钯催化异腈参与的交叉偶联反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展简便直接的方法从廉价易得的原料合成复杂多官能团的有机分子是现代有机合成化学的研究热点之一。异腈是有机合成中一类非常有用的C1源,并广泛应用于形式多样的反应体系之中,尤其是在异腈参与的多组分反应(IMCR)中取得了显著成果。
     众所周知,CO经常用于钯催化的串联反应中,并原子经济性的构建了一系列的羰基化合物和多种非常重要的杂环类化合物。异腈作为CO的等电子体,其结构和性质上也应该与CO类似,应该可以在钯催化体系下发生相似的化学反应。然而,在过去的几十年里,人们只关注了异腈的亲核性和亲电性在多组分反应中应用于含氮杂环类化合物的构建,而对于钯催化体系下中异腈的迁移插入反应研究甚少。基于此,我们意识到钯催化体系下异腈参与的交叉偶联反应理应在构建结构丰富多样的含氮化合物中显示其应有的价值。
     本论文系统阐述了我们近几年在异腈化学中的研究成果。从构建新的碳-碳键和碳-氮键入手,我们发展了一系列的钯催化异腈参与的交叉偶联反应,并成功的构建了酰胺及多种含氮杂环类化合物。这些研究成果将分为五部分逐一介绍。
     第二章研究了钯催化芳基卤与异腈通过碳-碳键的交叉偶联反应构建了一系列的芳基酰胺衍生物,该合成方法与传统的酰胺的合成路径完全不同。值得注意的是,该反应底物适用性十分广泛,对于烯基溴和苄基溴等底物同样适用,而且产物分离收率都比较好。这是一种全新的简易而高效的合成芳基酰胺类衍生物的方法。此方法的最大优点在于避免了使用有毒性且不易操作的CO气体或者酰氯及胺类原料的使用,在反应过程中异腈既提供了羰基源又提供了氨基源。
     第三章研究了钯催化邻卤代苯甲酰氯或邻卤代苯磺酰氯、胺、异腈三组分通过两步一锅法的串联反应立体专一性的构建亚胺异吲哚酮及硫代亚胺异吲哚啉-1,1-二氧化物衍生物。其次,该反应体系还可以应用于6-氨基啡啶和11-氨基-二苯并氮氧杂卓类衍生物的构建,这类杂环化合物的合成方法在步骤经济性上远优于之前文献所报道的方法。
     第四章研究了钯催化炔溴、异腈、邻氨基苯酚三组分串联环化反应构建4-氨基苯并[b][1,4]氮氧杂卓衍生物的方法。该方法最大的优点在于实现了一步构建氨基苯并[b][1,4]氮氧杂卓衍生物,明显优于文献所报道的多步合成路径,该方法可以为人们提供构建具有类似骨架的天然产物和药物分子。
     第五章研究了在不同的钯催化体系下,利用氧气氧化环化邻氨基苯酚与异腈为2-氨基苯并恶唑和3-氨基苯并噁唑啉类衍生物。该方法不仅原料简单易得而且底物适用性十分广泛。其次,利用氧气作氧化剂十分绿色经济。
     第六章研究了利用钯催化氧气氧化异腈与2-炔基苯胺环化构建4-卤代-2-氨基喹啉衍生物的方法。该反应底物适用性广泛,而且该方法还可以应用于两步一锅法高效的构建6H-吲哚[2,3-b]并喹啉衍生物。
The development of general and efficient methodologies for the synthesis of complexmolecular skeletons is the central focus of mordern organic chemistry. Isocyanides areimportant C1building blocks in organic synthesis and these molecules are known to take partin several of different types of reaction, especially finding particular usefulness in a widevariety of isocyanide-based multicomponent reactions.
     As know, CO is always used in palladium-catalyzed cascade reactions to increasemolecular complexity of the products by incorporating carbonyl groups and various importantheterocycles can be synthesised atom economically in this manner. Since isocyanide isisoelectronic with CO, it show similar reactivity towards palladium and undergo the samefundamental transformations. Surprisingly, the most reported achievements mainly focus onexploring the potential utility of the nucleophilicity and electrophilicity of isocyanides inmulticomponent reactions for the synthesis of nitrogen-containing compounds. However,migratory insertion of isocyanides in palladium catalysis is much less explored. Consequently,we presumed that palladium-catalyzed reactions involving isocyanide insertion should offertremendous opportunities for the synthesis of fine nitrogen-containing compounds.
     In this context, we describe herein our recent explorations in the field of isocyanideschemistry. An array of broadly useful coupling methodologies has been developed for theformation of C-C and C-N bonds etc. We further describe the application of these methods tothe syntheses of complex systems, including the amides and various nitrogen-containingheterocycles. Our research on palladium-catalyzed cross-coupling reactions involvingisocyanides has led to a series of new results which will be presented in the following fivechapters.
     In chapter two, a new and efficient method for synthesis of amides viapalladium-catalyzed C-C coupling of aryl halides with isocyanides is reported, by which aseries of amides were formed from readily available starting materials under mild conditions.This transformation could extend its use for synthesis of natural products and significantpharmaceuticals.
     In chapter three, we successfully realized a palladium-catalyzed one-pot cyclizationreaction to construct (3E)-(imino)isoindolin-1-ones and (3E)-(imino)thiaiso-indoline1,1-dioxides by introducing ortho-reactive functional groups on aryl halides. Under optimalconditions, the cyclization reaction afforded the corresponding products in good to excellentyields (up to93%) with high stereospecificity. Notably, this transformation successfully extends its application for synthesis of phenanthridins and dibenzooxazepins. This newsynthetic protocol not only builds up an application platform for palladium-catalyzed C-Ccoupling of aryl halides with isocyanides, but also opens atom economic and step economicsynthetic routes for nitrogen-containing heterocyclic compounds with wide functional groupcompatibility.
     In chapter four, a robust route to4-amine-benzo[b][1,4]oxazepines relying upon apalladium-catalyzed tandem reaction of o-aminophenols, bromoalkynes and isocyanides hasbeen developed. This chemistry presumably proceeds through the migratory insertion ofisocyanides into the vinyl-palladium intermediate as a key step.
     In chapter five, a Pd-catalyzed aerobic oxidation of o-aminophenols and isocyanides tothe synthesis of2-aminobenzoxazoles and3-aminobenzoxazines has been achieved under airatmosphere. The procedure constructs2-aminobenzoxazoles and3-aminobenzoxazines withmoderate to excellent yields and a broad substrate scope. Apart from experimentalsimplicity, this methodology has advantages of mild reaction conditions and easily accessiblestarting materials. Furthermore, the utility of this method is also successfully applied to thesynthesis of other types of useful nitrogen heterocycles.
