几种半导体材料的光电子能谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO薄膜的光电子能谱研究表明:1)对某些条件下生长的薄膜,光致发光谱中存在的绿光发光峰来源于薄膜中介于Vo和Oi中间价态的氧;2)对首次利用溅射夹层GaAs方法制备的As掺杂的ZnO薄膜,O2下退火比较容易控制As的价态,有利于形成p型掺杂。
     首次采用ErF3到Alq3中的方法制作了1.53μm电发光的有机发光二极管,在相同电流的情况下采用ErF3掺杂方法所制备的OLED器件其近红外区的电致发光强度是Er(DBM)3Phen基器件的4倍。并采用光电子能谱对ErF3和LiF掺杂的Alq3进行了对比研究,结果表明LiF掺杂的Alq3中LiF与Alq3之间产生了激子; ErF3掺杂的Alq3中生成了Erq3和AlF3。
     在商用变温光电子能谱仪上,配合自主创新设计的微量进气枪,使光电子能谱仪具有气体传感器在线检测的功能,并对SnO2基CO气体进行了在线研究。XPS测试结果显示,元件在与气体作用时,吸附氧的含量明显减少,U PS测试结果显示:样品获得了电子。同时对SnO2中的添加剂进行了初步研究。
Photoelectron spectroscopy (PES) usually consists of X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), synchrocyclotron photoelectron spectroscopy (SRPES) and et al. It is a nondestructive surface analysis tool, and it at best can reach 10nm below the suface of a sample. Using PES, we can obtain qualitative information about the chemical state of the element and surface band distribution. We can also gain the quantitative information via PES. Combined with bombardment of Ar+, deep profile of a sample can be obtained. So PES is perfect for surface analysis and it is widely used in many domains.
     In this thesis, three aspects are studied based on the research project of our team using PES.
     1. Study of ZnO thin films grown by metal–organic chemical vapor deposition (MOCVD) via PES.
     We examine ZnO film prepared in some condition using PES. We examined the origin of the green luminescence peak located 450 nm-500 nm in the photoluminescent (PL) measurement. XPS results show that there are two contributions in the O 1s peak. The one around 529.9 eV is attributed to Zn-O bond in the crystall; the other locates around 531.5 eV, this position is quite different from that of Oi reported. This peak doesn’t change a lot after long time bombardment of Ar+. Quantitative XPS analyses show that atom ratio of Zn:O is 2:3, indicating that oxygen is rich in this kind of ZnO film. Hall measurements show that the conductivity of the samples is unstable. So it is considered that the peak located around 531.5 eV is corresponding to a unstable state of oxygen. It will turn to be Vo or Oi. If it is Vo, the ZnO film will exhibit a n type conductivity, and Oi will lead to a p type conductivity.
     Arsenic-doped ZnO (ZnO:As) films are grown on GaAs layers are studied. GaAs layers are deposited on sapphire substrates by sputtering using a GaAs target, As doping is obtained by thermal diffusion. The ZnO:As films are annealed in nitrogen (ZnO:As:N2) and oxygen (ZnO:As:O2) atmosphere respectively. XPS measurements show that annealing in oxygen facilitates the form of even As doping in ZnO films and the content of As keeps around 3.4 % after Ar+ bombardment. But annealing in N2 leads to the aliquation of As at the surface for ZnO:As films. Core level results show that there are two chemical states of As in ZnO:As:O2 films including AsZn-2VZn, AsZn, while four types exist in ZnO:As:N2 films including AsZn, AsZn-2VZn, Asi and AsO. The contribution centered around 43.9 eV of As 3d peak is ascribed to AsZn-2VZn. Valence band maximum (VBM) spectrum taken by UPS indicates that the Fermi energy of ZnO:As:O2 films shifts toward the VBM by 0.37 eV compared with undoped ZnO films, which proves AsZn-2VZn is a acceptor in ZnO:As:O2 films. But the ZnO:As films still show n type conductivity, which is possibly due to the compensation of As-related donor and native defects.
     Detail analysis of chemical states of As in ZnO may help point toward paths to grow high quality ZnO:As films.
     2. Study of ErF3 doped near infrared (NIR) luminescent material via PES.
     We demonstrated near-infrared (NIR) organic light-emitting devices (OLEDs) employing erbium fluoride (ErF3) doped into tris-(8-hydroxyquinoline) aluminum (Alq3). The device structure was ITO/ N, N′-di-1-naphthyl-N, N′-diphenylbenzidine (NPB)/ Alq3: ErF3/ 2,2 ',2 ''-(1,3,5-phenylene) tris (1-phenyl-1H-benzimidazole) (TPBI)/ Alq3 /Al. ErF3 was synthesized by mixing hydrofluoric (HF) acids and erbium oxide (Er2O3) in a Teflon-lined autoclave. Room-temperature electroluminescence was observed around 1530 nm due to 4I13/2 -4I15/2 transition of the Er3+. The full width at half maximum (FWHM) of the electroluminescent (EL) spectra was ~ 50 nm. The NIR EL intensity from the ErF3-based device was ~ 4 times higher than that of Er(DBM)3Phen-based device at the same current.
