甲胺及其代谢产物甲醛在动物体内的药代动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨基脲敏感型胺氧化酶(Semicarbazide-sensitive amine oxidase,SSAO;EC1.4.3.6)是一类对氨基脲和其它肼类化合物敏感、含有铜离子和6-羟基多巴醌的胺氧化酶。SSAO可催化多种伯胺脱氨生成相应的醛、过氧化氢和氨(RCH_3NH_2+O_2+H_2O→RCHO+H_2O_2+NH_3)。甲胺是SSAO的生理底物之一,经SSAO催化脱氨生成甲醛、H_2O_2和氨。甲胺在尿液中大量存在,同时也分布在血液和组织中。甲胺可经体内代谢生成,或从食物、饮料及香烟烟雾中摄取。甲醛性质非常活泼,易与多种生物分子反应形成大分子加合物,可与蛋白质或单链DNA形成交联物。研究显示,内源性甲醛能增强蛋白糖基化,与体内蛋白质发生交联,从而可能造成血管内皮细胞的损伤,是引发动脉粥样硬化和糖尿病并发症如视网膜病变的潜在危险因素之一。此外,研究发现SSAO在葡萄糖摄取及抑制脂肪水解中起重要作用,而具有调节淋巴细胞黏附与迁移、与炎症相关的血管黏附蛋白-1(VAP-1)被发现与SSAO相同。SSAO催化的反应在这两个生理功能中起关键作用,采用小分子SSAO抑制剂可明显阻断其调控作用。因此,在第一部分的研究中,我们观察了3种常见的实验动物小鼠、大鼠和兔的血浆SSAO活性、甲胺和甲醛浓度,进而分析甲胺及其代谢产物甲醛在动物体内的药代动力学,为进行长期毒理实验打下基础,以进一步了解SSAO与内源性甲醛的病理生理学意义。在第二部分,我们采用SSAO高效抑制剂N′-(2-Phenylallyl) hydrazine hydrochloride (LJP1207)及SSAO首选底物苯甲胺,观察SSAO对细菌脂多糖(LPS)诱导急性炎症大鼠血浆一氧化氮(NO)和葡萄糖浓度的影响。
Semicarbazide-sensitive amine oxidase ( EC 1.4.3.6; SSAO ) are an group of enzymes containing copper and 6-hydroxydopa quinone, sensitive to inhibition by semicarbazide and other hydrazine compounds. The enzyme can convert primary amines into the corresponding aldehydes, while generating hydrogen peroxide and ammonium at the same time RCH3NH2 + O_2 + H_2O → RCHO + H_2O_2 + NH_3. Methylamine ( MA ) is a endogenous substrate for SSAO and can be deaminated to formaldehyde ( FA), hydrogen peroxide and ammonium. It is abundantly present in urine and also detected in blood and tissues. MA can be derived from several metabolic pathways and ingested from food, drinks and cigarette smoke. FA is extremely reactive and capable of inducing intra- and inter-moleculer cross-linkage between proteins and DNAs. It has been reported that FA produced endogenously via deamination of MA by SSAO. FA can enhance glycosylation of protein and cross-link with protein in vivo, cause endothelial injury and may be a potential risk factor for initiation of atherosclerosis and diabetic complication such as retinopathy. Recently, SSAO has been found to play an important role in glucose uptake and inhibition of lipolysis. And surprisingly, Vascular adhesion protein-1 ( VAP-1 ), an endothelial molecular supporting the adhesence and transmigration of blood-borne lymphocytes to the vascular lining under shear and relating to inflammation, is identified same to SSAO. The enzymatic function of SSAO play a critical role in the physiological function described above and can be completely blocked by specific SSAO inhibitor. Therefore, in the first part of research, we investigated plasma SSAO activity, baseline MA and FA concentration and compared the pharmacokinetics of MA, and its metabolite FA in mice, rats and rabbits, So as to lay a fundation for long-lasting toxicity experiment test and further understand the physiological and pathological significance of plasma SSAO and endogenous FA. In the second part, nitric oxide ( NO ) and glucose concentrations in LPS-induced acute inflammatory rats were monitored in the presense of N'- ( 2-Phenylallyl ) hydrazine hydrochloride
引文
1. Heba G, Krzeminski T, Porc M, Grzyb J, Ratajska A, Dembinska KiecA. The time course of tumor necrosis factor-alpha, inducible nitric oxide synthase and vascular endothelial growth factor expression in an experimental model of chronic myocardial infarction in rats. J Vasc Res, 2001, 38 (3): 288-300.
