数字化技术在脊柱骨折椎弓根螺钉置入中的基础研究与临床评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:脊柱骨折约占全身骨折的5%~6%,致残率较高,对伤病员生活质量及社会产生极大影响。如何更好地预防及救治脊柱骨折成为脊柱外科领域的研究热点。近年来,数字化技术迅猛发展,其在脊柱骨折的预防和临床救治过程中发挥着极其重要的作用。数字化电子病历系统使医务人员可以方便地存贮、检索和浏览病历,方便、迅速、准确地开展各种科学研究和统计分析工作,极大地提高临床科研和救治水平。随着社会工业化进程和人口老龄化的发展,在重庆这种特殊地形的城市,脊柱骨折的流行病学特点是否与既往文献报道相一致有待进一步研究。有限元分析法在脊柱骨折生物力学评价中的应用,为脊柱骨折内固定术式选择提供了更多的理论依据。近年来很多学者提出各种附加伤椎固定的后路短节段内固定术式包括采用单向钉行后路开放椎弓根螺钉内固定术,万向钉经皮椎弓根螺钉内固定术和单节段椎弓根螺钉内固定术治疗脊柱骨折,很多体外生物力学实验证实附加伤椎固定的后路短节段钉内固定术式的生物力学稳定性要优越于传统跨伤椎4钉内固定术式,但既往文献未系统分析脊柱骨折治疗的各种后路短节段内固定术式,尤其较少对比研究单向钉与万向钉在后路短节段固定中的生物力学特点,且大部分实验未对椎间盘压强、椎弓根螺钉及螺钉棒的应力进行分析。众所周知,与传统开放手术相比,微创椎弓根螺钉置入术会给手术医生带来较大的射线损伤,因此我们自主研发了脊柱手术机器人系统代替手术医生进行椎弓根螺钉的置入进而减少射线损伤。脊柱手术机器人系统是脊柱椎弓根螺钉置入研究中的热点,在复杂脊柱畸形如脊柱骨折、脊柱侧弯等的矫正手术的术前计划中,机器人系统的三维成像和导航技术可使平面影像资料无法看清的结构成为动态的三维图像,有助于提高术前手术计划和术中手术操作的精确性。我国脊柱椎弓根螺钉置入手术机器人的研发尚处于起步阶段,尚未应用于临床。
     目的:探讨数字化电子病历在研究创伤性脊柱骨折及跳跃性脊柱骨折的流行病学特点中的作用,分析脊柱骨折椎弓根螺钉置入方式的应用趋势,探讨有限元分析法在后路短节段各种内固定术式生物力学评价中的作用,探讨我们自主研发的脊柱手术机器人在椎弓根螺钉置入术中的可行性研究,发现目前机器人系统存在的问题,进一步完善手术机器人系统。
     方法:
     方法一:通过“军字一号”工程电子病历系统回顾性分析2001年1月至2010年12月第三军医大学附属第一、二医院收治的创伤性脊柱骨折3142例,跳跃性脊柱骨折213例的病历资料。统计患者的性别、年龄、致伤原因、骨折节段、脊髓损伤程度、创伤严重度评分、合并伤、住院时间、住院花费、住院期间并发症、死亡率、医保情况及椎弓根螺钉置入手术方式等。
     方法二:通过有限元分析法系统评估各种后路短节段椎弓根螺钉内固定脊柱骨折模型在力加载作用下的三维运动范围、椎弓根螺钉及螺钉棒的Von Mises应力,重点对比分析后路短节段单向钉与万向钉固定脊柱骨折模型的生物力学特点差异,观察脊柱模型在位移加载作用下的三维运动范围、椎弓根螺钉及螺钉棒的Von Mises应力、固定节段邻近上/下位最大椎间盘压强及其与正常脊柱模型最大椎间盘压强的比值。
     方法三:通过脊柱手术机器人系统进行牛脊柱标本椎弓根螺钉钻孔手术操作。术前计划时测量进钉点的进钉角度,进钉点距离棘突正中线的垂直距离。术中在C型臂透视下定位机械臂骨钻与脊柱标本的相对位置,按照术前计划进行螺钉轨迹钻孔,钻孔后放置克氏针在孔道内,记录每个钻孔手术时间及术中透视次数。术后CT扫描评估克氏针的位置情况。
     结果:
     结果一:摔伤和车祸伤是创伤性脊柱骨折最常见的两大致伤原因。车祸伤更倾向于引起青壮年创伤性脊柱骨折,高坠伤引起的创伤性脊柱骨折伴合并伤发生率最高。随着年龄增长及年度变化,低坠伤和活动伤引起的创伤性脊柱骨折逐渐增加。胸椎+腰椎是跳跃性脊柱骨折最常见的骨折节段,青壮年颈椎+胸椎跳跃性脊柱骨折发生率明显高于老年人。重物砸伤最常见颈椎+胸椎跳跃性脊柱骨折,且骨折椎体间正常椎体数量在所有致伤原因中最多。后路椎弓根螺钉置入手术是脊柱骨折治疗的主要方式,微创手术百分比逐年增高。
     结果二:附加伤椎固定的单向钉内固定术的生物力学稳定性要显著优于单纯后路跨伤椎短节段4单向钉内固定术,伤椎固定降低了上、下位螺钉的应力,分散了内固定器械的应力载荷。单向钉跨伤椎4钉固定的螺钉应力最大,万向钉跨伤椎4钉固定三维运动范围最大。附加伤椎固定的万向钉6钉固定稳定性强于正常脊柱模型且螺钉应力较单向钉固定模型的应力明显缩小。
     结果三:脊柱手术机器人系统的基本功能能够满足脊柱外科医生进行椎弓根螺钉位置钻孔的要求,应用脊柱手术机器人进行钻孔操作,每个椎弓根螺钉轨迹钻孔操作的平均时间为(89.5±6.1)秒,术中C型臂X线机平均透视次数为(2.9±0.8)次。术后CT平扫评估克氏针完全位于椎弓根内达到85.0%。
     结论:
     结论一:我们要注重预防摔伤和车祸伤导致创伤性脊柱骨折,随着病患年龄增长及年度变化,我们更应该注意预防低坠伤和活动伤。在脊柱骨折诊断中注意重物砸伤引起的长节段跳跃性脊柱骨折,避免延迟诊断和漏诊。加强后路椎弓根螺钉内固定技术及微创技术在脊柱骨折治疗中的研究。
     结论二:附加伤椎固定的单向钉内固定术的生物力学稳定性优于单纯后路跨伤椎短节段单向钉内固定术,降低螺钉及螺钉棒的应力疲劳。附加伤椎固定的万向钉6钉固定稳定性强于正常脊柱模型且螺钉应力小于单向钉后路短节段固定模型,为我们临床应用微创附加伤椎固定万向钉6钉内固定术治疗脊柱骨折提供了临床依据。
     结论三:脊柱手术机器人的能够满足后路椎弓根螺钉置入操作的基本要求,脊柱手术机器人操作钻孔时间短、术中透视次数少,但是脊柱手术机器人的精确性有待进一步加强如需逐步完善虚拟手术系统,构建术中神经电生理监测系统及数字动作捕捉系统等。
Background:
     Spinal fracture accounts for about5%-6%of all fractures, spinal fracture with highmorbidity has a great impact on the quality of patients’ life and society. How to effectivelyprevent and treat spinal fractures becomes a research hotspot in the field of spine surgery.In recent years, digital technology has a rapid development, it plays an extremely importantrole in the prevention and clinical treatment of spinal fractures. Medical staff can easilystore, retrieve, and browse the patients’ records through the electronic medical recordsystem (EMRS) and they can conveniently, quickly and accurately carry out all kinds ofscientific research and statistical analysis work, the development of EMRS greatlyimproves the quality of clinical research and treatment. With the development of socialindustrialization and population ageing, whether the epidemiological characteristics ofspinal fracture in Chongqing a city with special topography are consistent with previousliteratures or not needs further research. Application of finite element analysis method(FEAM) in the biomechanical evaluation of spinal fractures provides more theoretical basisfor how to choose internal fixation technique for spinal fractures. In recent years, manyresearchers put forward various posterior short-segment pedicle screw fixation withadditional pedicle screws at the level of the fracture techniques including open posteriorpedicle screw fixation (OPSF) with monoaxial pedicle screws, percutaneous pedicle screwfixation (PPSF) with polyaxial pedicle screws and monosegmental pedicle screw fixation(MSPSF) to treat spinal fractures, many in vitro biomechanical experiments confirmed thatthe additional pedicle screws at the level of the fracture may result in a stiffer constructcompared to traditional short-segment4pedicle screw fixation technique, but there were noliteratures systematically analyze all the short-segment techniques used in spinal fractures,especially not a few comparative study about biomechanical