     In chapter six, a robust and regioselective palladium-catalyzed intermolecular aerobicoxidative cyclization of2-ethynylanilines with isocyanides to the synthesis of4-halo-2-aminoquinolines is reported herein. The procedure constructs various4-halo-2-aminoquinolines with moderate to excellent yields and a broad substrate scope.Furthermore, this process could be easily extended to synthesis of various6H-indolo[2,3-b]quinolines via an intramolecular Buchwald-Hartwig cross-coupling reaction in two-stepone-pot manner.
引文
[1] Tsuji J. Palladium Reagents and Catalysts-New Perspectives for the21st Century[M]. John Wiley&Sons Ltd: Chichester, UK,2004:1-643
    [2] Negishi E-I. Ed. Handbook of Organopalladium Chemistry for Organic Synthesis [M].Wiley-Interscience: New York,2002:1-3173
    [3](a) Hoffmann A. W. Justus Liebigs Ann. Chem.,1867,144:114-120;(b) Gautier A. JustusLiebigs Ann. Chem.,1868,146:119
    [4] Wilson R. M.; Stockdill J. L.; Wu X., et al. A fascinating journey into history: explorationof the world of isonitriles en route to complex amides [J]. Angew. Chem. Int. Ed.,2008,51(12):2834-2848
    [5] For selected reviews, see:(a) Gulevich A. V.; Zhdanko A. G.; Orru R. V. A., et al.Isocyanoacetate derivatives: synthesis, reactivity, and application [J]. Chem. Rev.,2010,110(9):5235-5331;(b) Lygin A. V.; de. Meijere A. Isocyanides in the Synthesis of NitrogenHeterocycles [J]. Angew. Chem. Int. Ed.,2010,49(48):9094–9124;(c) D mling A. RecentDevelopments in Isocyanide Based Multicomponent Reactions in Applied Chemistry [J].Chem. Rev.,2006,106(1):17-89;(d) D mling A.; Ugi I. Multicomponent reactions withisocyanides [J]. Angew. Chem. Int. Ed.,2000,39(18):3168-3210;(e) Nair V.; Rajesh C.;Vinod A. U., et al. Strategies for Heterocyclic Construction via Novel MulticomponentReactions Based on Isocyanides and Nucleophilic Carbenes [J]. Acc. Chem. Res.,2003,36(12):899-907;(f) Yoshida H.; Fukushima H.; Morishita T. Three-component couplingusing arynes and isocyanides: straightforward access to benzo-annulated nitrogen or oxygenheterocycles [J]. Tetrahedron,2007,63(22):4793-4805;(g) Ugi I.; Werner B.; D mling, A.The Chemistry of Isocyanides, their MultiComponent Reactions and their Libraries [J].Molecules,2003,8(1):53-66;(h) Banfi L.; Riva R.; Basso, A. Coupling Isocyanide-BasedMulticomponent Reactions with Aliphatic or Acyl Nucleophilic Substitution Processes [J].Synlett,2010,1:23-41;(i) Kaim L. E.; Grimaud L. Beyond the Ugi reaction: lessconventional interactions between isocyanides and iminium species [J]. Tetrahedron,2009,65(11):2153-2171
    [6] Ryu L.; Sonoda N.; Curran D. P. Tandem Radical Reactions of Carbon Monoxide,Isonitriles, and Other Reagent Equivalents of the Geminal Radical Acceptor/RadicalPrecursor Synthon [J]. Chem. Rev.,1996,96(1):177-194
    [7] Curran D. P.; Liu H.4+1Radical Annulations with Isonitriles: A Simple Route toCyclopenta-Fused Quinolines [J]. J. Am. Chem. Soc.,1991,113(6):2127-2132
    [8] Camaggi C. M.; Leardini R.; Nanni D., et al. Radical Annulations with Nitriles: NovelCascade Reactions of Cyano-Substituted Alkyl and Sulfanyi Radicals with Isonitriles [J].Tetrahedron,1998,54(21):5587-5598
    [9] Mitamura T.; Iwata K.; Ogawa A.(PhTe)2-Mediated Intramolecular Radical Cyclization ofo-Ethynylaryl Isocyanides Leading to Bistellurated Quinolines upon Visible-Light Irradiation[J]. Org. Lett.,2009,11(15):3422-3424
    [10] Tobisu M.; Koh K.; Furukawa T., et al. Modular Synthesis of Phenanthridine Derivativesby Oxidative Cyclization of2-Isocyanobiphenyls with Organoboron Reagents [J]. Angew.Chem. Int. Ed.,2012,51(45):11363-11366
    [11] Zhang B.; Mück-Lichtenfeld C.; Studer A., et al.6-Trifluoromethyl-Phenanthridinesthrough Radical Trifluoromethylation of Isonitriles [J]. Angew. Chem. Int. Ed.,2013,52(41):10792–10795
    [12] Wang Q.; Dong X.; Xiao T., et al. PhI(OAc)2Mediated Synthesis of6(Trifluoromethyl)phenanthridines by Oxidative Cyclization of2Isocyanobiphenyls withCF3SiMe3under Metal-Free Conditions [J]. Org. Lett.,2013,15(18):4846-4849
    [13] Cheng Y.; Jiang H.; Zhang Y., et al. Isocyanide Insertion: De Novo Synthesis ofTrifluoromethylated Phenanthridine Derivatives [J]. Org. Lett.,2013,15(21):5520–5523
    [14] Jiang H.; Cheng Y.; Wang R., et al. Synthesis of6-Alkylated Phenanthridine DerivativesUsing Photoredox Neutral Somophilic Isocyanide Insertion [J]. Angew. Chem. Int. Ed.,2013,52(50):13289-13292
    [15] Leifert D.; Daniliuc C. G.; Studer A.6Aroylated Phenanthridines via Base PromotedHomolytic Aromatic Substitution (BHAS)[J]. Org. Lett.,2013,15(24):6286-6289
    [16] Zhang B.; Daniliuc C. G.; Studer A.6Phosphorylated Phenanthridines from2Isocyanobiphenyls via Radical C P and C C Bond Formation [J]. Org. Lett.,2014,16(1):250-253
    [17] Wang L.; Sha W.; Qiang D., et al. The Benzoyl Peroxide Promoted Dual C C BondFormation via Dual C H Bond Cleavage: Phenanthridinylation of Ether by Isocyanide [J].Org. Lett.,2014,16(8):2088–2091
    [18] Xia Z.; Huang J.; He, Y. Arylative Cyclization of2Isocyanobiphenyls with Anilines:One-Pot Synthesis of6Arylphenanthridines via Competitive Reaction Pathways [J]. Org.Lett.,2014,16(9):2546–2549
    [19] Zhang B.; Studer A.2Trifluoromethylated Indoles via Radical Trifl uoromethylation ofIsonitriles [J]. Org. Lett.,2014,16(4):1216–1219
    [20] Zhu T; Wang S.; Tao Y., et al. Co(acac)2/O2-Mediated Oxidative Isocyanide Insertionwith2-Aryl Anilines: Efficient Synthesis of6-Amino Phenanthridine Derivatives [J]. Org.Lett.,2014,16(4):1260-1263
