兔血浆SSAO的分离纯化及其酶动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:血浆中含有氨基脲敏感型胺氧化酶(semicarbazide-sensitive amine oxidase,SSAO)。本研究的目的是纯化兔血浆中的SSAO蛋白,并以甲胺为底物研究兔血浆中具有SSAO酶活性的蛋白组分的酶动力学参数。材料与方法:利用DEAE-琼脂糖FF凝胶柱层析分离兔血浆蛋白,测定各收集组分的SSAO酶活性;以甲胺为底物测定SSAO酶动力学参数。结果:从兔血浆蛋白中分离得到两个具有SSAO酶活性的蛋白组分A和B。以甲胺为底物,未处理的血浆SSAO的酶动力学参数Km=1.83±0.13 mmol/L,Vmax=0.12±0.003 nmol/min/mg。蛋白组分B的酶动力学参数Km值(2.05±0.43 mmol/L)小于蛋白组分A的Km值(3.14±0.63 mmol/L)。组分B的酶动力学参数Vmax值(1.46±0.10 nmol/min/mg)小于组分A的Vmax值(2.85±0.20 nmol/min/mg)。结论:兔血浆含有两种SSAO酶组分,均可以催化甲胺氧化脱氨生成甲醛;组分A、B动力学特征有所不同。
BACKGROUND AND AIM: To purify and investigate enzyme kinetic properties of rabbit plasma semicarbazide-sensitive amine oxidases (SSAO), using methylamine as substrate. MATERIALS AND METHODS: Formaldehyde, an oxidative deamination product of methylamine, was examined by HPLC analysis. Rabbit plasma SSAO was purified by chromatography with DEDE-sepharose FF (eluted with 30 mmol/L and then 100 mmol/L sodium phosphate buffers, all at pH 7.0), then assayed and Michaelis-Menten analyzed. RESULTS: Two kinds of SSAOs (labeled as peak A and peak B) had been obtained, which were catalytically active with methylamine as substrate. The kinetic parameters Km and Vmax of plasma were 1.83±0.13 mmol/L and 22.20±0.48 nmol/min/mg, respectively. The Km of peak B (2.05±0.43 mmol/L) was lower than that of peak A (3.14±0.63 mmol/L), the Vmax of the peak A (1.03±0.07 nmol/min/mg) was lower than that of peak B (2.52±0.17 nmol/min/mg). CONCLUSION: In rabbit plasma, there are two kinds of SSAO which can catalyze methylamine into formaldehyde and have significantly different kinetic parameters.
引文
[1] Lyles GA. Mammalian plasma and tissue-bound semicarbazide-sensitive amine oxidase: biochemical,pharmacological and toxicological aspects [J]. Int J Biochem Cell Biol, 1996, 28(3): 259-274.
    [2] Sullivan JO, Unzeta M, Healy J, et al. Semicarbazide-Sensitive Amine Oxidases: Enzymes with Quite a Lot to Do [J]. Neuro Toxicology, 2004, 25: 303–315.
    [3] Schwelberger HG. The origin of mammalian plasma amine oxidases [J]. J Neural Transm, 2007, 114(6): 757-762.
    [4] Obata T and Yamanaka Y. Evidence for existence of immobilization stress-inducible semicarbazide-sensitive amine oxidase inhibitor in rat brain cytosol [J]. Neurosci Lett., 2000, 296:58-60.
    [5] Coleman AA, Scaman CH, Kang YJ, et al. Stereochemical trends in copper amine oxidase reactions [J]. J Biol Chem, 1991, 266 (11): 6795-6800.
    [6] Precious E, Gunn CE, and Lyles GA. Deamination of methylamine by semicarbazide-sensitive amine oxidase in human umbilical artery and rat aorta [J]. Biochem Pharmacol, 1988, 37: 707-713.
    [7] Young SN, Davis BA and Gauthier S. Precursors and metabolites of phenylethylamine, m- and p-tyramine and tryptamine in human lumbar and cisternal cerebrospinal fluid. J Neurol Neurosurg Psychiatry, 1982, 45: 633–9.