    2. Xie Q, Nathan C. The high-output nitric oxide pathway: role and regulation. J Leukoc Biol, 1994, 56 (5): 576-582.
    3. Michel T, Feron O. Nitric oxide synthases: which, where, how, and why? J Clin Invest, 1997, 100 (9): 2146-2152.
    4. Channon KM, Guzik TJ. Mechanisms of superoxide production in human blood vessels: relationship to endothelial dysfunction, clinical and genetic risk factors. J Physiol Pharmacol, 2002, 53 (4 Pt 1): 515-524.
    5. Guzik TJ, West NE, Pillai R, Taggart DP, Channon KM. Nitric oxide modulates superoxide release and peroxynitrite formation in human blood vessels. Hypertension, 2002, 39 (6): 1088-1094.
    6. Ischiropoulos H, al Mehdi AB. Peroxynitrite-mediated oxidative protein modifications. FEBS Lett, 1995, 364 (3): 279-282.
    7. Parratt JR. Nitric oxide. A key mediator in sepsis and endotoxaemia? J Physiol Pharmacol, 1997, 48 (4): 493-506.
    8. Ling PR, Bistrian BR, Mendez B, Istfan NW. Effects of systemic infusions of endotoxin, tumor necrosis factor, and intefleukin-1 on glucose metabolism in the rat: relationship to endogenous glucose production and peripheral tissue glucose uptake. Metabolism, 1994, 43 (3): 279-284.
    9. Villar Palasi C. On the mechanism of inactivation of muscle glycogen phosphorylase by insulin. Biochim Biophys Acta, 1994, 1224 (3): 384-388.
    10. Virkamaki A, Yki Jarvinen H. Role of prostaglandins in mediating alterations in glucose metabolism during acute endotoxemia in the rat. Endocrinology, 1995, 136 (4): 1701-1706.
    11. Grimble RF. Inflammatory status and insulin resistance. Curr Opin Clin Nutr Metab Care, 2002, 5 (5): 551-559.
    12. Shanmugam N, Reddy MA, Guha M, Natarajan R. High glucose induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes, 2003, 52: 1256-1264.
    13. Stentz FB, Umpierrez GE, Cuervo R, Kitabchi AE. Proinflammatory Cytokines, Markers of Cardiovascular Risks, Oxidative Stress, and Lipid Peroxidation in Patients With Hyperglycemic Crises. Diabetes, 2004, 53: 2079-2086.
    14. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med, 2001, 345 (19): 1359-1367.
    15. Lyles GA. Mammalian plasma and tissue-bound semicarbazide-sensitive amine oxidases: biochemical, pharmacological and toxicological aspects. Int J Biochem Cell Biol, 1996, 28 (3): 259-274.
    16. Holt A, Alton G, Seaman CH, Loppnow GR, Szpacenko A, Svendsen I et al. Identification of the quinone cofactor in mammalian semicarbazide-sensitive amine oxidase. Biochemistry, 1998, 37 (14): 4946-4957.
    17. Stolen CM, Yegutkin GG, Kurkijarvi R, Bono P, Alitalo K, Jalkanen S. Origins of serum semicarbazide-sensitive amine oxidase. Circ Res, 2004, 95 (1): 50-57.
    18. Ross SA, Keller SR, Lienhard GE, Morris NJ, Ducret A, Aebersold R. Membrane amine oxidase cloning and identification as a major protein in the adipocyte plasma membrane. J Biol Chem, 1997, 272 (14): 9388-9392.