    [21] Basavanag U. M. V.; Santos A. D.; Kaim L. E., et al. Three-Component Metal-FreeArylation of Isocyanides [J]. Angew. Chem. Int. Ed.,2013,52(28):7194-7197
    [22] Xia Z.; Zhu Q. A Transition-Metal-Free Synthesis of Arylcarboxyamides from ArylDiazonium Salts and Isocyanides [J]. Org. Lett.,2013,15(16):4110–4113
    [23] Kaicharla T.; Thangaraj M.; Biju A. T. Practical Synthesis of Phthalimides andBenzamides by a Multicomponent Reaction Involving Arynes, Isocyanides, and CO2/H2O [J].Org. Lett.,2014,16(6):1728-1731
    [24] Kosugi M.; Ogata T.; Tamura H., et al. Palladium catalyzed iminocarbonylation ofbromobenzene with isocyanide and organotin compounds [J]. Chem. Lett.,1986,1986(7):1197-1200
    [25] Saluste C. G.; Whiteby R. J.; Furder M. A Palladium-Catalyzed Synthesis of Amidinesfrom Aryl Halides [J]. Angew. Chem. Int. Ed.,2000,39(22):4156-4158
    [26] Saluste C. G.; Whiteby R. J.; Furder M. Palladium-catalysed synthesis of imidates,thioimidates and amidines from aryl halides [J]. Tetrahedron Lett.,2001,42(35):6191-6194
    [27] Whiteby R. J.; Saluste C. G.; Furder M. Synthesis of-iminoimidates by palladiumcatalysed double isonitrile insertion [J]. Org. Biomol. Chem.,2004,2(14):1974-1976
    [28] Saluste C. G.; Crumpler S.; Furder M., et al. Palladium catalysed synthesis of cyclicamidines and imidates [J]. Tetrahedron Lett.,2004,45(38):6995–6996
    [29] Tetala K. K. R.; Whitby R. J.; Light M. E., et al. Palladium-catalysed three componentsynthesis of, β-unsaturated amidines and imidates [J]. Tetrahedron Lett.,2004,45(38):6991–6994
    [30] Curran D. P.; Du W. Palladium-Promoted Cascade Reactions of Isonitriles and6-Iodo-N-propargylpyridones: Synthesis of Mappicines, Camptothecins, andHomocamptothecins [J]. Org. Lett.,2002,4(19):3215-3218
    [31] Onitsuka K.; Suzuki S.; Takahashi S. A novel route to2,3-disubstituted indoles viapalladium-catalyzed three-component coupling of aryl iodide, o-alkenylphenyl isocyanide andamine [J]. Tetrahedron Lett.,2002,43(35):6197–6199
    [32] Tobisu M.; Imoto S.; Ito S., et al. Palladium-Catalyzed Cyclocoupling of2-Halobiarylswith Isocyanides via the Cleavage of Carbon-Hydrogen Bonds [J]. J. Org. Chem.,2010,75(14):4835–4840
    [33] Nanjo T.; Tsukano C.; Takemoto Y. Palladium-Catalyzed Cascade Process Consisting ofIsocyanide Insertion and Benzylic C(sp3)-H Activation: Concise Synthesis of IndoleDerivatives [J]. Org. Lett.,2012,14(16):4270–4273
    [34] Boissarie P. J.; Hamilton Z. E.; Lang S., et al. A Powerful Palladium-CatalyzedMulticomponent Process for the Preparation of Oxazolines and Benzoxazole [J]. Org. Lett.,2011,13(23):6256–6259
    [35] Bochatay V. N.; Boissarie P. J.; Murphy J. A., et al. Mechanistic Exploration of thePalladium-catalyzed Process for the Synthesis of Benzoxazoles and Benzothiazoles [J]. J. Org.Lett.,2013,78(4):1471–1477
    [36] Baelen G. V.; Kuijer S.; Ry ek L., et al. Synthesis of4-Aminoquinazolines byPalladium-Catalyzed Intramolecular Imidoylation of N-(2-Bromoaryl)amidines [J]. Chem. Eur.J.,2011,17(52):15039-15044
    [37] Vlaar T.; Ruijter E.; Znabet A., et al. Palladium-Catalyzed Synthesis of4-Aminophthalazin-1(2H)-ones by Isocyanide Insertion [J]. Org. Lett.,2011,13(24):6496–6499
    [38] Qiu G.; Liu G.; Pu S., et al. A palladium-catalyzed three-component reaction for thepreparation of quinazolin-4(3H)-imines [J]. Chem. Commun.,2012,48(23):2903–2905
    [39] Qiu G.; Lu Y.; Wu J. A concise synthesis of4-imino-3,4-dihydroquinazolin-2-ylphos-phonates via a palladium-catalyzed reaction of carbodiimide, isocyanide, and phosphite [J].Org. Biomol. Chem.,2013,11(5):798-802
    [40] Qiu G.; He Y.; Wu J. Preparation of quinazolino[3,2-]quinazolines via apalladium-catalyzed three-component reaction of carbodiimide, isocyanide, and amine [J].Chem. Commun.,2012,48(32):3836-3838
    [41] Tyagi V.; Khan S.; Giri A, et al. A Ligand-Free Pd-Catalyzed Cascade Reaction: AnAccess to the Highly Diverse Isoquinolin-1(2H)-one Derivatives via Isocyanide andUgi-MCR Synthesized Amide Precursors [J]. Org. Lett.,2012,14(12):3126–3129
    [42] Yang A.; Jiang R; Khorev O., et al. Palladium-Catalyzed Route to Three-Component,One-Pot Sequential Synthesis of Functionalized Cyclazines:2,2a1,4-Triazacyclopenta[cd]ind-enes [J]. Adv. Synth. Catal.,2013,355(10):1984-1988
    [43] Che C.; Yang B.; Jiang X., et al. Syntheses of Fused Tetracyclic Quinolines viaUgi-Variant MCR and Pd-Catalyzed Bis-annulation [J]. J. Org. Chem.,2014,79(1):436–440
    [44] Wang Y.; Wang H.; Peng J., et al. Palladium-Catalyzed Intramolecular C(sp2)-HAmidination by Isonitrile Insertion Provides Direct Access to4-Aminoquinazolines fromN-Arylamidines [J]. Org. Lett.,2011,13(17):4604-4607
    [45] Peng J.; Liu, L.; Hu Z., et al. Direct carboxamidation of indoles by palladium-catalyzedC-H activation and isocyanide insertion [J]. Chem. Commun.,2012,48(31):3772-3774
    [46] Wang Y.; Zhu Q. Palladium(II)-Catalyzed Cycloamidination via C(sp2)-H Activation andIsocyanide Insertion [J]. Adv. Synth. Catal.,2012,354(10):1902-1908
    [47] Xu S.; Huang, X; Hong X., et al. Palladium-Assisted Regioselective C-H Cyanation ofHeteroarenes Using Isonitrile as Cyanide Source [J]. Org. Lett.,2012,14(17):4614-4617
    [48] Peng J.; Zhao J.; Hu Z., et al. Palladium-Catalyzed C(sp2)-H Cyanation Using TertiaryAmine Derived Isocyanide as a Cyano Source [J]. Org. Lett.,2012,14(18):4966-4969
    [49] Jiang H.; Gao H.; Liu B., et al. Synthesis of6-aminophenanthridines viapalladium-catalyzed insertion of isocyanides into N-sulfonyl-2-aminobiaryls [J]. RSC Adv.,2014,4(33):17222-17225