    [8] Lizcano JM, Balsa D, Tipton KF and Unzeta M. The oxidation of dopamine by the semicarbazide-sensitive amine oxidase (SSAO) from rat vas deferens. Biochem Pharmacol, 1991a, 41: 1107–10.
    [9] Lizcano JM, Escrich E, Ribalta T, Muntane J and Unzeta M. Amine oxidase activities in rat breast cancers induced experimentally with 7,12-dimethylbenz(alpha)anthracene. Biochem Pharmacol, 1991b, 42: 263–9.
    [10]叶静,刘协和.氧化应激与Alzheimer病.自由基生命科学进展. 2001, 8: 87-91
    [11]丛杰,方允中.应激反应引起氧化损伤.自由基生命科学进展. 1993, 1: 28-34
    [12]任玲,今春明,邓玉林. SSAO酶活性的测定方法研究.生命科学仪器, 2004, 2(1): 28-31
    [13] Lizcano JM, Tipton KF, Unzeta M. Purification and characterization of membrane-bound semicarbazide-sensitive amine oxidase from bovine lung [J]. Biochem. J, 1998, 331: 69–78.
    [14] Coleman AA, Scaman CH, Kang YJ, et al. Stereochemical trends in copper amine oxidase reactions [J]. J Biol Chem, 1991, 266 (11): 6795-6800.
    [15] Falk MC, Staton AJ,Williams TJ. Heterogeneity of pig plasma amine oxidase molecular and catalytic properties of chromatographically isolated forms [J]. Biochem J, 1983, 22: 3746-3751.
    [16] Lizcano JM, Tipton KF, Unzeta M. Time-dependent activation of the SSAO from ox lung microsomes [J]. Biochem. J, 2000, 351: 789–794.
    [17] Hartman, CH and Klinman, JP. Structure-Function studies of substrate oxidation by bovine serum amineoxidase: relationship to cofactor structure and mechanism [J]. Biochem J, 1991, 30: 4605-4611.
    [18] Lizcano JM, Tipton KF, Unzeta M. Purification and characterization of membrane-bound semicarbazide-sensitive amine oxidase from bovine lung [J]. Biochem. J, 1998, 331: 69–78.
    [19] Li H, Luo WH, Lin JX, et al. Assay of plasma semicarbazide-sensitive amine oxidase and determination of its endogenous substrate methylamine by liquid chromatography [J]. J Chromatogr, B, 2004, 810(2): 277-282.
    [20] Lizcano JM, Tipton KF, Unzeta M. Purification and characterization of membrane-bound semicarbazide-sensitive amine oxidase (SSAO) from bovine lung. Biochem J. 1998, 331: 69–78.
    [21] Luo WH, Li H, Zhang Y, et al. Determination of formaldehyde in blood plasma by high-performance liquid chromatography with fluorescence detection [J]. J Chromatogr. B, 2001, 753(2): 253-257.
    [22] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal. Biochem., 1976, 72: 248-254
    [23]张美,李慧,罗红军.脂多糖诱导急性肺损伤过程中SSAO酶的活性变化[J].癌变畸变突变, 2007, 19(3): 223-226.
    [24] Vidrio H, Medina M. Hypotensive effect of hydroxylamine, an endogenous nitric oxide donor and SSAO inhibitor [J]. 2007, 114(6): 863-5.
    [25] Falk MC, Staton AJ,Williams TJ. Heterogeneity of pig plasma amine oxidase molecular and catalytic properties of chromatographically isolated forms [J]. Biochem J, 1983, 22: 3746-3751.
    [26] Lizcano JM, Tipton KF, Unzeta M. Time-dependent activation of the SSAO from ox lung microsomes [J]. Biochem. J, 2000, 351: 789–794.
    [1] Green H and Kehinde O. Sublines of mouse 3T3 cells that accumulate lipid. Cell 1974 1: 113-116.