characteristics betweenpolyaxial and monoaxial pedicle screws used in short segment pedicle screw fixation techniques and most of the literatures didn’t talk about the intervertebral disc pressure andVon Mises stress of the pedicle screws and rods. Spine robot system is a hotspot in thestudy of pedicle screw placement. As is known to all, compared to the traditional opensurgery, the minimally invasive pedicle screw insertion brings much more radiation injuryto the surgeons. So we developed a spine robot system to insert the pedicle screws insteadof the surgeons for avoiding radiation injury. During the preoperative planning ofcorrection surgery for complex spine deformity such as spine fracture and scoliosis,three-dimensional imaging technology and navigation technology of spine robot systemcan make anatomical structure which we can't see through graphic image become adynamic three-dimensional images, the spine robot system improves the accuracy ofpreoperative plan and surgical operation. Spine robot system used for pedicle screwplacement in China is still in its infancy, it has not yet been used for clinical treatment.
     Objective:
     To discuss the role of EMRS in the epidemiology study of traumatic spinal fractureand multiple level noncontiguous spinal fractures (MLNSF), analyse the application trendof pedicle screw insertion techniques for spinal fractures. To discuss the role of FEAM usedin the biomechanical evaluation of different posterior short segment fixation techniques forspinal fracture. To discuss the feasibility of our minimally invasive spine robot system usedin pedicle screw placement, find the problem of present robot system for furtherimprovement of the spine robot system.
     Methods:
     1. Through EMRS "No.1Military" project, we retrospectively reviewed the hospitalrecords of3142patients with traumatic spinal fractures and213patients with MLNSF whowere treated at the first and second affiliated hospital of third military medical universitybetween January2001and December2010. The variables assessed included age, sex,mechanism, anatomic distribution, neurological deficit, injury severity score, associatedinjury, length of hospital stay, cost of hospitalization, in-hospital complications, mortality,medical insurance and technique of pedicle screw insertion.
     2. Through FEAM, we assessed various posterior short segment pedicle screw fixationtechniques for spine fractures models under force loading by measuring range of motion(ROM), Von Mises stress of the pedicle screws and rods, and we focus on comparing the biomechanical characteristics of spine fractures models under displacement loadingbetween monoaxial and polyaxial pedicle screws in short segment pedicle screw fixationtechniques by measuring ROM, Von Mises stress of the pedicle screws and rods, cranialand caudal adjacent segmental maximal intervertebral disc pressure and its ratio to normalspinal model.
     3. Using spine robot system, we did the drilling operation on cattle lumbar spines forpedicle screw insertion. During preoperative planning, we measured the pedicle screwinsertion angle at the entry point, the vertical distance of entry point to the midline ofspinous process. We positioned the relative positions of the drill and the cattle lumbarspines, drilled the cattle spines according to preoperative plans and then placed needles inthe holes. We took notes of the surgical time and intraoperative fluoscopy times, and thenwe assessed the position of the needles through postoperative CT.
     Results:
     1. Accidental falls and traffic accidents were the two most common mechanisms oftraumatic spinal fractures. Traffic accidents tend to affect younger populations, andaccidental falls from high height are associated with a higher degree of associated injuries.The frequencies of fall from the low height injuries and sports injuries increased steadilywith age and year of admission. Thoracic+lumbar region are the most commonly injuredregion among all patients suffering MLNSF, and cervical+thoracic region are morecommonly injured among the young than the elderly. The highest frequency of MLNSFamong patients caused by direct collision with blunt object was cervical+thoracic regionand the number of intact vertebrae intervening between the2fractured vertebrae was themost. Posterior pedicle screw fixation techniques were the most common methods to treatspinal fractures and the frequrncy of minimally invasive techniques gradullay increasedwith the year of admission.