     The doping mechanism of ErF3 in Alq3 is investigated by PES, LiF doped Alq3 is also studied for comparison. It is found that there is a charge transfer between host and dopant in the Alq3–LiF systems, and F- anion acts as an n-type donor. For ErF3, XPS results show that Er atoms will partly replace Al atoms in ErF3 doped Alq3, and Er atoms obtain electron charge from Alq3. UPS results show that the influence of ErF3 doping to work function of Alq3 is opposite to that of LiF.
     The mechanism of electroluminescent is attributed to F?rster energy transfer mechanism to NIR-OLED.
     3. By adding a micro-gas-in gun to PES system, we carry out in situ PES to study the SnO2-based CO gas sensor.
     Considering the work condition of gas sensor, we modified our PES system by adding a micro-gas-in gun. Then we can carry out in situ PES to study the interaction between SnO2 and CO gas at a high temperature.
     We parpare SnO2 powders by sol-gel, Pd、Th doping are obtained by adding PdCl2, and ThO2 to SnO2 powders and sintered in muffle furnace. XRD results show that the sample has the sample stucture as rutile. SEM results show that the grain size decreases after doping. Quantitative XPS analyses show that atom ratio of Sn:O isn’t 1:2, and Sn is rich. O 1s spectrum got by XPS exhibits two contributions, the one around 529.8 eV is attributed to Sn-O bond (Olat); the other locates around 532.0 eV is attributed to adsorbed oxygen(Oads) due to the defects of surface.
     We examine the interaction between SnO2 and CO gas at 150℃in situ. No change is found for Sn 3d and C 1s core level. Quantitative XPS analyses show: (1) atom ratio of Sn: Olat changes from 1:1.05 without CO to 1:1.08 with CO flowing through the sample surface; (2) without gas the atom ratio of Sn: Oads is 1:0.56, with CO the ratio is 1:0.33. This means CO react with SnO2, Oads plays an important role. VBM spectrum taken by UPS indicates that the VBM of SnO2 shifts toward the Fermi energy by 0.1 eV with CO. It indicates that electrons transfer to SnO2 in this reaction, this transfering leads to band bending of the surface. So it can be presumed that such a reaction has happened as below:
     We also examine the additives in SnO2. There is no obvious change for the binding energy of Th 4f and Pd 4d. We think it needs furthure research to clarify the sensitization mechanism of the additives.
引文
1.刘世宏,王当憨,潘承璜.《X射线光电子能谱分析》[M].北京:科学出版社.1988
    2.华中一,罗维昂.《表面分析》[M].上海:复旦大学出版社.1989
    3. D.Briggs等.《X射线与紫外光电子能谱》[M].北京:北京大学出版社.1984.
    4. E. A. Kraut, R. W. Grant, J. R. Waldrop, et al. Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra: Application to Measurement of Semiconductor Interface Potentials [J]. Phys. Rev. Lett. 44, 1620 - 1623 (1980)
    5. Steven P. Kowalczyk, J. T. Cheung, E. A. Kraut, et al. CdTe-HgTe (1? 1? 1? ) Heterojunction Valence-Band Discontinuity: A Common-Anion-Rule Contradiction [J]. Phys. Rev. Lett. 56, 1605 - 1608 (1986)
    6. K. Hirose, K. Sakano, H. Nohira, et al. Valence-band offset variation induced by the interface dipole at the SiO2/Si(111) interface [J]. Phys. Rev. B 64, 155325 (2001)
    7. P. W. Peacock, K. Xiong, K. Tse, et al. Bonding and interface states of Si:HfO2 and Si:ZrO2 interfaces [J]. Phys. Rev. B 73, 075328 (2006)
    8. Wei-Xin Ni and G?ran V. Hansson. Band offsets in pseudomorphically grown Si/Si1-xGex heterostructures studied with core-level x-ray photoelectron spectroscopy [J]. Phys. Rev. B 42, 3030 - 3037 (1990)