    [2] Morris NJ, Ducret A, Aebersold R, Ross SA, Keller SR and Lienhard GE. Membrane amine oxidase cloning and identification as a major protein in the adipocyte plasma membrane. J Biol Chem. 1997, 272: 9388-9392
    [3] Enrique-Tarancon G, Marti L, Morin N, Lizcano JM, Unzeta M, Sevilla L, Camps M, Palacin M, Testar X, Carpene C, Zorzano A. Role of Semicarbazide-sensitive Amine Oxidase on Glucose Transport and GLUT4 Recruitment to the Cell Surface in Adipose Cells. J Biol Chem. 1998, 273: 8025-8032
    [4] Czech MP, Lawrence JC, Lynn J and WS. Evidence for the involvement of sulfhydryl oxidation in the regulation of fat cell hexose transport by insulin. In: (2nd ed.),Proc Natl Acad Sci USA 1974, 71: 4173–4177.
    [5] Czech MP, Lawrence JC Jr and Lynn WS. Evidence for electron transfer reactions involved in the Cu2+ -dependent thiol activation of fat cell glucose utilization. J Biol Chem. 1974, 249(4): 1001–1006.
    [6] Lawrence JC and Larner J. Activation of glycogen synthase in rat adipocytes by insulin and glucose involves increased glucose transport and phosphorylation. J Biol Chem. 1978, 253(7): 2104–2113.
    [7] May JM and de Haen C. The insulin-like effect of hydrogen peroxide on pathways of lipid synthesis in rat adipocytes. J Biol Chem 1979, 254: 9017-9021,
    [8] Livingston JN, Gurny PA and Lockwood DH. Insulin-like effects of polyamines in fat cells. Mediation by H2O2 formation. J Biol Chem. 1977, 252(2): 560–562.
    [9] Little SA and De Ha?n C. Effects of hydrogen peroxide on basal and hormone-stimulated lipolysis in perifused rat fat cells in relation to the mechanism of action of insulin. J Biol Chem, 1980, 255: 10888-10895.
    [10] Muchmore DB, Little SA and de Ha?n C. Counterregulatory control of intracellular hydrogen peroxide production by insulin and lipolytic hormones in isolated rat epididymal fat cells: a role of free fatty acids. Biochemistry. 1982, 21(16): 3886–3892.
    [11] Spiegelman BM and Green H. Cyclic AMP-mediated control of lipogenic enzyme synthesis during adipose differentiation of 3T3 cells. Cell 1981, 24: 503–510
    [12] Antras J, Lasnier F and Pairault J. Beta-adrenergic-cyclic AMP signalling pathway modulates cell function at the transcriptional level in 3T3-F442A adipocytes. Mol Cell Endocrinol, 1991, 82(2~3): 183―190
    [13] Dobson DE, Groves DL and Spiegelman BM. Nucleotide sequence and hormonal regulation of mouse glycerophosphate dehydrogenase mRNA during adipocyte and muscle cell differentiation. J Biol Chem. 1987, 262(4): 1804–1809.
    [14] Paulauskis JD and Sul HS.Cloning and expression of mouse fatty acid synthase and other specific mRNAs. Developmentaland hormonal regulation in 3T3-LI cells. J Biol Chem, 1988, 263: 7049—7054
    [15] Rubin CS, Hirsch A, Fung C, and Rosen OM. Development of hormone receptors and hormonal responsiveness in vitro. Insulin receptors and insulin sensitivity in the preadipocyte and adipocyte forms of 3T3-L1 cells. J Biol Chem 1978, 253: 7570-7578.
    [16] Wang HY, Watkins DC and MalbonCC. Antisense Oligodeoxynucleotides to Gs Protein alpha-subunit Sequence Accelerate Differentiation of Fibroblasts to Adipocytes. Nature 1992, 358: 334-337.
    [17] Russell TR and Ho RJ. Proc Natl Acad Sci U S A. 1976, 73: 4516–4520
    [18] Torti FM, Dieckmann B, Beutler B, Cerami A and Ringold GM. A macrophage factor inhibits adipocytegene expression: an in vitro model of cachexia. Science 1985, 229: 867–869
    [19] Hotamisligil GS, Shargill NS and Spiegelman BM. Adipose expression of TNF-α: Direct role in obesity-linked insulin resistance. Science, 1993, 259: 87-91
    [20] Hamann A, Benecke H, Le Marchand-Brustel Y, Susulic VS, Lowell BB andFlier JS. Characterization of insulin resistance and NIDDM in transgenic mice with reduced brown fat. Diabetes. 1995, 44(11): 1266–1273.