     2. Additional pedicle screws at the level of the fracture result in a stiffer constructcompared to traditional short-segment4pedicle screw fixation (SPSF). Index-level pediclescrew fixation to the SPSF decreased the Von Mises stress of the upper and lower pediclescrews, stress of the internal fixation was scattered. Von Mises stress of the pedicle screwswas largest in the short-segment4monoaxial pedicle screw fixation, range of motion waslargested in the short-segment4polyaxial pedicle screw fixation. Additional polyaxial pedicle screws at the level of the fracture may result in a stiffer construct than the normalspine model and less Von Mises stress of pedicle screws compared to monoaxial pediclescrew SPSF.
     3. The basic function of the spine robot system can satisfy spine surgeons for pediclescrew position drilling. Using the spine robot system, the drilling time per pedicle screwwas (89.5±6.1)seconds, intraoperative fluoscopy times were (2.9±0.8)times. The percentageof pedicle screws totally within the pedicles from postoperative CT scans was85.0%.
     Conclusion:
     1. We should strengthen the prevention of traumatic spinal fractures caused byaccidental falls and traffic accidents. There should be a growing concern for the preventionof falls from the low height and sports injuries with the increased age and year ofadmission.We should pay much attention to the diagnosis of long segment MLNSF whenwe treated spinal fractures caused by direct collision with blunt object to avoid delays indiagnosis and misdiagnosis. We should strengthen the study of posterior pedicle screwfixation technique and minimally invasive technique in the treatment of spinal fractures.
     2. Additional monoaxial pedicle screws at the level of the fracture may result in astiffer construct and less Von Mises stress of pedicle screws compared to SPSF. Additionalpolyaxial pedicle screws at the level of the fracture may result in a stiffer constructcompared to normal spine model and and less Von Mises stress of pedicle screws comparedto monoaxial pedicle screws fixation spine models, the results provided theoretical basis fortreatment of spinal fracture using minimally invasive polyaxial pedicle screws fixation withadditional pedicle screws at the level of the fracture technique.
     3. The basic function of the spine robot system can satisfy spine surgeons for pediclescrew position drilling. Using the spinal surgery robot, the drilling time per pedicle screwwas short and intraoperative fluoscopy times per pedicle screw was less, but we shouldimprove the accuracy of spine robot system such as gradually improving the virtual surgerysystem, building intraoperative electrophysiological monitoring system and motion capturesystem.
引文
[1] Liu B, Zhou X, Wang Y, et al. Data processing and analysis in real-world traditionalChinese medicine clinical data: challenges and approaches. Stat Med,2012,31(7):653-660.
    [2] Tu H, Yu Y, Yang P, et al. Building clinical data groups for electronic medical recordin China. J Med Syst,2012,36(2):723-736.
    [3] Li K, Naganawa S, Wang K, et al. Study of the cost-benefit analysis of electronicmedical record systems in general hospital in China. J Med Syst,2012,36(5):3283-3291.
    [4] Price C, Makintubee S, Herndon W, et al. Epidemiology of traumatic spinal cord injuryand acute hospitalization and rehabilitation charges for spinal cord injuries inOklahoma,1988-1990. Am J Epidemiol,1994,139(1):37-47.
    [5] Rivara FP, Grossman DC, Cummings P. Injury prevention. First of two parts. N Engl JMed,1997,337(8):543-548.
    [6] Hill DA, Delaney LM, Duflou J. A population-based study of outcome after injury tocar occupants and to pedestrians. J Trauma,1996,40(3):351-355.
    [7] Hu R, Mustard CA, Burns C. Epidemiology of incident spinal fracture in a completepopulation. Spine,1996,21(4):492-499.
    [8] Lieutaud T, Ndiaye A, Frost F, et al. A10-year population survey of spinal trauma andspinal cord injuries after road accidents in the Rh ne area. J Neurotrauma,2010,27(6):1101-1107.
    [9] Pirouzmand F. Epidemiological trends of spine and spinal cord injuries in the largestCanadian adult trauma center from1986to2006. J Neurosurg Spine,2010,12(2):131-140.
    [10]Pickett GE, Campos-Benitez M, Keller JL, et al. Epidemiology of traumatic spinal cordinjury in Canada. Spine,2006,31(7):799-805.
    [11]Wang Y, Hasselberg M, Wu Z, et al. Distribution and characteristics of road trafficcrashes in the Chaoyang District of Beijing, China. Accid Anal Prev,2008,40(1):334-340.
    [12]Zhang W, Tsimhoni O, Sivak M, et al. Road safety in China: analysis of currentchallenges. J Safety Res,2010,41(1):25-30.
    [13]Richter D, Hahn MP, Ostermann PA, et al. Vertical deceleration injuries: a comparativestudy of the injury patterns of101patients after accidental and intentional high falls.Injury,1996,27(9):655-659.
    [14]Velmahos GC, Demetriades D, Theodorou D, et al. Patterns of injury in victims ofurban free-falls. World J Surg,1997,21(8):816-821.
    [15]Vaccaro AR, An HS, Lin S, et al. Noncontiguous injuries of the spine. J Spinal Disord,1992,5(3):320-329.
    [16]Henderson RL, Reid DC, Saboe LA. Multiple noncontiguous spine fractures. Spine,1991,16(2):128-131.
    [17]Hadden WA, Gillespie WJ. Multiple level injures of the cervical spine. Injury,1985,16(9):628-633.
    [18]Korres DS, Katsaros A, Pantazopoulos T, et al. Double or multiple level fractures ofthe spine. Injury,1981,13(2):147-152.
    [19]Calenoff L, Chessare JW, Rogers LF, et al. Multiple level spinal injuries: importance ofearly recognition. AJR Am J Roentgenol,1978,130(4):665-669.
    [20]Gupta A, el Masri WS. Multilevel spinal injuries. Incidence, distribution andneurologic patterns. J Bone Joint Surg Br,1989,71(4):692-695.
    [21]Beldekos A, Korres DS, Nikolakakos GA. Chance’s fracture in a double level fractureof the spine. Injury,1981,13(1):34-36.
    [22]Wittenberg RH, Hargus S, Steffen R, et al. Noncontiguous unstable spine fractures.Spine,2002,27(3):254-257.
    [23]Ehara S, Shimamura T. Cervical spine injury in the elderly: imaging features. SkeletalRadiol,2001,30(1):1-7.
    [24]Kannus P, Niemi S, Palvanen M, et al. Continuously increasing number and incidenceof fall-induced, fracture associated, spinal cord injuries in elderly persons. Arch InternMed,2000,160(14):2145-2149.