    19. Morin N, Lizcano JM, Fontana E, Marti L, Smih F, Rouet P et al. Semicarbazide-sensitive amine oxidase substrates stimulate glucose transport and inhibit lipolysis in human adipocytes. J Pharmacol Exp Ther, 2001, 297 (2): 563-572.
    20. Enrique Tarancon G, Marti L, Morin N, Lizcano JM, Unzeta M, Sevilla L et al. Role of Semicarbazide-sensitive Amine Oxidase on Glucose Transport and GLUT4 Recruitment to the Cell Surface in Adipose Cells. J Biol Chem, 1998, 273 (14): 8025-8032.
    21. El Hadri K, Moldes M, Mercier N, Andreani M, Pairault J, Feve B. Semicarbazide-sensitive amine oxidase in vascular smooth muscle cells: differentiation-dependent expression and role in glucose uptake. Arterioscler Thromb Vasc Biol, 2002, 22 (1): 89-94
    22. Zhang X, McIntire WS. Cloning and sequencing of a copper-containing, topa quinone-containing monoamine oxidase from human placenta. Gene, 1996, 179 (2): 279-286.
    23. Smith D J, Salmi M, Bono P, Hellman J, Leu T, Jalkanen S. Cloning of vascular adhesion protein 1 reveals a novel multifunctional adhesion molecule. J Exp Med, 1998, 188(1): 17-27.
    24. Jaakkola K, Nikula T, Holopainen R, Vahasilta T, Matikainen MT, Laukkanen ML et al. In vivo detection of vascular adhesion protein-1 in experimental inflammation. Am J Pathol, 2000, 157 (2): 463-471.
    25. Merinen M, Irjala H, Salmi M, Jaakkola I, Hanninen A, Jalkanen S. Vascular adhesion protein-1 is involved in both acute and chronic inflammation in the mouse. Am J Pathol, 2005, 166 (3): 793-800.
    26. Salmi M, Yegutkin GG, Lehvonen R, Koskinen K, Salminen T, Jalkanen S. A cell surface amine oxidase directly controls lymphocyte migration. Immunity, 2001, 14 (3): 265-276.
    27. Wang EY, Gao H, Salter Cid L, Zhang J, Huang L, Podar EM et al. Design, synthesis, and biological evaluation of semicarbazide-sensitive amine oxidase (SSAO) inhibitors with anti-inflammatory activity. J Med Chem, 2006, 49 (7): 2166-2173.
    28. Lewinsohn R, Bohm K, Glover V, Sandier M. A benzylamine oxidase distinct from monoamine oxidase B—widespread distribution in man and rat. Biochem Pharmacol, 1978, 27 (14): 1857-1863.
    29. Salter Cid LM, Wang E, O'Rourke AM, Miller A, Gao H, Huang L et al. Anti-inflammatory effects of inhibiting the amine oxidase activity of semicarbazide-sensitive amine oxidase. J Pharmacol Exp Ther, 2005, 315 (2): 553-562.
    30. Yegutkin GG, Salminen T, Koskinen K, Kurtis C, McPherson MJ, Jalkanen S et al. A peptide inhibitor of vascular adhesion protein-1 (VAP-1) blocks leukocyte-endothelium interactions under shear stress. Eur J Immunol, 2004, 34 (8): 2276-2285.
    31. Yu PH, Lu LX, Fan H, Kazachkov M, Jiang ZJ, Jalkanen S et al. Involvement of semicarbazide-sensitive amine oxidase-mediated deamination in lipopolysaccharide-induced pulmonary inflammation. Am J Pathol, 2006, 168: 718-726.
    32. Stolen CM, Marttila Ichihara F, Koskinen K, Yegutldn GG, Turja R, Bono P et al. Absence of the endothelial oxidase AOC3 leads to abnormal leukocyte traffic in vivo. Immunity, 2005, 22 (1): 105-115.
    33. Yu PH, Wang M, Fan H, Deng Y, Gubisne HaberleD. Involvement of SSAO-mediated deamination in adipose glucose transport and weight gain in obese diabetic KKAy mice. Am J Physiol Endocrinol Metab, 2004, 286 (4): E634-E641.