    [21] Hotamisligil GS, Arner P, Caro JF, Atkinson RL and Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor- in human obesity and insulin resistance. J Clin Invest. 1995, 95: 2409–2415.
    [22] Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R and Simsolo RB. The expression of tumor necrosis factor in human adipose tissue: regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 1995, 95: 2111-2119.
    [23] Enrique-Tarancon G, Marti L, Morin N, Lizcano JM, Unzeta M, Sevilla L, Camps M, Palacin M, Testar X, Carpene C, et al. Role of semicarbazide-sensitive amine oxidase on glucose transport and GLUT4 recruitment to the cell surface in adipose cells. J Biol Chem. 1998, 273: 8025–8032.
    [24] Marti L, Morin N, Enrique-Tarancon G, Prevot D, Lafontan M, Testar X, Zorzano A and Carpene C. Tyramine and vanadate synergistically stimulate glucose transport in rat adipocytes by amine oxidase-dependent generation of hydrogen peroxide. J Pharmacol Exp Ther. 1998, 285: 342–349.
    [25] Enrique-Tarancon G, Castan I, Morin N, Marti L, Abella A, Camps M, Casamitjana R, Palacin M, Testar X, Degerman E, et al. Substrates of semicarbazide-sensitive amine oxidase co-operate with vanadate to stimulate tyrosine phosphorylation of insulin-receptor-substrate proteins, phosphoinositide 3-kinase activity and GLUT4 translocation in adipose cells. Biochem J. 2000, 350: 171–180.
    [26] Lyles GA. Mammalian plasma and tissue-bound semicarbazide-sensitive amine oxidases: biochemical, pharmacological and toxicological aspects. Int J Biochem Cell Biol. 1996, 28: 259–274.
    [27] Lyles GA an Pino R. Properties and functions of tissue-bound semicarbazide-sensitive amine oxidases in isolated cell preparations and cell cultures. J Neural Transm Suppl. 1998, 52: 239–250
    [28] Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, Walsh K and Griendling KK. Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cell. J Biol Chem. 1999, 274: 22699–22704.
    [29] Fisher Y, Thomas J, Sevilla L, Munoz P, Becker C, Holman G, Kozk IJ, Palacin M, Tetstar X, Kammermeier H, et al. Insulin-induced recruitment of glucose transporter (GLUT4) and GLUT1 in isolated ratcardiac myocytes: evidence of the existence of different intracellular GLUT4 vesicle populations. J Biol Chem. 1997, 272:7085–7092.
    [30] Egert S, Nguyen N, Schwaiger M. Myocardial glucose transporter GLUT1: translocation induced by insulin and ischemia. J Mol Cell Cardiol. 1999, 31:1337–1344.
    [31] McClain DA, Paterson AJ, Roos MD, Wei X, Kudlow JE. Glucose and glucosamine regulate growth factor gene expression in vascular smooth muscle cells. Proc Natl Acad Sci U S A. 1992, 89:8150–8154.
    [32] Mazière C, Auclair M, Rose-Robert F, Leflon P, Mazière JC. Glucose- enriched medium enhances cell-mediated low density lipoprotein peroxi- dation. FEBS Lett. 1995, 363:277–279
    [33] Moldes M, Fève B, Pairault J. Molecular cloning of a major mRNA species in murine 3T3 adipocyte lineage. J Biol Chem. 1999, 14: 9515–9523.