    [25]Korres DS, Boscainos PJ, Papagelopoulos PJ, et al. Multiple level noncontiguousfractures of the spine. Clin Orthop Relat Res,2003,(411):95-102.
    [26]Dai LY, Jia LS. Multiple non-contiguous injuries of the spine. Injury,1996,27(8):573-575.
    [27]McLain RF, Sparling E, Benson RD. Early failure of short-segment pedicleinstrumentation for thoracolumbar fractures. A preliminary report. J Bone Joint SurgAm,1993,75(2):162-167.
    [28]Gurwitz GS, Dawson JM, McNamara MJ, et al. Biomechanical analysis of threesurgical approaches for lumbar burst fractures using short segment instrumentation.Spine (Phila Pa1976),1993,18(8):977-982.
    [29]Kramer DL, Rodgers WB, Mansfield FL. Transpedicular instrumentation andshort-segment fusion of thoracolumbar fractures: a prospective study using a singleinstrumentation system. J Orthop Trauma,1995,9(6):499-506.
    [30]Mahar A, Kim C, Wedemeyer M, et al. Short-segment fixation of lumbar burstfractures using pedicle fixation at the level of the fracture. Spine (Phila Pa1976),2007,32(14):1503-1507.
    [31]Anekstein Y, Brosh T, Mirovsky Y. Intermediate screws in short segment pedicularfixation for thoracic and lumbar fractures: a biomechanical study. J Spinal Disord Tech,2007,20(1):72-77.
    [32]Baaj AA, Reyes PM, Yaqoobi AS, et al. Biomechanical advantage of the index-levelpedicle screw in unstable thoracolumbar junction fractures. J Neurosurg Spine,2011,14(2):192-197.
    [33]Guven O, Kocaoglu B, Bezer M, et al. The use of screw at the fracture level in thetreatment of thoracolumbar burst fractures. J Spinal Disord Tech,2009,22(6):417-421.
    [34]Wang H, Li C, Liu T, et al. Biomechanical efficacy of monoaxial or polyaxial pediclescrew and additional screw insertion at the level of fracture, in lumbar burst fracture:An experimental study. Indian J Orthop,2012,46(4):395-401.
    [35]Defino HL, Scarparo P. Fractures of thoracolumbar spine: monosegmental fixation.Injury,2005,36Suppl2:B90-97.
    [36]Defino HL, Herrero CF, Romeiro CF. Monosegmental fixation for the treatment offractures of the thoracolumbar spine. Indian J Orthop,2007,41(4):337-345.
    [37]Liu S, Li H, Liang C, et al. Monosegmental transpedicular fixation for selected patientswith thoracolumbar burst fractures. J Spinal Disord Tech,2009,22(1):38-44.
    [38]Wei FX, Liu SY, Liang CX, et al. Transpedicular fixation in management ofthoracolumbar burst fractures: monosegmental fixation versus short-segmentinstrumentation. Spine (Phila Pa1976),2010,35(15):E714-720.
    [39]Akamaru T, Kawahara N, Sakamoto J, et al. The transmission of stress to grafted boneinside a titanium mesh cage used in anterior column reconstruction after totalspondylectomy: a finite-element analysis. Spine (Phila Pa1976),2005,30(24):2783-2787.
    [40]Kim Y, Kim TW. Finite element analysis of the effects of pedicle screw fixation nutloosening on lumbar interbody fusion based on the elasto-plateau plasticity of bonecharacteristics. Spine (Phila Pa1976),2010,35(6):599-606.
    [41]Kim HJ, Chun HJ, Moon SH, et al. Analysis of biomechanical changes after removal ofinstrumentation in lumbar arthrodesis by finite element analysis. Med Biol Eng Comput,2010,48(7):703-709.
    [42]Denozière G, Ku DN. Biomechanical comparison between fusion of two vertebrae andimplantation of an artificial intervertebral disc. J Biomech,2006,39(4):766-775.
    [43]Magerl FP. Stabilization of the lower thoracic and lumbar spine with external skeletalfixation. Clin Orthop Relat Res,1984,(189):125-141.
    [44]Chen SH, Lin SC, Tsai WC, et al. Biomechanical comparison of unilateral and bilateralpedicle screws fixation for transforaminal lumbar interbody fusion after decompressivesurgery--a finite element analysis. BMC Musculoskelet Disord,2012,13:72.
    [45]Yamamoto I, Panjabi MM, Crisco T, et al. Three-dimensional movements of the wholelumbar spine and lumbosacral joint. Spine (Phila Pa1976),1989,14(11):1256-1260.
    [46]Pflugmacher R, Schleicher P, Schaefer J, et al. Biomechanical comparison ofexpandable cages for vertebral body replacement in the thoracolumbar spine. Spine(Phila Pa1976),2004,29(13):1413-1419.
    [47]王洪伟,王晓红,周跃,等.有限元分析法在脊柱骨折研究中的应用进展.中华创伤杂志,2012,28(6):573-576.
    [48]Tropiano P, Thollon L, Arnoux PJ, et al. Using finite element model to evaluate humaninjuries app lication to the HUMOS model in whip lash situation. Spine,2004,29(16):1709-1716.
    [49]Yoganadan N, Kumaresan S, Voo L, et al. Finite element app lications in humancervical spine modeling. Spine,1996,21(15):1824-1834.
    [50]Hussain M, Nassr A, Natarajan RN, et al.Biomechanical effects of anterior, posterior,and combined anterior-posterior instrumentation techniques on the stability of amultilevel cervical corpectomy construct: a finite element model analysis. Spine J.2011,11(4):324-330.
    [51]KT Huynh, Z Gao, I Gibson, et al. Haptically integrated simulation of finite elementmodel of thoracolumbar spine combining offline biomechanical response analysis ofintervertebral discs. Computer Aided Design,2010,42(12):1151-1166.
    [52]Park WM, Park YS, Kim K, et al. Biomechanical comparison of instrumentationtechniques in treatment of thoracolumbar burst fractures: a finite element analysis. JOrthop Sci,2009,14(4):443-449.
    [53]宋元进,蔡锦方.胸腰段骨折不同固定方式的有限元分析.中国组织工程研究与临床康复,2009,13(52):10269-10273.