    34. Iglesias Osma MC, Bour S, Gareia Barrado M J, Visentin V, Pastor MF, Testar X et al. Methylamine but not mafenide mimics insulin-like activity of the semicarbazide-sensitive amine oxidase-substrate benzylamine on glucose tolerance and on human adipocyte metabolism. Pharmacol Res, 2005, 52 (6): 475-484.
    35. Iglesias Osma MC, Garcia Barrado MJ, Visentin V, Pastor Mansilla MF, Bour S, Prevot D et al. Benzylamine exhibits insulin-like effects on glucose disposal, glucose transport, and fat cell lipolysis in rabbits and diabetic mice. J Pharmacol Exp Ther, 2004, 309 (3): 1020-1028.
    36. Takada Y, Mukhopadhyay A, Kundu GC, Mahabeleshwar GH, Singh S, Aggarwal BB. Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. J Biol Chem, 2003, 278 (26): 24233-24241.
    38. Torrie LJ, MacKenzie CJ, Paul A, Plevin R. Hydrogen peroxide-mediated inhibition of lipopolysaccharide-stimulated inhibitory kappa B kinase activity in rat aortic smooth muscle cells. Br J Pharmacol, 2001, 134 (2): 393-401.
    39. Vega A, Chacon P, Monteseirin J, El-Bekay R, Alvarez M, Alba G et al. A new role for monoamine oxidases in the modulation of macrophage-inducible nitric oxide synthase gene expression. J Leukoc Biol, 2004, 75 (6): 1093-1101。
    40. De Boisblanc BP, Dobrescu C, Skrepnik N, Nelson S, Spitzer JJ, Bagby GJ. Compartmentalization of glucose utilization after intravenous vs. intratracheal challenge with LPS. Am J Physiol, 1996, 270 (3 Pt 1): L452-L458.
    41. Grimble RF. Nutritional modulation of immune function. Proc Nutr Soc, 2001, 60(3): 389-397.
    1. Lyles GA. Mammalian plasma and tissue-bound Semicarbazide-sensitive amine oxidase: biochemical, pharmacological and toxicological aspects, Int d Biochem CellBiol, 1996, 28 (3): 259-274.
    2. Jalkanen S, Salmi M. Cell surface monoamine oxidases: enzymes in search of a function JEMBO, 2001, 20 (15): 3893-3901.
    3. Boomsma F, Bhaggoe UM, van-der-Houwen AM, van-den-Meiracker AH. Plasma semicarbazide-sensitive amine oxidase in human (patho)physiology. Biochim Biophys Acta, 2003, 1647 (1-2): 48-54.
    4. Yu PH, Wright S, Fan EH, Lun ZR, Gubisne-Harberle D Physiological and pathological implications of semicarbazide-sensitive amine oxidase. Biochim BiophysActa, 2003, 1647 (1-2): 193-199.
    5. Precious E, Gunn CE, Lyles GA. Deamination of methylamine by semicarbazide-sensitive amine oxidase in human umbilical artery and rat aorta. Biochem. Pharmacol, 1988, 37: 707-713.
    6. Yu PH. Oxidative deamination of aliphatic amines by rat aorta semicarbazide-sensitive amine oxidase. J Pharm Pharmacol, 1990, 42: 882-884.
    7. Boor P J, Trent MB, Lyles GA, TaoM, Ansari GAS. Methylamine metabolism to formaldehyde by vascular semicarbazide-sensitive amine oxidase. Toxicology, 1992, 73: 251-258.
    8. Lyles GA, Chalmers J. The metabolism of aminoacetone to methylglyoxal by semicarbazide -sensitive amine oxidase in human umbilical artery. Biochem Pharmacol, 1992, 31: 1417-1424.
    9. Yu PH, Dyck RF. Impairment of methylamine clearance in uremic patients and its nephropathological implications. Clin Nephrol, 1998, 49: 299-302.
    10. Lyles GA, McDougall SA. The enhanced daily excretion of urinary methylamine in rats treated with semicarbazide or hydralazine may be related to the inhibition of semicarbazide-sensitive amine oxidase activities. J Pharm Pharmacol, 1989, 41: 97-100.