    9. Riqing Zhang, Panfeng Zhang, Tingting Kang, et al. Determination of the valence band offset of wurtzite InN/ZnO heterojunction by x-ray photoelectron spectroscopy [J]. Appl. Phys. Lett. 91, 162104 (2007)
    10. N. Goel, W. Tsai, C. M. Garner, Y. Sun, et al. Band offsets between amorphous LaAlO3 and In0.53Ga0.47As [J]. Appl. Phys. Lett. 91, 113515 (2007)
    11. Chang Liu, Eng Fong Chor, Leng Seow Tan, et al. Band offset measurements of the pulsed-laser-deposition-grown Sc2O3/GaN heterostructure by X-ray photoelectron spectroscopy [J]. physica status solidi (c) 4,2330 (2007)
    12. M. L. Huang, Y. C. Chang, C. H. Chang, et al. Energy-band parameters of atomic-layer-deposition Al2O3/InGaAs heterostructure [J]. Appl. Phys. Lett. 89, 012903 (2006)
    13. G Cherkashinin, S Krischok, M Himmerlich, et al. Electronic properties of C60/InP(001)heterostructures [J]. Journal of Physics Condensed Matter 18, 9841 (2006)
    14. Y. Y. Mi, S. J. Wang, J. W. Chai, et al. Effect of interfacial oxynitride layer on the band alignment and thermal stability of LaAlO3 films on SiGe [J]. Appl. Phys. Lett. 91, 042102 (2007)
    15. Q. Chen, Y. P. Feng, J. W. Chai,et al. Band alignment and thermal stability of HfO2 gate dielectric on SiC [J]. Applied Physics Letters 93, 052104 (2008)
    16. T. D. Veal, P. D. C. King, S. A. Hatfield, et al. Valence band offset of the ZnO/AlN heterojunction determined by x-ray photoemission spectroscopy [J]. Appl.Phys.Lett. 93, 202108 (2008)
    17. Jun Onoe, Takahiro Ito, Shin-ichi Kimura, et al. Valence electronic structure of cross-linked C60 polymers: In situ high-resolution photoelectron spectroscopic and density-functional studies [J]. Phys. Rev. B 75, 233410(2007)
    18. M. Sing, U. Schwingenschl?gl, R. Claessen, et al. Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts [J]. Phys. Rev. B,67, 125402 (2003)
    19. F. Zwick, D. Jérome, G. Margaritondo, et al. Band Mapping and Quasiparticle Suppression in the One-Dimensional Organic Conductor TTF-TCNQ [J]. Phys. Rev. Lett. 81 2974 (1998)
    20. Yeonjin Yi, Seong Jun Kang, Kwanghee Cho, et al. Evidence of gap state formed by the charge transfer in Alq3/NaCl/Al interface studied by ultraviolet and x-ray photoelectron spectroscopy [J]. Appl. Phys. Lett. 86, 113503 (2005)
    21. J. Lee, Y. Park, S. K. Lee et al. Tris-(8-hydroxyquinoline)aluminum-based organic light-emitting devices with Al/CaF2 cathode: Performance enhancement and interface electronic structures [J]. Appl. Phys. Lett. 80, 3123 (2002)
    22. Hyunbok Lee, Sang Wan Cho, Kyul Han, et al. The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N,N[prime]-bis(1-naphthyl)-N,N[prime]-diphenyl-1,1[prime]-biphenyl- 4,4[prime]-diamine interfaces [J]. Appl. Phys. Lett. 93, 043308 (2008)
    23. Chih-I Wu, Chan-Tin Lin, Yu-Hung Chen, et al. Electronic structures and electron-injection mechanisms of cesium-carbonate-incorporated cathode structures for organic light-emitting devices [J]. Appl.Phys.Lett.88, 152104 (2006)
    24. Yu. S. Dedkov, M. Fonin, U. Rudiger, and C. Laubschat. Rashba Effect in the Graphene/Ni (111) System [J]. Phys.Rev.Lett. 100, 107602 (2008)
    25. T. Yokoya, T. Nakamura, T. Matsushita, Origin of the metallic properties of heavily boron-doped superconducting diamond [J]. NATURE. Vol 438|1 647-650(2005)
    26. C. I. Wu, A. Kahn, E. S. Hellman, et al. Electron affinity at aluminum nitride surfaces [J]. Appl.Phys.Lett.73, 1346 (2006)