    [54]李钦亮,刘艺,储朝明,等.伤椎椎弓根置钉治疗胸腰椎压缩性骨折的三维有限元分析.中国组织工程研究与临床康复,2011,15(39):7226-7229.
    [55]Sasso RC, Renkens K, Hanson D, et al. Unstable thoracolumbar burst fractures:anterior-only versus short-segment posterior fixation. J Spinal Disord Tech,2006,19(4):242-248.
    [56]Dai LY, Jiang LS, Jiang SD. Posterior short-segment fixation with or without fusion forthoracolumbar burst fractures. a five to seven-year prospective randomized study. JBone Joint Surg Am,2009,91(5):1033-1041.
    [57]Li X, Ma Y, Dong J, et al. Retrospective analysis of treatment of thoracolumbar burstfracture using mono-segment pedicle instrumentation compared with short-segmentpedicle instrumentation. Eur Spine J,2012,21(10):2034-2042.
    [58]Dai LY, Jiang SD, Wang XY, et al. A review of the management of thoracolumbarburst fractures. Surg Neurol,2007,67(3):221-231.
    [59]Alpantaki K, Bano A, Pasku D, et al. Thoracolumbar burst fractures: a systematicreview of management. Orthopedics,2010,33(6):422-429.
    [60]P Oprel P, Tuinebreijer WE, Patka P, et al. Combined anterior-posterior surgery versusposterior surgery for thoracolumbar burst fractures: a systematic review of the literature.Open Orthop J,2010,17,4:93-100.
    [61]Wang H, Zhang Y, Xiang Q, et al. Epidemiology of traumatic spinal fractures:experience from medical university-affiliated hospitals in Chongqing, China. JNeurosurg Spine,2012,17(5):459-468.
    [62]Kim DY, Lee SH, Chung SK, Lee HY. Comparison of multifidus muscle atrophy andtrunk extension muscle strength: percutaneous versus open pedicle screw fixation.Spine (Phila Pa1976),2005,30(1):123-129.
    [63]Wild MH, Glees M, Plieschnegger C, et al. Five-year follow-up examination afterpurely minimally invasive posterior stabilization of thoracolumbar fractures: acomparison of minimally invasive percutaneously and conventionally open treatedpatients. Arch Orthop Trauma Surg,2007,127(5):335-343.
    [64]Mobbs RJ, Sivabalan P, Li J. Technique, challenges and indications for percutaneouspedicle screw fixation. J Clin Neurosci,2011,18(6):741-749.
    [65]Doria C, Tranquilli Leali P. Percutaneous techniques in the treatment of osteoporotic,traumatic and neoplastic fractures of thoraco-lumbar spine: our institutional experience.Injury,2010,41(11):1136-1139.
    [66]Wang HW, Li CQ, Zhou Y, et al. Percutaneous pedicle screw fixation through thepedicle of fractured vertebra in the treatment of type A thoracolumbar fractures usingSextant system: an analysis of38cases. Chin J Traumatol,2010,13(3):137-145.
    [67]Rahm MD, Hall BB. Adjacent-segment degeneration after lumbar fusion withinstrumentation: a retrospective study. J Spinal Disord,1996,9(5):392-400.
    [68]Pellisé F, Hernández A, Vidal X, et al. Radiologic assessment of all unfused lumbarsegments7.5years after instrumented posterior spinal fusion. Spine (Phila Pa1976),2007,32(5):574-579.
    [69]Chen CS, Cheng CK, Liu CL, et al. Stress analysis of the disc adjacent to interbodyfusion in lumbar spine. Med Eng Phys,2001,23(7):483-491.
    [70]DiAngelo DJ, Foley KT, Morrow BR, et al. In vitro biomechanics of cervical discarthroplasty with the ProDisc-C total disc implant. Neurosurg Focus,2004,17(3):E7.
    [71]Devito DP, Kaplan L, Dietl R, et al. Clinical acceptance and accuracy assessment ofspinal implants guided with SpineAssist surgical robot: retrospective study. Spine(Phila Pa1976),2010,35(24):2109-2115.
    [72]Pechlivanis I, Kiriyanthan G, Engelhardt M, et al. Percutaneous placement of pediclescrews in the lumbar spine using a bone mounted miniature robotic system: firstexperiences and accuracy of screw placement. Spine (Phila Pa1976),2009,34(4):392-398.
    [73]Kantelhardt SR, Martinez R, Baerwinkel S, et al. Perioperative course and accuracy ofscrew positioning in conventional, open robotic-guided and percutaneousrobotic-guided, pedicle screw placement. Eur Spine J,2011,20(6):860-868.
    [74]Cruces RA,Wahrburg J. Improving robot arm control for safe and robust hapticcooperation in orthopaedic procedures. Int J Med Robot,2007,3(4):316-322.
    [75]Ortmaier T,Weiss H,D bele S,et al. Experiments on robot-assisted navigated drillingand milling of bones for pedicle screw placement. Int J Med Robot,2006,2(4):350-363.
    [76]Onogi S, Morimoto K, Sakuma I, et al. Development of the needle insertion robot forpercutaneous vertebroplasty. Med Image Comput Comput Assist Interv,2005,8(Pt2):105-113.
    [77]Kim S, Chung J, Yi BJ, et al. An assistive image-guided surgical robot system usingO-arm fluoroscopy for pedicle screw insertion: preliminary and cadaveric study.Neurosurgery,2010,67(6):1757-1767.
    [78]张春霖,赵玉果,张昌盛,等.无框架脊柱导航手术机器人腰椎弓根标准轴位引导置针.中国组织工程研究与临床康复,2010,14(35):6466-6470.
    [79]张鹤,韩建达,周跃.脊柱微创手术机器人系统辅助打孔的实验研究.中华创伤骨科杂志,2011,13(12):1166-1169.
    [80]Klein S, Whyne CM, Rush R, et al. CT-based patient-specific simulation software forpedicle screw insertion. J Spinal Disord Tech,2009,22(7):502-506.
    [81]Eftekhar B, Ghodsi M, Ketabchi E, et al. Surgical simulation software for insertion ofpedicle screws. Neurosurgery,2002,50(1):222-224.
    [82]Richards PJ, Kurta IC, Jasani V, et al. Assessment of CAOS as a training model inspinal surgery: a randomized study. Eur Spine J,2007,16(2):239-244.
