘静华,等.基于包围盒的碰撞检测算法研究[J].计算机工程与应用,2005,5:46-50.
    [25]潘振宽,崔树娟,张继萍,等.基于层次包围盒的碰撞检测方法[J].青岛大学学报,2005,18(1):71-76.
    [26]魏迎梅.虚拟环境中碰撞检测问题的研究[D].国防科学技术大学,2000:1-100.
    [27]James D.Foley, Andries Van Dam, Steven K.Feiner,John F.Hughes.Computer Graphics: Principles and Practice, Second Edition in C.Addison Wesley/Pearson, 2004.
    [28]Kenneth Falconer.分形几何数学基础及其应用(第2版)[M].人民邮电出版社,2007.
    [29]Lindenmayer A.Mathematical models for cellular interaction in development, Parts I and II.Journal of Theoretical Biology 18(1968): 280–315.
    [30]Prusinkiewicz P ,Lindenmayer A.The algorithmic beauty of plants.New York:Springer-Verlag, 1990: 101-107.
    [31]TAKENAKA, A.A simulation model of tree architecture development based on growth response to local light environment.Journal of Plant Research 107(1994), 321–330.
    [32]朱岳,邹北骥,刘洁,等.基于三维分枝模型的树木模拟[J].计算机工程与科学,2006,28(7):46-52.
    [33]冯莉,王力.基于L-系统的三维分形植物的算法及实现[J].计算机机仿真,2005,22(11):205-208.
    [34]张树兵,王建中.基于L-系统的植物建模方法改进[J].中国图像图形学报,2002,7(5):457-460.
    [35]B B Mandelbrot.The Fractal Geometry of Nature.San Francisco: Freeman Pr, 1982, 233-273.
    [36]Radomir Mech.CPFG Version 4.0 User’s Manual.2004,5.
    [37]唐卫东,李萍萍,卢章平.基于Open-L系统的植物结构功能模型研究[J].计算机应用研究,2007,24(3):94-96.
    [38]李晓梅,黄朝晖.科学计算可视化导论[M].长沙:国防科技大学出版社, 1996.
    [39]孙轶红,赵增慧.基于L系统的树木模型参数化生成方法研究[J].计算机仿真,2007,24(7):239-242.
    [40]胡瑞安,胡纪阳,徐树公.分形的计算机图象及其应用[M].北京:中国铁道出版社, 1995.
    [41]郑洪源,周良.分形在植物的三维特征化造型中的应用研究[J].计算机应用研究,2001,18(5):111-113.
    [42]孙敏,薛勇.树模型的三维可视化研究[J].遥感学报,2002,6(3):188-192.
    [43]陈敏智,丁维龙,张维统.基于参数化L系统的植物结构模型可视化模拟[J].浙江工业大学学报,2007,35(4):427-430.
    [44]王方石.L-系统在植物模拟中的应用[J].北方交通大学学报,1998,22(3):45-48.
    [45]孔勇.基于L系统的植物形态模拟[D].西安电子科技大学,2007:1-63.
    [46]孙博文.分形算法与程序设计[M].北京:科学出版社,2004.
    [47]张树兵.基于L系统的植物建模方法的研究与实现[J].华北工学院,2002,16-17.
    [48]Prusinkiewicz P, Lindenmayer A, Hanan J.Developmental models of herbaceous plants for computer imagery purpose.Computer Graphics, 1988, 2(24): 141-150.
    [49]Mech R,Prusinkiewicz P.Visual models of plants interacting with their environment.Computer Graphics, 1996, 30(3): 397-410.
    [50]Prusinkiewicz P.A look at the visual modeling of plant using L-system.Agronomic, 1990, 211-224.
    [51]Prusinkiewicz P, Hanan J.Lindenmayer Systems,fractals,and plants.New York: Springer-Verlag, 1990.
    [52]P.Eichhorst, W.J.Savitch.Growth functions of stochastic Lindenmayer systems.Information and Control, 45, 217-228.