    27.黄惠中等.表面化学分析[M].上海:华东理工大学出版社,2007
    28. Gerhard Ertl, J. Kuppers. Low energy electrons and surface chemistry [M].New York: VCH Publishers.
    29. A.W.赞德纳.表面分析方法[M].北京:国防工业出版社,1984
    30. Stefan Hüfner, Photoelectron Spectroscopy principle and applications [M]. Springer: Berlin,2003.
    31. Berglund C.N, Spicer W.E, Photoemission Studies of Copper and Silver: Theory [J]. Phys.Rev.136 A1030-A1044,(1964); Photoemission Studies of Copper and Silver: Experiment [J].Phys.Rev.136 A1044-A1064,(1964)
    32. Feibelmann P.J, Eastman D.E, Photoemission spectroscopy-correspondence between quantum theory and experimental phenomenology [J]. Phys.Rev.B 10(1974) 4932
    33.邹崇文, NSRL表面物理站的调试及宽禁带半导体的SRPES研究[D],合肥:中国科技大学核技术及应用专业, 2006
    34.黄惠忠,论表面分析及其在材料研究中的应用[M]。北京:科学技术文献出版社,2003
    35.范金成,P型ZnO薄膜及其p-n结的制备与性能的研究[D]。湖南:湖南大学材料化学与物理专业,2008
    36. Maruska H P, Tietjen J J. The Preparation and Properties of Vapor-Deposited Single-Crystal-Line GaN [J]. Appl. Phys. Lett.,1969, 15 (10): 327
    37. Kasaki I, Sota S, Sakai H,et al. Shortest Wavelength Semiconductor Laser Diode [J]. Electronics Letters, 1996, 32(12):1105
    38. Fasol G. Longer Life for the Blue Laser [J]. Science, 1997, 278 (5345):1902
    39. Pearton S J, Norton D P, Ip K, et al. Recent progress in processing and properties of ZnO [J]. Prog. Mater. Sci. 2005, 50: 293
    40. Look D C. Recent advances in ZnO materials and devices [J]. Mater.Sci. Eng. B, 2001, 80:383
    41. Chia C H, Makino T, Kamura T, et al. Confinement-enhanced biexciton binding energy in ZnO/ZnMgO multiple quantum well [J]. Appl. Phys. Lett., 2003, 82: 1848
    42. Ohtomo A, Kawasaki M, Koida T, et al. MgxZn1-xO as a II-V wide semiconductor alloy [J]. Appl.Phys.Lett., 1998, 72: 2466
    43. Makino T, Segawa Y, Kawasaki M, et al. Band gap engineering based on MgxZn1-xO and CdxZn1-xO ternary alloy films [J]. Appl. Phys. Lett., 2001, 42: 1237
    44. Kucheyev S O, Bradley J E, Williams J S, et al. Mechanical deformation of single-crystal ZnO [J]. Appl. Phys. Lett., 2002, 80: 956
    45. Look D C, Hemsky J W, Sizelove J R. Residual Native Shallow Donor in ZnO [J]. Phys. Rev. Lett., 1999, 82: 2552
    46. Aoki T, Look D C, Hatanaka Y. ZnO diode fabricated by excimer-laser doping [J]. Appl. Phys. Lett., 2000, 76: 3257
    47. Look D C, Reynolds D C, Hemsky J W, et al. Production and annealing of electron irradiation damage in ZnO [J]. Appl. Phys. Lett., 1999, 75: 81
    48. R.A.Powell, W.E.Spicer, J.C. McMenamin. Photoemission Studies of Wurtzite Zinc Oxide [J]. Phys.Rev.B 6, 3056 - 3065 (1972)
    49. W. G?pel, R.S. Bauer and G. Hansson,Ultraviolet photoemission studies of chemisorption and point defect formation on ZnO nonpolar surfaces [J]. Surface Science,Volume 99, Issue 1, 1980, Pages 138-156
    50. L. Zhang , D. Wett , R. Szargan. Determination of ZnO(0001) surface termination by x-ray photoelectron spectroscopy at photoemission angles of 0°and 70°[J]. Surf. Interface Anal. 2004:36: 1479–1483
    51. K Ozawa, K Sawada, Y Shirotori. Angle-resolved photoemission study of the valence band structure of ZnO( 10 10) [J]. J. Phys.: Condens. Matter 17 (2005) 1271–1278
    52. K. Ozawa, Y. Oba, K. Edamoto, et al. Valence-band structure of the polar ZnO surfaces studied by angle-resolved photoelectron spectroscopy [J] . PHYS. REV. B 79, 075314 (2009)
    53. H.L.Mosbacker,Y.M.Strzhemechny, B.D.White et al。Role of near-surface states in ohmic-Schottky conversion of Au contacts to ZnO [J]. Appl. Phys. Lett. 87, 012102 (2005)
    54. Han-Ki Kim, Sang-Heon Han, Tae-Yeon Seong, et al. Low-resistance Ti/Au ohmic contacts to Al-doped ZnO layers [J]. Appl. Phys. Lett. 77, 1647 (2000)
    55. Kohan A F,Geder G,Morgan D,Waqlle C G.First-principles study of nativ point defects in ZnO [J].Phys.Rev.B,2000,61:15019
    56. Wang L G,Zunger A.Cluster-doping approach for wide-gapsemiconductors: the Case of p-type ZnO [J].Phys.Rev.Lett.,2003,95(25):256401
    57. Fumiyasu Oba, Shigeto R, Nishitani, Seiji Isotani, et al. Energetics of native defects in ZnO [J]. J.Appl.Phys.,2001,90(2):824