    [83]Podolsky DJ, Martin AR, Whyne CM, et al. Exploring the role of3-dimensionalsimulation in surgical training: feedback from a pilot study. J Spinal Disord Tech,2010,23(8):e70-74.
    [84]Aubin CE, Labelle H, Chevrefils C, et al. Preoperative planning simulator for spinaldeformity surgeries. Spine (Phila Pa1976),2008,33(20):2143-2152.
    [85]Majdouline Y, Aubin CE, Sangole A, et al. Computer simulation for the optimizationof instrumentation strategies in adolescent idiopathic scoliosis. Med Biol Eng Comput,2009,47(11):1143-1154.
    [86]Aurouer N, Obeid I, Gille O, et al. Computerized preoperative planning for correctionof sagittal deformity of the spine. Surg Radiol Anat,2009,31(10):781-792.
    [87]Sukovich W, Brink-Danan S, Hardenbrook M. Miniature robotic guidance for pediclescrew placement in posterior spinal fusion: early clinical experience with theSpineAssist. Int J Med Robot,2006,2(2):114-122.
    [88]Castellon AT, Meves R, Avanzi O. Intraoperative neurophysiologic spinal cordmonitoring in thoracolumbar burst fractures. Spine (Phila Pa1976),2009,34(24):2662-2668.
    [89]Thuet ED, Winscher JC, Padberg AM, et al.Validity and reliability of intraoperativemonitoring in pediatric spinal deformity surgery. Spine (Phila Pa1976),2010,35(20):1880-1886.
    [90]Fehlings MG, Brodke DS, Norvell DC, et al.The evidence for intraoperativeneurophysiological monitoring in spine surgery: does it make a difference? Spine(Phila Pa1976),2010,35(9):S37-S46.
    [91]Drake J, Zeller R, Kulkarni AV, et al. Intraoperative neurophysiological monitoringduring complex spinal deformity cases in pediatric patients: methodology, utility,prognostication, and outcome. Childs Nerv Syst,2010,26(4):523-544.
    [92]Collado-Corona MA, de Leo-Vargas R, Sandoval-Sanchez V, et al. Neurophysiologicalmonitoring in spinal cord surgery. Cir Cir,2009,77(5):361-366.
    [93]Kamerlink JR, Errico T, Xavier S, et al.Major intraoperative neurologic monitoringdeficits in consecutive pediatric and adult spinal deformity patients at one institution.Spine (Phila Pa1976),2010,35(2):240-245.
    [94]Tsirikos AI, Aderinto J, Tucker SK, et al. Spinal cord monitoring using intraoperativesomatosensory evoked potentials for spinal trauma. J Spinal Disord Tech,2004,17(5):385-394.
    [95]王洪伟,廖新华,马显光,等.椎弓根螺钉的不同结构特点对螺钉电阻的影响.中国脊柱脊髓杂志,2013,23(3):263-266.
    [1] Kadoury S, Cheriet F, Laporte C, et al. A versatile3D reconstruction system of thespine and pelvis for clinical assessment of spinal deformities. Med Biol Eng Comput,2007,45(6):591-602.
    [2] van Royen BJ, Scheerder FJ, Jansen E, et al. ASKyphoplan: a program for deformityplanning in ankylosing spondylitis. Eur Spine J,2007,16(9):1445-1449.
    [3] Majdouline Y, Aubin CE, Sangole A, et al. Computer simulation for the optimizationof instrumentation strategies in adolescent idiopathic scoliosis. Med Biol Eng Comput,2009,47(11):1143-1154.
    [4] Aubin CE, Labelle H, Chevrefils C, et al. Preoperative planning simulator for spinaldeformity surgeries. Spine (Phila Pa1976),2008,33(20):2143-2152.
    [5] Aurouer N, Obeid I, Gille O, et al. Computerized preoperative planning for correctionof sagittal deformity of the spine. Surg Radiol Anat,2009,31(10):781-792.
    [6] Klein S, Whyne CM, Rush R, et al. CT-based patient-specific simulation software forpedicle screw insertion. J Spinal Disord Tech,2009,22(7):502-506.
    [7] D'Urso PS, Askin G, Earwaker JS, et al. Spinal biomodeling. Spine (Phila Pa1976),1999,24(12):1247-1251.
    [8] Aubin CE, Petit Y, Stokes IA, et al. Biomechanical modeling of posteriorinstrumentation of the scoliotic spine. Comput Methods Biomech Biomed Engin,2003,6(1):27-32.
    [9] D'Urso PS, Williamson OD, Thompson RG. Biomodeling as an aid to spinalinstrumentation. Spine (Phila Pa1976),2005,30(24):2841-2845.
    [10]Lu S, Xu YQ, Zhang YZ, et al. Rapid prototyping drill guide template for lumbarpedicle screw placement. Chin J Traumatol,2009,12(3):177-180.
    [11]Lu S, Xu YQ, Zhang YZ, et al. A novel computer-assisted drill guide template forlumbar pedicle screw placement: a cadaveric and clinical study. Int J Med Robot,2009,5(2):184-191.
    [12]Laine T, Lund T, Ylikoski M, et al. Accuracy of pedicle screw insertion with andwithout computer assistance: a randomised controlled clinical study in100consecutivepatients. Eur Spine J,2000,9(3):235-240.
    [13]Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: a meta-analysis. Spine(Phila Pa1976),2007,32(3):E111-E120.
    [14]Tian NF, Xu HZ. Image-guided pedicle screw insertion accuracy:a meta-analysis. IntOrthop,2009,33(4):895-903.
    [15]Castellon AT, Meves R, Avanzi O. Intraoperative neurophysiologic spinal cordmonitoring in thoracolumbar burst fractures. Spine (Phila Pa1976),2009,34(24):2662-2668.
    [16]Thuet ED, Winscher JC, Padberg AM, et al. Validity and reliability of intraoperativemonitoring in pediatric spinal deformity surgery: a23-year experience of3436surgicalcases. Spine (Phila Pa1976),2010,35(20):1880-1886.
    [17]Fehlings MG, Brodke DS, Norvell DC, et al. The evidence for intraoperativeneurophysiological monitoring in spine surgery: does it make a difference? Spine(Phila Pa1976),2010,35(9Suppl):S37-S46.
    [18]Kamerlink JR, Errico T, Xavier S, et al. Major intraoperative neurologic monitoringdeficits in consecutive pediatric and adult spinal deformity patients at one institution.Spine (Phila Pa1976),2010,35(2):240-245.