    [34] Czech MP, Lawrence Jr JC and Lynn WS. Evidence for the involvement of sulfhydryl oxidation in the regulation of fat cell hexose transport by insulin. Pro Natl Acad Sci U.S.A. 1974, 71: 4173–417
    [35] May JM and de Haen C. The insulin-like eect of hydrogen peroxide on pathways of lipid synthesis in rat adipocytes. J Biol Chem. 1979, 254: 9017–9021
    [36] Little SA and de Haen C. Eects of hydrogen peroxide on basal and hormone-stimulated lipolysis in perifused rat fat cells in relation to the mechanism of action of insulin. J Biol Chem. 1980, 255: 10888–10895
    [37] Enrique-Tarancon G, Marti L, Morin N, Lizcano JM, Unzeta M, Sevilla L, Camps M, Palacin M, Testar X., Carpene C and Zorzano A. Role of semicarbazide-sensitive amine oxidase on glucose transport and GLUT4 recruitment to the cell surface in adipose cells. J Biol Chem. 1998, 273: 8025–8032
    [38] Enrique-Tarancon G, Castan I, Morin N, Marti L, Abella A, Camps M, Casamitjana R, Palacin M, Testar X, Degerman E, Carpene C and Zorzano A. Substrates of semicarbazide-sensitive amine oxidase cooperate with vanadate to stimulate tyrosine phosphorylation of insulin-receptor-substrate proteins, phosphoinositide 3-kinase activity and GLUT4 translocation in adipose cells. Biochem J. 2000, 350: 171–180
    [39] Marti L, Morin N, Enrique-Tarancon G, Prevot D, Lafontan M, Testar X, Zorzano A and Carpene C. Tyramine and vanadate synergistically stimulate glucose transport in rat adipocytes by amine-oxidase-dependent generation of hydrogen peroxide. J Pharmacol Exp Therap. 1998, 285: 342–349
    [40] Lyles GA. Mammalian plasma and tissue-bound semicarbazide-sensitive amine oxidases : biochemical, pharmacological and toxicological aspects. Int J Biochem Cell Biol. 1996, 28: 259–274
    [41] Yu PH. Oxidative stress deamination of aliphatic amines by rat aorta semicarbazide-sensitive amine oxidase. J Pharm Pharmacol. 1990, 42: 882–884
    [42] Abella A, Garcia-Vicente S, Viguerie N, Ros-Baroo A, CampsM, Palac?′nM Zorzano A, Marti L. Adipocytes release a soluble form of VAP-1=SSAO by a metalloprotease-dependent process and in a regulated manner. Diabetologia 2004, 47: 429–438
    [43] Stolen CM, Yegutkin GG, Kurkij€a arvi R, Bono P, Alitalo K, Jalkanen S. Origins of serum semicarbazide-sensitive amine oxidase. Circ Res 2004, 95: 50–57
    [44] Schwelberger HG. The origin of mammalian plasma amine oxidases [J]. J Neural. Transm., 2007, 114(6): 757-762.
    [45] Schwelberger HG. Diamine oxidase (DAO) enzyme and gene. In: Falus A, ed. Histamine: biology and medical aspects. Budapest, Hungary: SpringMed Publishing, 2004:43–52.
    [46] Deng YL and Yu PH. Assessment of the deamination of aminoacetone,an Endogenous substracte for semicarbazide-sensitive Amine Oxidase. Anal Biochem.1999, 270: 97-102
    [47] Precious E, Gunn CE, and Lyles GA. Deamination of methylamine by semicarbazide-sensitive amine oxidase in human umbilical artery and rat aorta [J]. Biochem Pharmacol, 1988, 37 (4): 707-713.
    [48] Magyar K, Mészáros Z, and Mátyus P. Semicarbazide-sensitive amine oxidase. Its physiological significance. Pure Appl Chem, 2001, 73(9): 1393–1400
    [49]丛杰,方允中.应激反应引起氧化损伤.自由基生命科学进展. 1993, 1: 28-34
    [50] Tipnis UR and He GY. Mechanism of polyamine toxicity in cultured cardiacmyocytes. Toxixity in vitro, 1998, 12: 233-240
    [51] Yu PH. Monoamine oxidase. clifton,NJ: Humana Press, 1986, 235-272
    [52] Yu PH, Zuo DM. Enhanced tolerance of neuroblastoma cells towards the neurotoxin 6-hydroxydopamine following specific cell-cell interaction with primary astrocytes. Neuroscience. 1997, 78(3): 903-12.