    58. T. Moe B?rseth, B. G. Svensson, A. Yu. Kuznetsov, et al. Identification of oxygen and zinc vacancy optical signals in ZnO [J]. Appl. Phy. Lett. 89, 262112 (2006)
    59. F. Leitera, H. Alvesa, D. Pfisterer, et al. Oxygen vacancies in ZnO [J]. Phys. B 340–342 (2003) 201–204
    60. H. S. Kang, J. S. Kang, J. W.Kim, et al. Annealing effect on the property of ultraviolet and green emissions of ZnO thin films[J]. J. Appl. Phys. 95, 1246 (2004)
    61. K.Vanheusden, C. H.Seager, W. L. Warren, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J]. Appl. Phys. Lett. 68, 403 (1996)
    62. X. L. Wu, G. G. Siu, C. L. Fu, et al. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films [J]. Appl. Phys. Lett., 78, 2285(2001)
    63. Fan Hai-Bo; Yang Shao-Yan; Zhang Pan-Feng, et al. nvestigation of oxygen vacancy and interstitial oxygen defects in ZnO films by Photoluminescence and X-ray photoelectron spectroscopy [J]. Chinese Physics Letters: 0256-307X;24( 7), 2108-2111
    64. S. Mahamuni, K.Borgohain, B. S. Bendre, et al. Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots [J]. J. Appl. Phys. 85, 2861 (1999)
    65. Tang Z K, Wong G K L, Yu P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films [J]. Appl. Phys. Lett., 1998,72: 3270
    66. Park C H, Zhang S B, Wei S H. Origin of p-type doping difficulty in ZnO: the impurity perspective [J]. Phys. Rev. B, 2002, 66: 073202
    67. Wardle M G, Goss J P, and Briddon P R. Theory of Li in ZnO: A limitation for Li-based p-type doping [J]. Phys. Rev. B, 2005, 71: 155205
    68. Yamamoto T, Katayama-Yoshida H, Unipolarity of ZnO with a wide-band gap and itssolution using co-doping method [J]. J. Cryst. Growth, 2000,214-215: 552
    69. Chu S Y, Water W, Liaw J T. Influence of postdeposition annealing on the properties of ZnO films prepared by RF magnetron sputtering [J]. Journal of the European Ceramic Society 2003, 23:1593
    70. Zeng Y J, Ye Z Z, Xu W Z, et al. Dopant source choice for formation of p-type ZnO: Li acceptor [J]. Appl. Phys. Lett., 2006, 88: 062107
    71. Zeng Y J, Ye Z Z, Lu J G., et al. Identification of acceptor states in Li-doped p-type ZnO thin films [J]. Appl. Phys. Lett.,2006,89: 042106
    72. Lu J G, Zhang Y Z, Ye Z Z, et al. Control of p- and n-type conductivities in Li-doped ZnO thin films [J]. Appl. Phys. Lett., 2006, 89: 112113
    73. Chen L L, Ye Z Z. Zeng Y J, et al. Influence of post-annealing temperature on properties of ZnO:Li thin films [J]. Chem. Phys. Lett.,2006,420: 358
    74. Hatanaka Y, Niraula M, Nakamura A, et al. Excimer laser doping techniques for II-VI semiconductors [J]. Appl. Surf. Sci., 2001,175/176: 462
    75. Wu J, Yang Y T. Deposition of K-doped p type ZnO thin films on (0001) Al2O3 Substrates [J]. Mater. Lett., 2008,62:1899
    76. Futsuhara M, Yoshioka K, Takai O. Optical properties of zinc oxynitride thin films [J]. Thin solid films, 1998,317: 322
    77. Wang Y G, Lau S P, Zhang X H, et al. Observations of nitrongen-related photoluminescence bands from nitron-doed ZnO films [J]. J. Cryst. Growth, 2003, 252: 265
    78. Look D C, Reynolds D C, Litton C W, et al. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J]. Appl. Phys. Lett., 2002,81: 1830
    79. Du G T, Ma Y, Zhang Y T, et al. Preparation of intrinsic and N-doped p-type ZnO thin filmsby metalorganic vapor phase epitaxy [J]. Appl. Phys. Lett., 2005,87: 213103
    80. Tu M L, Su Y K, Ma C Y. Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio frequency magnetron sputtering [J]. J. Appl. Phys., 2006, 100: 053705
    81. Marfaing Y, Lusson A. Doping engineering of p-type ZnO [J]. Marfaing Superlattices and Microstructures, 2005,38: 38
    82. Lu J G, Zhu L P,Ye Z Z, et al. p-type ZnO films by codoping of nitrogen and aluminum and ZnO-based p–n homojunctions [J]. J. Cryst. Growth, 2005,283: 413
    83. Zeng Y J, Ye Z Z, Lu J G, et al. Effects of Al content on properties of Al–N co-doped ZnO films [J]. Appl. Surf. Sci., 2005, 249: 203
    84. Zhuge F, Ye Z Z, Zhu L P, et al. Electrical and optical properties of Al–N co-doped p-type zinc oxide films [J]. J. Cryst. Growth, 2004, 268: 163