    [19]Yamazaki T, Matsudaira K. Diathermy testing: a novel method with electric knifestimulation to avoid nerve injuries during lumbar pedicle screw placement. Technicalnote. J Neurosurg Spine,2007,6(5):479-484.
    [20]Wood MJ, Mannion RJ. Improving accuracy and reducing radiation exposure inminimally invasive lumbar interbody fusion Clinical article. J Neurosurg Spine,2010,12(5):533-539.
    [21]Raphael DT, Chang JH, Zhang YP,et al. A-Mode ultrasound guidance for pedicle screwadvancement in ovine vertebral bodies. Spine J,2010,10(5):422-432.
    [22]Mujagi M, Ginsberg HJ, Cobbold RS. Development of a method forultrasound-guided placement of pedicle screws. IEEE Trans Ultrason Ferroelectr FreqControl,2008,55(6):1267-1276.
    [23]Kantelhardt SR, Bock CH, Larsen J, et al. Intraosseous ultrasound in the placement ofpedicle screws in the lumbar spine. Spine (Phila Pa1976),2009,34(4):400-407.
    [24]Kantelhardt SR, Larsen J, Bockermann V, et al. Intraosseous ultrasonography todetermine the accuracy of drill hole positioning prior to the placement of pediclescrews: an experimental study. J Neurosurg Spine,2009,11(6):673-680.
    [25]Kantelhardt SR, Bock HC, Siam L, et al. Intra-osseous ultrasound for pedicle screwpositioning in the subaxial cervical spine: an experimental study. Acta Neurochir(Wien),2010,152(4):655-661.
    [26]von Jako RA, Carrino JA, Yonemura KS, et al. Electromagnetic navigation forpercutaneous guide-wire insertion: Accuracy and efficiency compared to conventionalfluoroscopic guidance. Neuroimage,2009,47Suppl2:T127-T132.
    [27]赵春鹏,王军强,刘文勇,等.骨科机器人系统全程规划模块在长骨骨折精确牵引中的研究.中华医学杂志,2007,87(43):3038-3042.
    [28]Weber-Spickschen TS, Oszwald M, Westphal R, et al. Development of a fixationdevice for robot assisted fracture reduction of femoral shaft fractures: a biomechanicalstudy. Technol Health Care,2010,18(3):207-216.
    [29]Oszwald M, Westphal R, Stier R, et al. Hands-on robotic distal interlocking inintramedullary nail fixation of femoral shaft fractures. Technol Health Care,2010,18(4-5):325-334.
    [30]Devito DP, Kaplan L, Dietl R, et al. Clinical acceptance and accuracy assessment ofspinal implants guided with SpineAssist surgical robot: retrospective study. Spine(Phila Pa1976),2010,35(24):2109-2115.
    [31]Pechlivanis I, Kiriyanthan G, Engelhardt M, et al. Percutaneous placement of pediclescrews in the lumbar spine using a bone mounted miniature robotic system: firstexperiences and accuracy of screw placement. Spine (Phila Pa1976),2009,34(4):392-398.
    [32]Kantelhardt SR, Martinez R, Baerwinkel S, et al. Perioperative course and accuracy ofscrew positioning in conventional, open robotic-guided and percutaneousrobotic-guided, pedicle screw placement. Eur Spine J,2011,20(6):860-868.
    [33]Cruces RA, Wahrburg J. Improving robot arm control for safe and robust hapticcooperation in orthopaedic procedures. Int J Med Robot,2007,3(4):316-322.
    [34]Ortmaier T, Weiss H, D bele S, et al. Experiments on robot-assisted navigated drillingand milling of bones for pedicle screw placement. Int J Med Robot,2006,2(4):350-363.
    [35]Onogi S, Morimoto K, Sakuma I, et al. Development of the needle insertion robot forpercutaneous vertebroplasty. Med Image Comput Comput Assist Interv,2005,8(Pt2):105-113.
    [36]Kim S, Chung J, Yi BJ, et al. An assistive image-guided surgical robot system usingO-arm fluoroscopy for pedicle screw insertion: preliminary and cadaveric study.Neurosurgery,2010,67(6):1757-1767; discussion1767.
    [37]Ponnusamy K, Chewning S, Mohr C, et al. Robotic approaches to the posterior spine.Spine (Phila Pa1976),2009,34(19):2104-2109.
    [38]Yang MS, Yoon do H, Kim KN, et al. Robot-assisted anterior lumbar interbody fusionin a Swine model in vivo test of the da vinci surgical-assisted spinal surgery system.Spine (Phila Pa1976),2011,36(2):E139-143.
    [39]Kim MJ, Ha Y, Yang MS, et al. Robot-assisted anterior lumbar interbody fusion (ALIF)using retroperitoneal approach. Acta Neurochir (Wien),2010,152(4):675-679.
    [40]Wolf A, Shoham M, Michael S, et al. Feasibility study of a mini, bone-attached, roboticsystem for spinal operations: analysis and experiments. Spine (Phila Pa1976),2004,29(2):220-228.
    [41]Lieberman IH, Togawa D, Kayanja MM, et al. Bone-mounted miniature roboticguidance for pediele screw and translaminar facet screw placement: Part I--Technicaldevelopment and a test case reset. Neurosurgery,2006,59(3):641-650.
    [42]Sukovich W, Brink-Danan S, Hardenbrook M. Miniature robotic guidance for pediclescrew placement in posterior spinal fusion: early clinical experience with theSpineAssist. Int J Med Robot,2006,2(2):114-122.
    [43]Kantelhardt SR, Martinez R, Baerwinkel S, et al. Perioperative course and accuracy ofscrew positioning in conventional, open robotic-guided and percutaneousrobotic-guided, pedicle screw placement. Eur Spine J,2011,20(6):860-868.
    [44]Wang T, Luan S, Hu L, et al. Force-based control of a compact spinal milling robot. IntJ Med Robot,2010,6(2):178-185.
    [45]鞠浩,张建勋,安刚,等.机器人辅助脊柱微创手术系统设计与实现.南开大学学报(自然科学版),2008,41(4):31-35.
    [46]宋银灏,安刚,张建勋,等.脊柱微创手术机器人运动控制系统的设计.计算机工程与应用,2010,46(14):58-61.