    [50] Shibata T.; Yamashita K.; T Katayama E., et al. Ir and Rh complex-catalyzedintramolecular alkyne–alkyne couplings with carbon monoxide and isocyanides [J].Tetrahedron,2002,58:8661-8667
    [51] Zhu C.; Xie W.; Falck J. R. Rhodium-catalyzed annulation of N-benzoylsulfonamidewith isocyanide through C-H activation [J]. Chem. Eur. J.,2011,17(45):12591-12595
    [52] Hong X.; Wang H.; Qian G., etal. Rhodium-Catalyzed Direct C H Bond Cyanation ofArenes with Isocyanide [J]. J. Org. Chem.,2014,79(7):3228-3237
    [53] Brioche J.; Masson G.; Zhu J., et al. Passerini Three-Component Reaction of Alcoholsunder Catalytic AerobicOxidative Conditions [J]. Org. Lett.,2010,12(7):1432-1435
    [54] Tobisu M.; Fujihara H.; Koh K., et al. Synthesis of2-Boryl-and Silylindoles byCopper-Catalyzed Borylative and Silylative Cyclization of2-Alkenylaryl Isocyanides [J]. J.Org. Chem.,2010,75(14):4841-4847
    [55] Kamijo S.; Kanazawa C.; Yamamoto Y. Copper-or Phosphine-Catalyzed Reaction ofAlkynes with Isocyanides Regioselective Synthesis of Substituted Pyrroles Controlled by theCatalyst [J]. J. Am. Chem. Soc.,2005,127(25):9260-9266
    [56] Kanazawa C.; Kamijo S.; Yamamoto Y. Synthesis of Imidazoles through theCopper-Catalyzed Cross-Cycloaddition between Two Different Isocyanides [J]. J. Am. Chem.Soc.,2006,128(33):10662-10663
    [57] Lygin A. V.; Larionov O. V.; Korotkov V. S., et al. Oligosubstituted Pyrroles Directlyfrom Substituted Methyl Isocyanides and Acetylenes [J]. Chem. Eur. J.,2009,15(1):227-236
    [58] Zhou F.; Liu J.; Ding K, et al. Copper-Catalyzed Tandem Reaction of Isocyanides withN-(2-Haloaryl)propiolamides for the Synthesis of Pyrrolo[3,2-c]quinolin-4-ones [J]. J. Org.Chem.,2011,76(13):5346–5353
    [59] Chen Z.; Yu X.; Su M., et al. Multicatalytic Tandem Reactions of2-Alkynylbenzaldoximes with Isocyanides [J]. Adv. Synth. Catal.,2009,351(16):2702-2708
    [60] Zheng D.; Li S.; Wu, J. An Unexpected Silver Triflate Catalyzed Reaction of2-Alkynylbenzaldehyde with2-Isocyanoacetate [J]. Org. Lett.,2012,14(11):22655-2657
    [61] Zheng D.; Li S.; Wu J. Generation of3-(1H-pyrrol-3-yl)-1H-inden-1-ones via a tandemreaction of1-(2-alkynylphenyl)-2-enone,2-isocyanoacetate, and water [J]. Chem Commun.,2012,48(68):8568-8570
    [62] Gao M.; He C.; Cheng H., et al. Synthesis of Pyrroles by Click Reaction:Silver-Catalyzed Cycloaddition of Terminal Alkynes with Isocyanides [J]. Angew. Chem. Int.Ed.,2013,125(27):7096-7099
    [63] Liu J.; Fang Z.; Zhang Q., et al. Silver-Catalyzed Isocyanide-Alkyne Cycloaddition: AGeneral and Practical Method to Oligosubstituted Pyrroles [J]. Angew. Chem. Int. Ed.,2013,125(27):7091-7095
    [64] Majumder S.; Gipson K.; Odom, A. A Multicomponent Coupling Sequence for DirectAccess to Substituted Quinolines [J]. Org. Lett.,2009,11(20):4720-4723
    [65] Dissanayake A.; Odom A. Single-step synthesis of pyrazoles using titanium catalysis [J].Chem. Commun.,2012,48(3):440–442
    [66] Dissanayake A. A.; Staples R. J.; Odom A. L. Titanium-Catalyzed, One-Pot Synthesis of2-Amino-3-cyano-pyridines [J]. Adv. Synth. Catal.,2014, DOI:10.1002/adsc.201301046
    [67](a) Humphrey J. M.; Chamberlin A. R. Chemical Synthesis of Natural Product Peptides:Coupling Methods for the Incorporation of Noncoded Amino Acids into Peptides [J]. Chem.Rev.1997,97(6):2243-2266;(b) Hudson D. Methodological Implications of SimultaneousSolid-Phase Peptide Synthesis.1. Comparison of Different Coupling Procedures [J]. J. Org.Chem.,1988,53(3):617-624;(c) R nn R.; Lampa A., Peterson S. D., et al. Hepatitis C virusNS3protease inhibitors comprising a novel aromatic P1moiety [J]. Bioorg. Med. Chem.,2008,16(6):2955–2967
    [68](a) Montalbetti C. A. G. N.; Falque V. Amide bond formation and peptide coupling [J].Tetrahedron,2005,61(46):10827-10852;(b) Vaidyanathan R.; Kalthod V. G.; Ngo D. P., et al.Amidations Using N, N'-Carbonyldiimidazole: Remarkable Rate Enhancement by CarbonDioxide [J]. J. Org. Chem.,2004,69(7):2565-2568;(c) Shendage D. M.; Fr hlich R.; HaufeG. Highly Efficient Stereoconservative Amidation and Deamidation of-Amino Acids [J].Org. Lett.,2004,6(21):3675-3678
    [69](a) Gunanathan C.; Ben-David Y.; Milstein D. Direct Synthesis of Amides from Alcoholsand Amines with Liberation of H2[J]. Science,2007,317(5839):790-792;(b) Watson A. J. A.;Maxwell A. C.; Williams J. M. J. Ruthenium-Catalyzed Oxidation of Alcohols into Amides [J].Org. Lett.,2009,11(12):2667-2670;(c) Muthaia, S.; Ghosh S. C.; Jee J., et al. Direct AmideSynthesis from Either Alcohols or Aldehydes with Amines: Activity of Ru(II) Hydride andRu(0) Complexes [J]. J. Org. Chem.,2010,75(9):3002-3006;(d) Nordstr m L. U.; Vogt H.;Madsen R. Amide Synthesis from Alcohols and Amines by the Extrusion of Dihydrogen [J]. J.Am. Chem. Soc.,2008,130(52):17672-17673;(e) Zhang Y.; Chen C.; Ghosh S., et al.Well-Defined N-Heterocyclic Carbene Based Ruthenium Catalysts for Direct AmideSynthesis from Alcohols and Amines [J]. Organometallics,2010,29(6):1374-1378
    [70](a) Zweifel T., Naubron J., Grützmache H., et al. Catalyzed Dehydrogenative Coupling ofPrimary Alcohols with Water, Methanol, or Amines [J]. Angew. Chem. Int. Ed.,2008,48(3):559-563;(b) Fujita K., Takahashi Y., Owaki M., et al. Synthesis of Five-, Six-, andSeven-Membered Ring Lactams by Cp*Rh Complex-Catalyzed OxidativeN-Heterocyclization of Amino Alcohols. Org. Lett.,2004,6(16),2785-2788
    [71] Shimizu K.; Ohshima K.; Satsum, A. Direct Dehydrogenative Amide Synthesis fromAlcohols and Amines Catalyzed by γ-Alumina Supported Silver Cluster [J]. Chem. Eur. J.,2009,15(39):9977-9980.