    11. Yu PH, Lai CT, Zuo DM. Formation of formaldehyde from adrenaline in vivo: a potential risk factor endothelial damage. Neurochem Res, 1997, 22: 615-620.
    12. Yu PH, Deng YL. Potential cytotoxic effect of chronic administration of creatine, a nutrition supplement to augment athletic performance. Med Hypotheses, 1999, 54: 726-728.
    13. Zeisel SH, Wishnok JS, Blusztajn JK. Formation of methylamines from ingested choline and lecithin. J Pha rmacol Exp Ther, 1983, 225: 320-324.
    14. Mitchell SC, Zhang AQ. Methylamine in human urine. Clin Chim Acta, 2001,312 (1-2): 107-114.
    15. US Dept Health and Human Services, Constituents of tobacco smoke. USPHS Publication No. 82-50179, 1982, 322.
    16. Yu PH, Zuo DM, Formaldehyde produced endogenously via deamination of methylamine: a potential risk factor for initiation of endothelial injury. Atherosclerosis, 1996, 120: 189-197.
    17 Yu PH, Deng YL. Endogenous formaldehyde as a potential factor of vulnerability of atherosclerosis: involvement of semicarbazide-sensitive amine oxidasemediated methylamine turnover. Atherosclerosis, 1998, 140 (2): 357-363.
    18. Kalasz H. Biological role of formaldehyde, and cycles related to methylation, demethylation, and formaldehyde production. Mini Rev Med Chem, 2003, 3 (3): 175-192.
    19. Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol, 1997, 82 (2): 291-295.
    20. Finkel T. Oxygen radicals and signaling. Curt Opin Cell Biol, 1998, 10 (2): 248-253.
    21. Kunsch C, Medford RM. Oxidative stress as a regulator of gene expression in the vasculature. Circ Res, 1999, 85 (8): 753-766.
    22. Bogdan C, Rollinghoff M, Diefenbach A. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curt Opin Immunol, 2000, 12 (1): 64-76.
    23. Ross SA, Keller SR, Lienhard GE, Morris NJ, Ducret A, Aebersold R. Membrane amine oxidase cloning and identification as a major protein in the adipocyte plasma membrane. J Biol Chem, 1997, 272 (14): 9388-9392.
    24. Gould GW, Holman GD. The glucose transporter family: structure, function and tissue-specific expression. Biochem J, 1993, 295 (Pt2): 329-341.
    25. Kandror KV, aul Pilch PF. The Insulin-like Growth Factor Ⅱ/Mannose 6-Phosphate Receptor Utilizes the Same Membrane Compartments as GLUT4 for Insulin-dependent Trafficking to and from the Rat Adipocyte Cell Surface. J Biol Chem, 1996, (36): 21703-21708.
    26. Enrique Tarancon G, Marti L, Morin N, Lizcano JM, Unzeta M, Sevilla L et al. Role of Semicarbazide-sensitive Amine Oxidase on Glucose Transport and GLUT4 Recruitment to the Cell Surface in Adipose Cells. J Biol Chem, 1998, 273 (14): 8025-8032.
    27. Moldes M, Feve B, Pairault J. Molecular cloning of a major mRNA species in mufine. 3T3 adipocyte lineage, differentiation-dependent expression, regulation, and identification as semicarbazide-sensitive amine oxidase. J Biol Chem, 1999, 274 (14): 9515-9523.
    28. Enrique Tamncon G, Castan I, Morin N, Marti L, Abella A, Camps M et al. Substmtes of semicarbazide-sensitive amine oxidase co-operate with vanadate to stimulate tyrosine phosphorylation of insulin-receptor-substrate proteins, phosphoinositide 3-kinase activity and GLUT4 translocation in adipose cells. Biochem J, 2000, 350(Pt1): 171-180.