    85. Liu D S, Sheu C S, Lee C T. Aluminum-nitride codoped zinc oxide films prepared using a radio-frequency magnetron cosputtering system [J]. J. Appl. Phys., 2007,102: 033516
    86. Joseph M, Tabata H, Saeki H, et al. Fabrication of the low-resistive p-type ZnO by co-doping method [J]. Physica B, 2001, 302-303:140
    87. Tsukazaki A, Saito H, Tamura K, et al. Systematic examination of carrier polarity in composition spread ZnO thin films codoped with Ga and N [J]. Appl. Phys. Lett.2002, 81(2): 235
    88. Park D C, Sakaguchi I, Ohashi N,et al. SIMS depth profiling of N and In in a ZnO single crystal [J].Appl.Surf.Sci.,2003, 203/204: 359
    89. Bian J M, Li X M, Gao X D, et al. Deposition and electrical properties of N–In codoped p-type ZnO films by ultrasonic spray pyrolysis [J]. Appl. Phys. Lett., 2004, 84: 541
    90. Aoki T, Hatanaka Y, Look D C et al. ZnO diode fabricated by excimer-laser doping [J]. Appl. Phys. Lett.,2000, 76: 3257
    91. Jang S W, Chen J J, Kang B S, et al. Formation of p-n homojunctions in n-type bulk single crystals by diffusion from a Zn3P2 source [J]. Appl. Phys. Lett.,2005, 87: 222113
    92. Vaithianathan V, Lee B T, Kim S S. Pulsed-laser-deposited p-type ZnO films with phosphorus doping [J]. Appl. Phys. Lett.,2005,98: 043519
    93. Yu Z G, Wu P, Gong H. Control of p- and n-type conductivities in p doped ZnO thin films by using radio-frequency sputtering [J]. Appl. Phys. Lett., 2006,88: 132114
    94. Bang K H, Hwang D K, Park M C, et al. Formation of p-type ZnO film on InP substrate by phosphor doping [J]. Appl. Surf.Sci., 2003,210:177
    95. Xiu F X, Yang Z, Mandalapu L J, et al. P-type ZnO films with solid phosphorus doping by molecular-beam epitaxy [J]. Appl. Phys. Lett.,2006,88: 052106
    96. Kim K K, Kim H S, Hwang D K, et al. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant [J]. Appl. Phys. Lett., 2003,83: 63
    97. Jeong T.S, Han M. S, Youn C. J et al. Raman scattering and photoluminescence of Asion-implanted ZnO single crystal, [J]. J. Appl. Phys. 2004, 96, 175
    98. Ryu Y. R, Lee T. S, White H. W et al. Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition [J].Appl. Phys. Lett. 2003, 83, 87
    99. Vaithianathan V, Lee B. T, Kim S. S et al. Preparation of As-doped p-type ZnO films using a Zn3As2 /ZnO target with pulsed laser deposition [J]. Appl. Phys. Lett. 2005, 86, 062101
    100. Ryu Y. R, Kim W. J and White H. W. Fabrication of homostructural ZnO p-n junctions [J]. J. Cryst. Growth, 2000, 219, 419–22
    101. Ryu Y. R, Zhu S, Look D. C et al. Synthesis of p-type ZnO films. [J]. J. Cryst. Growth, 2000, 216, 330–4
    102. Hwang D. K, Bang K. H, Jeong M. C et al. Effects of RF power variation on properties of ZnO thin films and electrical properties of p-n homojunction. [J]. J. Cryst. Growth, 2003,254, 449–55
    103. Lee W, Hwang D. K, Jeong M. C et al. Fabrication and properties of As-doped ZnO films grown on GaAs (001) substrates by radio frequency (rf) magnetron sputtering. [J]. Appl. Surf. Sci. 2004, 221, 32–7
    104. Moon T. H, Jeong M. C, Lee W et al. The fabrication and characterization of ZnO UV detector. [J]. Appl. Surf. Sci. 2005, 240, 280–5
    105. Dangbegnon J. K, Roro K. T and Botha J. R. Towards p-type ZnO using post-growth annealing. [J]. Phys. Status Solidi a, 2008, 205, 155–8
    106. Vaithianathan V, Lee B T, Chang C H, et al. Characterization of As-doped p-type ZnO by x-ray absorption near-edge structure spectroscopy [J].Appl.Phys Lett.,2006, 88: 112103
    107. Wang P, Chen N F, Yin Z G, et al. As doped p-type ZnO films by sputtering and thermal diffusion process [J]. J.Appl.Phys., 2006,100: 04370
    108. Kang H S, Kim G H, Kim D L, et al. Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin films [J]. Appl. Phys. Lett., 2006, 89: 18110
    109. Wahl U, Rita E, Correia J G, et al. Direct Evidence for As as a Zn-Site Impurity in ZnO [J]. Phys.Rev.Lett., 2005, 95: 215503
    110. Limpijumnong S, Smith M F, Zhang B S, et al. Characterization of As-doped, p-type ZnO by x-ray absorption near-edge structure spectroscopy: Theory[J]. Appl. Phys. Lett., 2006, 89: 222113