    [72] Schoenberg A.; Heck R. F. Palladium-Catalyzed Amidation of Aryl, Heterocyclic, andVinylic Halides [J]. J. Org. Chem.,1974,39(23):3327-3331
    [73](a) Cao H.; McNamee L.; Alper H. Syntheses of Substituted3-Methyleneisoindolin-1-ones by a Palladium-Catalyzed Sonogashira Coupling-Carbonylation-HydroaminationSequence in Phosphonium Salt-Based Ionic liquids [J].2008,10(22):5281-5284;(b)Brennführer A.; Neumann H.; Beller M. Palladium-Catalyzed Carbonylation Reactions ofAryl Halides and Related Compounds [J]. Angew. Chem. Int. Ed.,2009,48(23):4114-4133;(c)Martinelli J. R.; Clark T. P.; Watson, D. A., et al. Palladium-Catalyzed Aminocarbonylation ofAryl Chlorides at Atmospheric Pressure: The Dual Role of Sodium Phenoxide [J]. Angew.Chem. Int. Ed.,2007,46(44):8460-8463;(d) Orito K.; Miyazawa M.; Tokuda M., et al.Pd(OAc)2-Catalyzed Carbonylation of Amines [J]. J. Org. Chem.,2006,71(16):5951-5958;(e) Salvadori J.; Balducci E.; Zaza S., et al. Microwave-Assisted Carbonylation andCyclocarbonylation of Aryl Iodides under Ligand Free Heterogeneous Catalysis [J]. J. Org.Chem.,2010,75(6):1841-1847;(f) Martinelli J. R.; Freckmann D. M. M.; Buchwald S. L.Convenient Method for the Preparation of W einreb Amides via Pd-CatalyzedAminocarbonylation of Aryl Bromides at Atmospheric Pressure [J]. Org. Lett.,2006,8(21):4843-4846;(g) Barnard C. F. J. Palladium-Catalyzed CarbonylationsA Reaction Come of Age[J]. Organometallics,2008,27(21):5402–5422;(h) Kamal K., Alexander Z., Michalik D., etal. Palladium-Catalyzed Carbonylation of Haloindoles: No Need for Protecting Groups [J].Org. Lett.,2004,6(1):7-10
    [74](a) Nakamura I.; Yamamoto Y. Transition-Metal-Catalyzed Reactions in HeterocyclicSynthesis [J]. Chem. Rev.,2004,104(5):2127-2198;(b) Zeni G.; Larock R. C. Synthesis ofHeterocycles via Palladium π-Olefin and π-Alkyne Chemistry [J]. Chem. Rev.,2004,104(5),2285-2309;(c) Yin Y.; Ma W.; Chai, Z., et al. Et2Zn-Catalyzed IntramolecularHydroamination of Alkynyl Sulfonamides and the Related Tandem Cyclization/AdditionReaction [J]. J. Org. Chem.,2007,72(15):5731-5736;(d) Tang B.; Song R.; Wu C., et al.Copper-Catalyzed Intramolecular C-H Oxidation/Acylation of Formyl-N-arylformamidesLeading to Indoline-2,3-diones [J]. J. Am. Chem. Soc.,2010,132(26):8900–8902;(e) Qiu J.;Zhang X.; Tang R., et al. Iron-Catalyzed Tandem Reactions of2-Halobenzenamines withIsothiocyanates Leading to2-Aminobenzothiazoles [J]. Adv. Synth. Catal.,2009,351(14-15):2319-2323;(f) Wu T.; Yin G.; Liu G. Palladium-Catalyzed Intramolecular Aminofluorinationof Unactivated Alkenes [J]. J. Am. Chem. Soc.,2009,131(45):16354-16355;(g) Mu X.; WuT.; Wang H., et al. Palladium-Catalyzed Oxidative Aryltrifluoromethylation of ActivatedAlkenes at Room Temperature [J]. J. Am. Chem. Soc.,2012,134(2):878-881;(h) Chen M.;Weng Y.; Guo M., et al. Nickel-Catalyzed Reductive Cyclization of Unactivated1,6-Enynesin the Presence of Organozinc Reagents [J]. Angew. Chem. Int. Ed.,2008,120(12):2311-2314;(i) Patil N. T.; Yamamoto Y. Coinage Metal-Assisted Synthesis of Heterocycles [J].Chem. Rev.,2008,108(8):3395-3442
    [75] Miura T.; Nishida Y.; Morimoto M., et al. Palladium-Catalyzed Denitrogenation Reactionof1,2,3-Benzotriazin-4(3H)-ones Incorporating Isocyanides [J]. Org. Lett.,2011,13(6):1429-1431
    [76](a) Luzyanin K. V.; Kukushkin V. Y.; Kopylovich M. N., et al. Novel and Mild Route toPhthalocyanines and3-Iminoisoindolin-1-ones via N,N-Diethylhydroxylamine-PromotedConversion of Phthalonitriles and a Dramatic Solvent-Dependence of the Reaction [J]. Adv.Synth. Catal.,2008,350(1):135-142;(b) Luzyanin K. V.; Pombeiro A. J. L.; Kukushkin V. Y.,et al. Coupling between3-Iminoisoindolin-1-ones and Complexed Isonitriles as aMetal-Mediated Route to a Novel Type of Palladium and Platinum Iminocarbene Species [J].Organometallics,2008,27(20):5379-5389;(c) Scherbakow S.; Namyslo J. C.; Schmidt A., etal. Syntheses of Amidines from Thioamides, Mediated by the N-Heterocyclic CarbeneIndazol-3-ylidene [J]. Synlett,2009,12,1964-1968;(d) Wang J.; He Z.; Chen X., et al.Efficient access to polysubstituted amidines, benzimidazoles and pyrimidines from amides [J].Tetrahedron,2010,66(6):1208-1214
    [77] For selected examples of syntheses of phenanthridins and dibenzooxazepins, see:(a)Tsvelikhovsky D.; Buchwald S. L. Concise Palladium-Catalyzed Synthesis of Dibenzodiazepines and Structural Analogues [J]. J. Am. Chem. Soc.,2011,133(36):14228-14231;(b) LiuY.; Song R.; Wu C.; et al. Palladium-Catalyzed Oxidative C-C Bond Cleavage Cyclization ofBiaryl-2-amines with Alkenes Involving C-H Olefination and Carboamination [J]. Adv. Synth.Catal.,2012,354(2-3):347-353;(c) Albert J.; D’Andrea L.; Granell J., et al. Reactivity ofcyclopalladated compounds derived from biphenyl-2-ylamine towards carbon monoxide,t-butyl isocyanide and alkynes [J]. J. Organomet. Chem.,2007,692(22):4895-4902;(d) GugF.; Bach S.; Blondel, M., et al. A single step synthesis of6-aminophenanthridines fromanilines and2-chlorobenzonitriles [J]. Tetrahedron,2004,60(21):4705-4708