    [53] Yu PH, Deng YL. Endogenous formaldehyde as a potential factor of vulnerability of atherosclerosis: involvement of semicarbazide-sensitive amine oxidase-mediated methylamine turnover. Atherosclerosis 1998, 140: 357-36
    [54] Lyles GA and Fitzpatrick CMS. An allylamine derivative (MDL 72145) with potent irreversible inhibitory actions on rat aorta semicarbazide-sensitive amine oxidase. J Pharm Pharmacol 1985, 37: 329–35.
    [55] Palfreyman MG, McDonald IA, Bey P, Danzin C, Zreika M, Cremer G. Haloallylamine inhibitors of MAO and SSAO and their therapeutic potential. J Neural Transm 1994;41(l): 407–14.
    [56] Zreika M, McDonald IA, Bey P, Palfreyman MG. MDL 72145, an enzyme-activated irreversible inhibitor with selectivity for monoamine oxidase type B. J Neurochem, 1984, 43: 448–54.
    [57] Turley E, McKeown A, Bonham MP and et. al. Copper supplementation in humans does not affect the susceptibility of low density lipoprotein to in vitro induced oxidation. Free Radical Biol Med, 2000, 29(6): 1129-1134
    [58] Moldes M, Fe `ve B, Pairault J. Molecular cloning of a major mRNA species in murine 3T3 adipocyte lineage: differentiation-dependent expression, regulation, and identification as semicarbazide-sensitive amine oxidase. J Biol Chem 1999, 274: 9515–23.
    [59] Raimondi L, Pirisino R, Banchelli G, Ignesti G, Conforti L, Buffoni F. Cultured preadipocytes produce a semicarbazide-sensitive amine oxidase (SSAO) activity. J Neural Transm 1990: 331–36.
    [60] Enrique-Tarancon G, Marti L, Morin N, Lizcano JM, Unzeta M, Sevilla L et al. Role of semicarbazide-sensitive amine oxidase on glucose transport and GLUT4 recruitment to the cell-surface in adipose cells. J Biol Chem 1998, 273: 8025–32.
    [61] El Hadri K, Moldes M, Mercier N, Andreani M, Pairault J, Feve B. Semicarbazide-sensitive amine oxidase in vascular smooth muscle cells. Differentiation-dependent expression and role in glucose uptake. Arterioscler Thromb Vasc Biol, 2002, 22: 89–94.
    [62] Fontana E, Boucher J, Marti L, Lizcano JM, Testar X, Zorzano A et al. Amine oxidase substrates mimic several of the insulin effects on adipocyte differentiation in 3T3 F442A cells. Biochem J, 2001, 356: 769–77.
    [63] Mercier N, Moldes M, El Hadri K, Feve B. Semicarbazide-sensitive amine oxidase activation promotes adipose conversion of 3T3-L1 cells. Biochem J 2001, 303: 335–42.
    [64] Langford SD, Trent MB, Boor PJ. Semicarbazide-sensitive amine oxidase and extracellular matrix deposition by smooth-muscle cells. Cardiovasc Toxicol, 2002, 2: 141–50.
    [65] Langford SD, Trent MB, Balakumaran A, Boor PJ. Developmental vasculotoxicity associated with inhibition of semicarbazide-sensitive amine oxidase. Toxicol Appl Pharmacol 1999, 155: 237–44.
    [66] Rudich, A., Kozlovsky, N., Potashnik, R. and Bashan, N. Oxidant stress reduces insulin responsiveness in 3T3-L1 adipocytes. Am J Physiol, 1997, 272: 935–940
    [67] Obata T and Yamanaka Y. Evidence for existence of immobilization stress-inducible semicarbazide-sensitive amine oxidase inhibitor in rat brain cytosol [J]. Neurosci Lett., 2000, 296:58-60.
    [68] Coleman AA, Scaman CH, Kang YJ, et al. Stereochemical trends in copper amine oxidase reactions [J]. J Biol Chem, 1991, 266 (11): 6795-6800.
    [69] Dawkes HC and Phillips SE. Copper amine oxidase: cunning cofactor and controversial copper. Curr Opin Struct Biol, 2001, 11: 666–673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700