    111. H. S. Kang, G. H. Kim, D. L. Kim, et al. Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film [J]. Appl. Phys. Lett. 89, 181103 (2007)
    112. J. C. Sun, J. Z. Zhao, H. W. Liang, et al. Realization of ultraviolet electroluminescence from ZnO homojunction with n-ZnO/p-ZnO:As/GaAs structure [J]. Appl. Phys. Lett. 90, 121128 (2007)
    113. G. T. Du, Y Cui, X. Xiaochuan, et al. Visual-infrared electroluminescence emission from ZnO/GaAs heterojunctions grown by metal-organic chemical vapor deposition [J]. Appl. Phys. Lett. 90, 243504 (2007)
    114. Clement Yuen, S. F. Yu, E. S. P. Leong, et al. Room temperature deposition of p-type arsenic doped ZnO polycrystalline films by laser-assist filtered cathodic vacuum arc technique [J]. J. Appl. Phys. 101, 094905 (2007)
    115. N. Xu, Y. Xu, L. Li, et al. Arsenic doping for synthesis of nanocrystalline p-type ZnO thin films [J]. J. Vac. Sci. Technol. A, Vol. 24, 517-520, (2006)
    116. E-J Yun, H-S Park, K. H. Lee, et al. Characterization of Al–As codoped p-type ZnO films by magnetron cosputtering deposition [J]. J. Appl. Phys. 103, 073507 (2008)
    117. E. Vasco, O. B?hme, and E. Román, Chemical Characterization of ZnO Films Pulsed Laser Deposited on InP [J]. J. Phys. Chem. C, 2007, 111 (8), 3505–3511
    118. Wagner C D, Riggs W M, Davis L E, et al. Handbook of X-Ray Photoelectron Spectroscopy [M]. Perkin-Elmer Corporation,1979
    119. G. Hollinger, R. Skheyta-Kabbani, and M. Gendry. Oxides on GaAs and InAs surfaces: An x-ray-photoelectron-spectroscopy study of reference compounds and thin oxide layers [J]. Phys. Rev. B 49, 11159 - 11167 (1994)
    120. Lin Y-J and Tsai C-L. Changes in surface band bending, surface work function, and sheet resistance of undoped ZnO films due to (NH4)2Sx treatment [J]. J. Appl. Phys. 100 113721
    121.程传辉,有机近红外电致发光材料及器件的初步研究[D].吉林:吉林大学微电子学与固体电子学专业,2007
    122. Suzuki H, Yokoo A, Notomi M. Organic emissive materials and devices for photonic communication [J]. Polym. Adv. Technol., (2004)15, 75-80.
    123. Kido J. Electroluminescence of rare earth complexes in organic matrices. Proc. of 8th Inter. workshop on Inorg [J]. Organic EL, Berlin, 1996.
    124. Miyamoto Y, Uekawa M, Ikeda H, et al. EL properties of a Eu-complex doped in phosphorescent materials [J]. J. Lumin., (1999) 81, 159-164.
    125. Chistopher C P, Capecchi S, Salata O V et al. Organic electroluminescence from a divalent europium complex [J] . Adv. Mater., (1999) 11, 533-535
    126. McKeown N B. Phthalocyanine materials: synthesis, structure and function [M]. New York: Cambridge University Press, 1998.
    127. Iwamuro M, Adachi T, Wada Y et al. Remarkable photosensitized luminescence of Nd (III) complexes with halogenated 8-quinolinol derivatives [J]. Chem. Lett., (1999), 539-542.
    128. Iwamuro M, Hasegawa Y, Wada Y et al. Luminescence of Nd3+ complexes with some asymmetric ligands in organic solution [J]. J. Lumin., (1998)79, 19-33.
    129. Gillin W P, Curry R J. Erbium (III) tris (8-hydroxyquinoline) (ErQ): A potential material for silicon compatible 1.5μm emitters [J]. Appl.Phys.Lett. (1999)74(6), 798-799.
    130. Curry R J, Gillin W P. 1.5μm electrominescence from erbium (III) tris (8-hydroxy-quinoline) (ErQ)-basedorganic light-emitting diodes [J]. Appl. Phys. Lett. , (1999), 75 (10), 1380-1382.
    131. Sun R G, Wang Y Z, Zheng Q B et al. 1.54μm infrared photoluminescence and electroluminescence from an erbium organic compound [J]. Appl. Phys. Lett., (2000) 87 (10), 7589-7591
    132.洪自若,梁春军,赵丹等.铒配合物的红外有机电致发光[J].发光学报, (2000) 21 (3), 269-272.
    133. Zhefeng Li, Jiangbo Yu, Liang Zhoua, et al. 1.54μm Near-infrared photoluminescent and electroluminescent properties of a new Erbium (III) organic complex [J]. Organic Electronics,9(4) 487-494
    134. Hong Z R, Liang C J, Li R G et al. Infrared and visible emission from organic electroluminescent devices based on praseodymium complex [J]. Appl. Phys. Lett. , (2001) 79 (13), 1942-1944
    135. Kawamura Y, Wada Y, Hasegawa Yet al. Observation of neodymium electroluminescence [J]. Appl. Phys. Lett., (1999) 74 (22), 3245-3247.