    29. Morin N, Lizcano JM, Fontana E, Marti L, Smih F, Rouet P et al. Semicarbazide-sensitive amine oxidase substrates stimulate glucose transport and inhibit lipolysis in human adipocytes. J Pharmacol Exp Ther, 2001, 297 (2): 563-572
    30. El Hadri K, Moldes M, Mercier N, Andreani M, Pairault J, Feve B. Semicarbazide-sensitive amine oxidase in vascular smooth muscle cells: differentiation-dependent expression and role in glucose uptake. Arterioscler Thromb Vasc Biol, 2002, 22 (1): 89-94
    31. Yu PH, Wang M, Deng YL, Fan H, Shira Bock L. Involvement of semicarbazide-sensitive amine oxidase-mediated deamination in atherogenesis in KKAy diabetic mice fed with high cholesterol diet. Diabetologia, 2002, 45 (9): 1255-1262.
    32. Yu PH, Wang M, Fan H, Deng Y, Gubisne HaberleD. Involvement of SSAO-mediated deamination in adipose glucose transport and weight gain in obese diabetic KKAy mice. Am J PhysioI Endocrinol Metab, 2004, 286 (4): E634-E641.
    33. Stolen CM, Madanat R, Marti L, Kari S, Yegutkin GG, Sariola H et al Semicarbazide sensitive amine oxidase overexpression has dual consequences: insulin mimicry and diabetes-like complications. FASEB J, 2004, 18 (6): 702-704.
    34. Iglesias Osma MC, Garcia Barrado MJ, Visentin V, Pastor Mansilla MF, Bour S, Prevot D et al. Benzylamine Exhibits Insulin-Like Effects on Glucose Disposal, Glucose Transport, and Fat Cell Lipolysis in Rabbits and Diabetic Mice. J Pharmacol Exp Ther, 2004, 309: 1020-1028.
    35. Visentin V, Bour S, Boucher J, Prevot D, Valet P, Ordener C et al. Glucose handling in streptozotocin-induced diabetic rats is improved by tyramine but not by the amine oxidase inhibitor semicarbazide. Eur J Pharmacol, 2005, 522 (1-3): 139-146.
    36. Zhang X, Mclntire WS. Cloning and sequencing of a copper-containing, topa quinone-containing monoamine oxidase from human placenta. Gene, 1996, 179 (2): 279-286.
    37. Smith DJ, Salmi M, Bono P, Hellman J, Leu T, Jalkanen S. Cloning of vascular adhesion protein 1 reveals a novel multifunctional adhesion molecule. J Exp Med, 1998, 188 (1): 17-27.
    38. Salmi M, Jalkanen S. A 90-kilodalton endothelial cell molecule mediating lymphocyte binding in humans. Science, 1992, 257 (5075): 1407-1409.
    39. Salmi M, Kalimo K, Jalkanen S. Induction and function of vascular adhesion protein-1 at sites of inflammation, J Exp Med, 1993, 178 (6): 2255-2260.
    40. Jaakkola K, Nikula T, Holopainen R, Vahasilta T, Matikainen MT, Laukkanen ML et al. In vivo detection of vascular adhesion protein-1 in experimental inflammation. Am J Pathol, 2000, 157 (2): 463-471.
    41. Stolen CM, Marttila Ichihara F, Koskinen K, Yegutldn GG, Turja R, Bono P et al. Absence of the endothelial oxidase AOC3 leads to abnormal leukocyte traffic in vivo. Immunity, 2005, 22 (1): 105-115.
    42. Arvilommi AM, Salmi M, Jalkanen S. Organ-selective regulation of vascular adhesion protein-1 expression in man. Eur J Immunol, 1997, 27 (7): 1794-1800.
    43. Tohka S, Laukkanen M, Jalkanen S, Salmi M. Vascular adhesion protein 1 (VAP-1) functions as a molecular brake during granulocyte rolling and mediates recruitment in vivo. FASEB J, 2001, 15 (2): 373-382.
    44. Merinen M, Irjala H, Salmi M, Jaakkola I, Hanninen A, Jalkanen S. Vascular adhesion protein-1 is involved in both acute and chronic inflammation in the mouse. Am J Pathol, 2005, 166 (3): 793-800.