    [47]张春霖,赵玉果,张昌盛,等.无框架脊柱导航手术机器人腰椎弓根标准轴位引导置针.中国组织工程研究与临床康复,2010,14(35):6466-6470.
    [48]张鹤,韩建达,周跃.脊柱微创手术机器人系统辅助打孔的实验研究.中华创伤骨科杂志,2011,13(12):1166-1169.
    [1] Silva MJ, Keaveny TM, Hayes WC. Loading sharing between the shell and centrum inthe lumbar vertebral body. Spine (Phila Pa1976),1997,22(2):140-150.
    [2] Cao KD, Grimm MJ, Yang KH. Load sharing within a human lumbar vertebral bodyusing the finite element method. Spine (Phila Pa1976),2001,26(12):E253-260.
    [3] Crawford RP, Keaveny TM. Relationship between axial and bending behaviors of thehuman thoracolumbar vertebra. Spine (Phila Pa1976),2004,29(20):2248-2255.
    [4] Dall'Ara E, Schmidt R, Pahr D, et al. A nonlinear finite element model validation studybased on a novel experimental technique for inducing anterior wedge-shape fractures inhuman vertebral bodies in vitro. J Biomech,2010,43(12):2374-2380.
    [5] Qiu TX, Tan KW, Lee VS, et al. Investigation of thoracolumbar T12-L1burst fracturemechanism using finite element method. Med Eng Phys,2006,28(7):656-664.
    [6] El-Rich M, Arnoux PJ, Wagnac E, et al. Finite element investigation of the loading rateeffect on the spinal load-sharing changes under impact conditions. J Biomech,2009,42(9):1252-1262.
    [7] Sairyo K, Goel VK, Masuda A, et al. Three-dimensional finite element analysis of thepediatric lumbar spine. Part I: pathomechanism of apophyseal bony ring fracture. EurSpine J,2006,15(6):923-929.
    [8]夏虹,张美超,赵卫东,等.寰椎三维有限元模型的建立及其骨折机制.中华创伤杂志,2004,20(4):209-212.
    [9]赵轶波,马迅,陈维毅,等.枢椎有限元模型建立及齿突骨折的有限元分析.中华骨科杂志,2008,28(5):392-396.
    [10]Imai K. Vertebral fracture risk and alendronate effects on osteoporosis assessed by acomputed tomography-based nonlinear finite element method. Bone Miner Metab,2011,29(6):645-651.
    [11]Keaveny TM, Donley DW, Hoffmann PF, et al. Effects of teriparatide and alendronateon vertebral strength as assessed by finite element modeling of QCT scans in womenwith osteoporosis. J Bone Miner Res,2007,22(1):149-157.
    [12]Matsumoto T, Ohnishi I, Bessho M, et al. Prediction of vertebral strength under loadingconditions occurring in activities of daily living using a computed tomography-basednonlinear finite element method. Spine (Phila Pa1976),2009,34(14):1464-1469.
    [13]Fagan MJ, Julian S, Mohsen AM. Finite element analysis in spine research. Proc InstMech Eng H,2002,216(5):281-298.
    [14]KT Huynh, Z Gao, I Gibson, et al. Haptically integrated simulation of finite elementmodel of thoracolumbar spine combining offline biomechanical response analysis ofintervertebral discs. Computer Aided Design,2010,42(12):1151-1166.
    [15]Kumaresan S, Yoganandan N, Pintar FA. Finite element analysis of anterior cervicalspine interbody fusion. Biomed Mater Eng,1997,7(4):221-230.
    [16]O'Toole RV3rd, Jaramaz B, DiGioia AM3rd, et al. Biomechanics for preoperativeplanning and surgical simulations in orthopaedics. Comput Biol Med,1995,25(2):183-191.
    [17]Dumas R, Lafage V, Lafon Y, et al. Finite element simulation of spinal deformitiescorrection by in situ contouring technique. Comput Methods Biomech Biomed Engin,2005,8(5):331-337.
    [18]Park WM, Park YS, Kim K, et al. Biomechanical comparison of instrumentationtechniques in treatment of thoracolumbar burst fractures: a finite element analysis. JOrthop Sci,2009,14(4):443-449.
    [19]Zhang L, Yang G, Wu L, et al. The biomechanical effects of osteoporosis vertebralaugmentation with cancellous bone granules or bone cement on treated and adjacentnon-treated vertebral bodies: a finite element evaluation. Clin Biomech (Bristol, Avon),2010,25(2):166-172.
    [20]He D, Wu L, Chi Y, et al. Facet joint plus interspinous process graft fusion to preventpostoperative late correction loss in thoracolumbar fractures with disc damage: finiteelement analysis and small clinical trials. Clin Biomech (Bristol, Avon),2011,26(3):229-237.
    [21]Hussain M, Nassr A, Natarajan RN, et al. Biomechanical effects of anterior, posterior,and combined anterior-posterior instrumentation techniques on the stability of amultilevel cervical corpectomy construct: a finite element model analysis. Spine J,2011,11(4):324-330.
    [22]Kim HJ, Chun HJ, Moon SH, et al. Analysis of biomechanical changes after removal ofinstrumentation in lumbar arthrodesis by finite element analysis. Med Biol Eng Comput,2010,48(7):703-9.
    [23]Zhang QH, Tan SH, Chou SM. Investigation of fixation screw pull-out strength onhuman spine. J Biomech,2004,37(4):479-485.
    [24]Lafage V, Dubousset J, Lavaste F, et al. Finite element simulation of various strategiesfor CD correction. Stud Health Technol Inform,2002,91:428-432.
    [25]Cui Y, Lewis G, Qi G. Numerical analysis of models of the standard TSRH spinalinstrumentation: effect of rod cross-sectional shape. Comput Methods BiomechBiomed Engin,2002,5(1):75-80.
    [26]Lim TH, Eck JC, An HS, et al. Biomechanics of transfixation in pedicle screwinstrumentation. Spine (Phila Pa1976),1996,21(19):2224-2229.
    [27]Lim TH, Kim JG, Fujiwara A, et al. Biomechanical evaluation of diagonal fixation inpedicle screw instrumentation. Spine (Phila Pa1976),2001,26(22):2498-2503.
    [28]Chen CS, Chen WJ, Cheng CK, et al. Failure analysis of broken pedicle screws onspinal instrumentation. Med Eng Phys,2005,27(6):487-496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700