    [78] Brand J. P.; Waser J. Electrophilic alkynylation: the dark side of acetylene chemistry [J].Chem. Soc. Rev.,2012,41(11):4165-4179
    [79] Chen Z.; Li J.; Jiang, H., et al. Silver-catalyzed difunctionalization of terminal alkynes:highly regio-and stereoselective synthesis of (Z)-β-haloenol acetates [J]. Org. Lett.,2010,12(14):3262-3265
    [80] Chen Z.; Huang G.; Jiang H., et al. Synthesis of2,5-disubstituted3-iodofurans viapalladium-catalyzed coupling and iodocyclization of terminal alkynes [J]. J. Org. Chem.,2011,76(4):1134-1139
    [81] Chen Z.; Jiang H.; Li Y., et al. Highly efficient two-step synthesis of(Z)-2-halo-1-iodoalkenes from terminal alkynes [J]. Chem. Commom.2010,46(42):8049-8051
    [82] Li Y.; Liu X.; Ma D., et al. Silver-Assisted Difunctionalization of Terminal Alkynes:Highly Regio-and Stereoselective Synthesis of Bromofluoroalkenes [J]. Adv. Synth. Catal.,2012,354(14-15):2683-2688
    [83] Li Y.; Zhao J.; Chen H., et al. Pd-catalyzed and CsF-promoted reaction of bromoalkyneswith isocyanides: regioselective synthesis of substituted5-iminopyrrolones [J]. Chem.Commun.,2012,48(29):3545-3547
    [84] Jiang H.; Yin M.; Li Y. et al. An efficient synthesis of2,5-diimino-furans viaPd-catalyzed cyclization of bromoacrylamides and isocyanides [J]. Chem. Commun.,2014,50(16):2037-2039
    [85] Xu H.; Gu S.; Chen W., et al. TBAF-Mediated Reactions of1,1-Dibromo-1-alkenes withThiols and Amines and Regioselective Synthesis of1,2-Heterodisubstituted Alkenes [J]. J.Org. Chem.,2011,76(8):2448-2458
    [86] Wang S.; Li P.; Yu L., et al. Sequential and One-Pot Reactions of Phenols withBromoalkynes for the Synthesis of (Z)-2-Bromovinyl Phenyl Ethers and Benzo[b]furans [J].Org. Lett.,2011,13(22):5968-5971
    [87] For selected references:(a) Martins M. A. P.; Frizzo C. P.; Moreira D. N., et al.Solvent-Free Heterocyclic Synthesis [J]. Chem. Rev.2009,109(9):4140-4182;(b)Ueda S.;Nagasawa H. Synthesis of2-Arylbenzoxazoles by Copper-Catalyzed IntramolecularOxidative C-O Coupling of Benzanilides [J]. Angew. Chem. Int. Ed.,2008,47(34):6411-6413;(c) Wertz S.; Kodama S.; Studer A. Amination of Benzoxazoles and1,3,4-Oxadiazoles Using2,2,6,6-Tetramethylpiperidine-N-oxoammonium Tetrafluoroborate as an Organic Oxidant [J].Angew. Chem. Int. Ed.,2011,50(48):11511-11515;(d) Han B.; Yang X.; Wang C., et al.CuCl/DABCO/4-HO-TEMPO-Catalyzed Aerobic Oxidative Synthesis of2-SubstitutedQuinazolines and4H-3,1-Benzoxazines [J]. J. Org. Chem.,2012,77(2):1136-1142;(e) IqbalJ.; Tangellamudi N. D.; Dulla B., et al. Sequential C-N and C-O Bond Formation in a SinglePot: Synthesis of2H-Benzo[b][1,4]oxazines from2,5-Dihydroxybenzaldehyde and Aminoacid Precursors [J]. Org. Lett.,2012,14(2):552-555;(f) Xiong T; Li Y.; Bi X., et al.Copper-Catalyzed Dehydrogenative Cross-Coupling Reactions of N-para-Tolylamidesthrough Successive C-H Activation: Synthesis of4H-3,1-Benzoxazines [J]. Angew. Chem. Int.Ed.,2011,50(31):7140-7143
    [88](a) Potashman M. H.; Bready J.; Coxon A., et al. Design, Synthesis, and Evaluation ofOrally Active Benzimidazoles and Benzoxazoles as Vascular Endothelial Growth Factor-2Receptor Tyrosine Kinase Inhibitors [J]. J. Med. Chem.,2007,50(18):4351-4373;(b)Harmange J.; Weiss M. M.; Germain J., et al. Naphthamides as Novel and Potent VascularEndothelial Growth Factor Receptor Tyrosine Kinase Inhibitors: Design, Synthesis, andEvaluation [J]. J. Med. Chem.,2008,51(6):1649-1667
    [89] Liu K. G.; Lo J. R.; Comery T. A., et al. Identification of a series of benzoxazoles aspotent5-HT6ligands [J]. Bioorg. Med. Chem. Lett.,2009,19(4):1115-1117
    [90] Cox C. D.; Breslin M. J.; Whitman D. B., et al. Discovery of the dual orexin receptorantagonist [(7R)-4-(5-chloro-1,3-benzoxazol-2-yl)-7-methyl-1,4-diazepan-1-yl][5-methyl-2-(2H-1,2,3-triazol-2-yl)phenyl]methanone (MK-4305) for the treatment of insomnia [J]. J.Med. Chem.,2010,53(14):5320-5332
    [91] Nguyen N.; Fakra E.; Pradel V., et al. Efficacy of etifoxine compared to lorazepammonotherapy in the treatment of patients with adjustment disorders with anxiety: adouble-blind controlled study in general practice [J]. Hum Psychopharmacol.,2006,21(3):139-149
    [92](a) Omori N.; Kouyama N.; Yukimasa A., et al. Hit to lead SAR study on benzoxazolederivatives for an NPYY5antagonist [J]. Biooorg. Med. Chem. Lett.,2012,22(5):2020-2023;(b) Katz L.; Cohen M. Benzoxazole derivatives.2-Mercapto benzoxazoles [J]. J. Org. Chem.,1954,19(5):758-766;(c) Cioffi C. L.; Lansing J. J.; Yüksel H. Synthesis of2-Aminobenzoxazoles Using Tetramethyl Orthocarbonate or1,1-Dichlorodiphenoxymethane[J]. J. Org. Chem.,2010,75(22):7942–7945