    45. Salmi M, Yegutkin GG, Lehvonen R, Koskinen K, Salminen T, Jalkanen S. A cell surface amine oxidase directly controls lymphocyte migration. Immunity, 2001, 14 (3): 265-276.
    46. Yegutkin GG, Salminen T, Koskinen K, Kurtis C, McPherson MJ, Jalkanen S et al. A peptide inhibitor of vascular adhesion protein-1 (VAP-1) blocks leukocyte-endothelium interactions under shear stress. Eur J Immunol, 2004, 34 (8): 2276-2285.
    47. O'Sullivan J, O'Sullivan M, Tipton KF, Unzeta M, Del Mar Hernandez M, Davey GP. The inhibition of semicarbazide-sensitive amine oxidase by aminohexoses. Biochim Biophys Acta, 2003, 1647 (1-2): 367-371.
    48. Salter Cid LM, Wang E, O'Rourke AM, Miller A, Gao H, Huang L et al. Anti-inflammatory effects of inhibiting the amine oxidase activity of semicarbazide-sensitive amine oxidase. J Pharmacol Exp Ther, 2005, 315 (2): 553-562.
    49. Yu PH, Lu LX, Fan H, Kazachkov M, Jiang ZJ, Jalkanen S et al. Involvement of semicarbazide-sensitive amine oxidase-mediated deamination in lipopolysaccharide-induced pulmonary inflammation. Am J Pathol, 2006, 168: 718-726.
    50. Garpenstrand H, Ekblom J, Backlund L-B, Oreland L, Rosenqvist U. Elevated plasma semicarbazide-sensitive amine oxidase (SSAO) activity in Type 2 diabetes mellitus complicated by retinopathy. Diabet Med, 1999, 16 (6): 514-521.
    51. Salmi M, Stolen C, Jousilahti P, Yegutkin GG, Tapanainen P, Janatuinen T et al. Insulin-regulated increase of soluble vascular adhesion protein-1 in diabetes. Am J Pathol, 2002, 161 (6): 2255-2262.
    52. Mathys KC, Ponnampalam SN, Padival S, Nagaraj RH. Semicarbazide-sensitive amine oxidase in aortic smooth muscle cells mediates synthesis of a methylglyoxal-AGE: implications for vascular complications in diabetes. Biochem Biophys Res Commun, 2002, 297 (4): 863-869.
    53. Yu PH, Zuo DM. Aminoguanidine inhibits semicarbazide-sensitive amine oxidase activity: implications for advanced glycation and diabetic complications. Diabetologia, 1997, 40 (11): 1243-1250.
    54. Kurkijarvi R, Adams DH, Leino R, Mottonen T, Jalkanen S, Salmi M. Circulating form of human vascular adhesion protein-1 (VAP-1): increased serum levels in inflammatory liver diseases. J Immunol, 1998, 161 (3): 1549-1557.
    55. Perseghin G, Petersen K, Shulman GI. Cellular mechanism of insulin resistance: potential links with inflammation, Int J Obes Relat Metab Disord, 2003, Suppl 3: S6-S11.
    56. Kathryn E, Wellen, Gokhan S. Hotamisligil Inflammation, stress, and diabetes. J Clin Invest, 2005, 115: 1111-1119.
    57. Mercier N, Moldes M, El Hadri K, Feve B. Regulation of semicarbazide-sensitive amine oxidase expression by tumor necrosis factor-alpha in adipocytes: functional consequences on glucose transport. J Pharmacol Exp Ther, 2003, 304 (3): 1197-1208.
    58. Gokturk C, Nordquist J, Sugimoto H, Forsberg-Nilsson K, Nilsson J, Oreland L. Semicarbazide-sensitive amine oxidase in transgenic mice with diabetes. Biochem Biophys Res Commun, 2004, 325 (3): 1013-1020.
    59. Visentin V, Bour S, Boucher J, Prevot D, Valet P, Ordener C et al. Glucose handling in streptozotocin-induced diabetic rats is improved by tyrarnine but not by the amine oxidase inhibitor semicarbazide. Eur J Pharmacol, 2005, 522 (1-3): 139-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700