    [53]B.B.Mandelbrot.The fractal geometry of nature.W.H.Freema, San Francisco, 1982.
    [54]J.S.Hanan.Parametric L-systems and their application to the modeling and visualization of plants. PhD thesis, University of Regina, 1992, 6.
    [55]Pentland.A.P, Fractal based description of natural scense, IEEE Transactions on Pattern Anal.Mach. Intell.PAMI 1984, 6(6): 661-674.
    [56]de Reffye P, Edelin C,Francon Jetal.Plant models faithful to botanical structure and development. Computer Graphics, 1988, 22(4): 151-158.
    [57]Bouchon J, de Reffye P,Barthelemy D.Model is ationet Simulation del Architecture des Vegetaux [M].Paris, INRA, 1997.
    [58]Godin C, Carglio Y.A multiscale model of plant topolo-gical structures.theorBio, 1998, 84(3): 1-46.
    [59]Prusinkiewicz P W, Remphrey W R, Davidson C G, etal.Modeling the architecture of expanding Fraxinus pennsy-lvanica shoots using L-systems.Can J Bot, 1994, 72: 701-714.
    [60]Smith G S, Curtis J P, Edwards C M.A method for analy- zing plant architecture as it relates to fruit quality using three-dimensional computer graphics.Annals of Botany, 1992,70: 265-269.
    [61]Ivanov N,Boissard P, Chapron M, etal.Computer stereo plotting for 3-D reconstruction of a maize canopy.Agric For Meteorol, 1995, 75: 85-102.
    [62]Andrieu B, Ivanov N, Boissard P.Simulation of light interception from a maize canopy model constructed by stereo plotting.Agric for Meteorol, 1995, 75:103119.
    [63]Prusinkiewicz P, J.Hanan.Visualization of botanical structures and processes using parametric L-systems.In D.Thalmann, editor, Scientific Visualization and Graphics Simulation, J.Wiley, Sons, 1990: 183-201.
    [64]G.Rozenberg, A.Salomaa.The mathematical theory of L-systems.Academic Press, New York, 1980.
    [65]Peitgen.H.ORichter.P.H.The Beauty of Fractals.Springer-Verlag, Berlin Heidelberg, 1986.
    [66]H.Abelson, A.A.diSessa.Turtle geometry.M.I.T.Press, Cambridge, 1982.
    [67]Przemyslaw Prusinkiewicz, Jim Hanan, Radomir Mech.An L-system based on modeling language, 1999: 395-410.
    [68]R Mech, Prusinkiewicz P.Extensions to the graphical interpretation of L-system based on turtle geometry, 1997.
    [69]B.W.Kernighan, D.M.Ritchie.The C programming language.Second edition.Prentice Hall, Englewood Cliffs, 1988.
    [70]J.D.Foly, A.Van Dam.Fundamentals of interactive computer graphics.Addison-Wesley, Reading, Massachusetts, 1982.
    [71]A.Salomaa.Formal languages.Academic Press, New York, 1973.
    [72]T.Yokomori.Stochastic characterizations of EOL languages, Information and Control, 1980.
    [73]王超龙,陈志华.ViSUAL C++ 6.0入门与提高[M].人民邮电出版社,2002.
    [74]周启涛,高英.Visual C++数据库开发基础与应用[M].人民邮电出版社,2005.
    [75]卢湘鸿,陈洁.Access数据库与程序设计[M].电子工业出版社,2006.
    [76]伍怡.三维植物器官的几何建模[D].中国科学院自动化研究所,2001,6.
    [77]耿瑞平.虚拟人工植物生长过程机理模型研究[D].北京科技大学,2004,4.
    [78]蔡振江,刘军,赵艳.L系统在计算机作物模拟及可视化中的应用[J].河北农业大学学报,2003, 26(4):98-101.
    [79]陈建春.矢量图形系统开发与编程[M].电子工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700