    [93] Quinton J.; Kolodych S.; Chaumonet M., et al. Reaction Discovery by Using a SandwichImmunoassay [J]. Angew. Chem. Int. Ed.,2012,51(25):6144-6148
    [94] For selected references:(a) Wendlandt A. E.; Suess A. M.; Stahl S. S. Copper-CatalyzedAerobic Oxidative C-H Functionalizations: Trends and Mechanistic Insights [J]. Angew.Chem. Int. Ed.,2011,50(47):11062-11087;(b) Kim J. Y.; Cho S. H.; Joseph J., et al. Cobalt-and Manganese-Catalyzed Direct Amination of Azoles under Mild Reaction Conditions andthe Mechanistic Details [J]. Angew. Chem. Int. Ed.,2010,49(51):9899-9903;(c) Lamani M.;Prabhu K. R. Iodine-Catalyzed Amination of Benzoxazoles: A Metal-Free Route to2-Aminobenzoxazoles under Mild Conditions [J]. J. Org. Chem.,2011,76(19):7938-7944;(d)Froehr T.; Sindlinger C. P.; Kloeckner U., et al. A Metal-Free A mination of Benzoxazoles-The First Example of an Iodide-Catalyzed Oxidative Amination of Heteroarenes [J]. Org.Lett.,2011,13(14):3754-3757;(e) Wang J.; Hou J.; Wen J., et al. Iron-catalyzed directamination of azoles using formamides or amines as nitrogen sources in air [J]. Chem.Commun.,2011,47(12):3652-3654;(f) Guo S.; Qian B.; Xie Y., et al. Copper-CatalyzedOxidative Amination of Benzoxazoles via C-H and C-N Bond Activation: A New Strategy forUsing Tertiary Amines as Nitrogen Group Sources [J]. Org. Lett.,2011,13(3):522-525
    [95](a) Cho S. H.; Kim Ji Y.; Lee S. Y., et al. Silver-Mediated Direct Amination ofBenzoxazoles: Tuning the Amino Group Source from Formamides to Parent Amines [J].Angew. Chem. Int. Ed.,2009,48(48):9127-9130;(b) Kawano T.; Hirano K.; Satoh T., et al. ANew Entry of Amination Reagents for Heteroaromatic C-H Bonds: Copper-Catalyzed DirectAmination of Azoles with Chloroamines at Room Temperature [J]. J. Am. Chem. Soc.,2010,132(20):6900-6901
    [96] Hwang J. Y.; Gong Y. Solid-Phase Synthesis of the2-Aminobenzoxazole Library UsingThioether Linkage as the Safety-Catch Linker [J]. J. Comb. Chem.,2006,8(3):297-303
    [97] Vlaar T.; Cioc R. C.; Mampuys P., et al. Sustainable Synthesis of Diverse PrivilegedHeterocycles by Palladium-Catalyzed Aerobic Oxidative Isocyanide Insertion [J]. Angew.Chem. Int. Ed.,2012,51(52):13058-13061
    [98] Zhu T.; Wang, S.; Wang, G., et al. Cobalt-Catalyzed Oxidative Isocyanide Insertion toAmine-Based Bisnucleophiles: Diverse Synthesis of Substituted2-Aminobenzimidazoles,2-Aminobenzothiazoles, and2-Aminobenzoxazoles [J]. Chem. Eur. J.,2013,19(19):5850-5853
    [99] Vlaar T.; Orru R. V. A.; Maes B. U. W., et al. Palladium-Catalyzed Synthesis of2-Aminobenzoxazinones by Aerobic Oxidative Coupling of Anthranilic Acids andIsocyanides [J]. J. Org. Chem.,2013,78(20):10469-10475
    [100] Vlaar T.; Bensch L.; Kraakman J., et al. Synthesis of Diverse Azolo[c]quinazolines byPalladium(II)-Catalyzed Aerobic Oxidative Insertion of Isocyanides [J]. Adv. Synth. Catal.,2014,356(6):1205-1209
    [101] Fang T.; Tan Q.; Ding Z., et al. Pd-Catalyzed Oxidative Annulation of Hydrazides withIsocyanides: Synthesis of2-Amino-1,3,4-oxadiazoles [J]. Org. Lett.,2014,16(9):2342-2345
    [102] Liu Q.; Li G.; He J., et al. Palladium-Catalyzed Aerobic Oxidative Carbonylation ofArylboronate Esters under Mild Conditions [J]. Angew. Chem. Int. Ed.,2010,49(19):3371-3374
    [103] The2,3-dihydrobenzoxazoles were oxidized to benzoxazoles; for selected references,see:(a) Kawashita Y.; Nakamichi N.; Kawabata H., et al. Direct and Practical Synthesis of2-Arylbenzoxazoles Promoted by Activated Carbon [J]. Org. Lett.,2003,5(20):3713-3715;(b)Chen Y.; Qian L.; Zhang W., et al. Angew. Chem. Int. Ed.,2008,47(48):9330-9333
    [104] Lu X. Handbook of Organopalladium Chemistry for Organic Synthesis [M]. NegishiE-I., Ed.; Wiley-Interscience: New York,2002,2,2267-2288
    [105] Li J.; Jiang H.; Feng A., et al. Novel stereospecific synthesis of3-chloroacrylate estersvia palladium-catalyzed carbonylation of terminal Acetylenes [J]. J. Org. Chem.,1999,64(16):5984-59872
    [106] Li J., Tang S., Xie Y. General and Selective Synthesis of (Z)-3-Haloacrylates viaPalladium-Catalyzed Carbonylation of Terminal Alkynes [J]. J. Org. Chem.,2005,70(2):477-479
    [107] Ma S., Wu B., Jiang X. PdCl2-Catalyzed Efficient Transformation of PropargylicAmines to (E)--Chloroalkylidene-β-lactams [J]. J. Org. Chem.,2005,70(7):2588-2591
    [108] Tang S.; Yu Q.; Peng P. Palladium-Catalyzed Carbonylative Annulation Reaction of2-(1-Alkynyl)benzenamines: Selective Synthesis of3-(Halomethylene)indolin-2-ones [J].Org. Lett.,2007,9(17):3413-3416
    [109] Huang J.; Zhou L.; Jiang H. Palladium-Catalyzed Allylation of Alkynes with AllylAlcohol in Aqueous Media: Highly Regio-and Stereoselective Synthesis of1,4-Dienes [J].Angew. Chem. Int. Ed.,2006,45(12):1945-1949
    [110] Zhou P., Huang L., Jiang H., et al. Highly Chemoselective Palladium-CatalyzedCross-Trimerization between Alkyne and Alkenes Leading to1,3,5-Trienes or1,2,4,5-Tetrasubstituted Benzenes with Dioxygen [J]. J. Org. Chem.,2010,75(23):8279-8282
    [111] Huang L.; Wang Q.; Liu X., et al. Switch of Selectivity in the Synthesis ofa-Methylene-g-Lactones: Palladium-Catalyzed Intermolecular Carboesterification of Alkeneswith Alkynes [J]. Angew. Chem. Int. Ed.,2012,51(23):5696-5700
    [112] Yoshinori K.; Futoshi S.; Naoko M., et al. Condensed heteroaromatic ring systems.XXIV. Palladium-catalyzed cyclization of2-substituted phenylacetylenes in the presence ofcarbon monoxide [J]. Tetrahedron,1994,50(41):11803-11812
    [113] Wang Q.; Huang L.; Wu X.; et al. Nucleopalladation Triggering the Oxidative HeckReaction: A General Strategy to Diverse β-Indole Ketones [J]. Org. Lett.,2013,15(23):5940-5943
    [114] Hu Z.; Liang D.; Zhao J., et al. Palladium-catalyzed cyclization ofo-alkynyltrifluoroacetanilides followed by isocyanide insertion: synthesis of2-substituted1H-indole-3-carboxamides [J]. Chem. Comm.,2012,48(59):7371-7373
    [115] Hu Z., Liang D., Zhao J., et al. Synthesis of1H-Indole-3-carboxamidines through aPalladium-Catalyzed Three-Component Reaction Involving Isocyanide Insertion as a KeyStep [J]. Adv. Synth. Catal.,2013,355(16):3290-3294
    [116] Qiu G., Chen C., Yao L., et al. An Efficient Route to3-Amidylindolesvia aPalladium-Catalyzed Tandem Reaction of2-Alkynylanilines with Isocyanides [J]. Adv. Synth.Catal.,2013,355(8):1579-1584
    [117](a) Andries K.; Verhasselt P.; Guillemont J., et al. A Diarylquinoline Drug Active on theATP Synthase of Mycobacterium tuberculosis [J]. Science,2005,307(5707):223-227;(b) BaxB. D.; Chan P. F.; Eggleston D. S., et al. Type IIA topoisomerase inhibition by a new class ofantibacterial agents [J]. Nature,2010,466(7309):935-940
    [118](a) Cheng Y.; Judd T. C.; Bartberger M. D., et al. From Fragment Screening to In VivoEfficacy: Optimization of a Series of2-Aminoquinolines as Potent Inhibitors of Beta-SiteAmyloid Precursor Protein Cleaving Enzyme1(BACE1)[J]. J. Med. Chem.,2011,54(16):5836-5857;(b) Takenaka N.; Chen J.; Captain B., et al. Helical chiral2-aminopyridinium ions:a new class of hydrogen bond donor catalysts [J]. J. Am. Chem. Soc.,2010,132(13):4536-4537;(c) He C.; Hao J.; Xu H., et al. Heteroaromatic imidazo[1,2-a]pyridines synthesisfrom C-H/N-H oxidative cross-coupling/cyclization [J]. Chem. Commun.,2012,48(90):11073-11075;(d) Inglis S. R.; Jones R. K.; Booker G. W., et al. Synthesis ofN-benzylated-2-aminoquinolines as ligands for the Tec SH3domain [J]. Bioorg. Med. Chem.Lett.,2006,16(2):387-390
    [119](a) Tomioka T.; Takahashi Y.; Maejima T. One-pot synthesis of2-aminoquinoline-basedalkaloids from acetonitrile [J]. Org. Biomol. Chem.,2012,10(26):5113-5118;(b) Yin J.;Xiang B.; Huffman M. A., et al. A General and Efficient2-Amination of Pyridines andQuinolines [J]. J. Org. Chem.,2007,72(12):4554-4557
    [120](a) Mei Z.; Wang L.; Lu W., et al. Synthesis and in Vitro Antimalarial Testing ofNeocryptolepines: SAR Study for Improved Activity by Introduction and Modifications ofSide Chains at C2and C11on Indolo[2,3-b]quinolines [J]. J. Med. Chem.,2013,56(4):1431-1442;(b) Sidoryk K.; witalska M.; Wietrzyk J., et al. Synthesis and BiologicalEvaluation of New Amino Acid and Dipeptide Derivatives of Neocryptolepine as AnticancerAgents [J]. J. Med. Chem.,2012,55(11):5077-5087
    [121](a) Ali S.; Li Y.; Anwar S., et al. One-Pot Access to Indolo[2,3-b]quinolines byElectrophile-Triggered Cross-Amination/Friedel Crafts Alkylation of Indoles with1-(2-Tosylaminophenyl)ketones [J]. J. Org. Chem.,2012,77(1),424-431;(b) Hostyn S.;Baelen G. V.; Lemière G. L. F., et al. Synthesis of-Carbolines Starting from2,3-Dichloropyridines and Substituted Anilines [J]. Adv. Synth. Catal.,2008,350(16):2653-2660;(c) Sundaram G. S. M.; Venkatesh C.; Kumar U. K. S., et al. A Concise FormalSynthesis of Alkaloid Cryptotackiene and Substituted6H-Indolo[2,3-b]quinolines [J]. J. Org.Chem.,2004,69(17):5760-5762;(d) Parvatkar P. T.; Parameswaran P. S.; Tilve S. G. AnExpeditious I2-Catalyzed Entry into6H-Indolo [2,3-b] quinoline System of Cryptotackieine[J]. J. Org. Chem.,2009,74(21):8369-8372;(e) Gupta S.; Kumar B.; Kundu B.Three-Component Tandem Reaction Involving Acid Chlorides, Terminal Alkynes, and2-Aminoindole Hydrochlorides: Synthesis of-Carboline Derivatives in Aqueous Conditionsvia Regioselective [3+3] Cyclocondensation [J]. J. Org. Chem.,2011,76(24):10154-10162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700