    136. Crosby G A, Whan R E, Alire R M. The vapor pressure of some stannanes [J]. J. Phys. Chem., (1961) 34, 743-746.
    137. Slooff L H, van Blaaderen A, Polman A et al. Rare-earth doped polymers for planar opticalamplifiers [J], J.Appl.Phys., (2002) 91, 3955-3958
    138. G. A. Hebbink, D. N. Reinhoudt, and F. C. J. M. van Veggel, Increased luminescent lifetimes of Ln3+ complexes emitting in the near-infrared as a result of deuteration [J]. Eur. J. Org. Chem(2001)66, 4101
    139. L. H. Sloof and A. Polman, M. P. Oude Wolbers, et al. Optical properties of erbium-doped organic polydentate cage complexes [J]. J. Appl. Phys. (1998) 83, 497.
    140. M. P. O. Wolbers, F. C. J. M van Veggel, B. H. M. Snellink-Ruel, et al. Novel Preorganized Hemispherands To Encapsulate Rare Earth Ions: Shielding and Ligand Deuteration for Prolonged Lifetimes of Excited Eu3+ Ions [J]. J. Am. Chem. Soc. (1997) 119(1), 138 -144.
    141. M. P. O. Wolbers, F. C. J. M. van Veggel, F. G. A. Peters, et al. Sensitized Near-Infrared Emission from Nd3+ and Er3+ Complexes of Fluorescein-Bearing Calix[4]arene Cages [J]. Eur. J. Chem. (1998) 4, 772 -780
    142. Hiroyuki S, Yasuaki H, Toshikazu I, et al. Organic infrared optical materials and devices based on an organic rare earth complex [J]. Thin Solid Films, 2003, 438-439
    143. G. E. Jabbour, B. Kippelen, N. R. Armstrong, et al, Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices [J]. Appl. Phys. Lett. 73, 1185 (1998)
    144. W. Song, S.K.So, K.W.Wong, et al. Study of lithium fluoride/tris (8-hydroxyquinolino)-aluminum interfacier chemistry using XPS and ToF-SIMS [J]. Appl. Surf. Sci. 228, 373-377, 2004
    145. M. G. Mason, C.W. Tang, L. S. Hung, et al, Interfacial chemistry of Alq3 and LiF with reactive metals [J]. J. Appl. Phys. 2001, 89, 2756.
    146. C. I. Wu, G. R. Lee, Energy structures and chemical reactions at the Al/LiF/Alq3 interfaces studied by synchrotron-radiation photoemission spectroscopy [J]. Appl. Phys. Lett. 2005, 87, 212108.
    147. Q. T. Le, L. Yan, Y. G. Gao, et al, Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris- (8-hydroxyquinoline) aluminum interfaces [J]. J. Appl. Phys. 2000, 87, 375.
    148. Kaushik Roy Choudhury, Jong-hyuk Yoon, and Franky So. LiF as an n-Dopant in Tris (8-hydroxyquinoline) Aluminum Thin Films [J]. Adv. Mater. 2008, 20, 1456–1461
    149. Y. Yuan, D. Grozea, S. Han, et al. Interaction between organic semiconductors and LiF dopant [J]. Appl.Phys.Lett. 85(21) 2004.
    150. H.Younan, Characterization of Binding Energy of Al Hexafluoride [AlF6]3- in X-Ray Photoelectron Spectroscopy. Physical and Failure Analysis of Integrated Circuits, 2006. 13th International Symposium on the [C]. 2006, IEEE
    151. T. F?rster, Zwischenmolekulare Energiewanderung und Fluoreszenz [J]. Ann. Physik. (Leipzig) 2 (1948) 55
    152. D. L. Dexter, A Theory of Sensitized Luminescence in Solids [J] J. Chem. Phys. 21 (1953),836
    153. X. Gong, S. H. Lim, J. C. Ostrowski, et al.Phosphorescence from iridium complexes doped into polymer blends [J].J. Appl. Phys. 95 (2004) 948
    154. H. Suzuki and A. Hoshino, Effects of doping dyes on the electroluminescent characteristics of multilayer organic light-emitting diodes [J]. J. Appl. Phys. 79 (1996) 8816
    155. W. H. Brattain and J. Bardeen, Surface Properties of Germanium [J]. Bell Syst. Tech.J., 1953: 32: 1
    156. T. Seiyama, A. Kato, K. Fujiishi, et al. A New Detector for Gaseous Components Using Semiconductive Thin Films [J]. Anal. Chem., 1962, 34 (11), 1502–1503
    157. G.G. Mandayo, E. Castano, F.J. Gracia, et al. Strategies to enhance the carbon monoxide sensitivity of tin oxide thin film [J]. Sens. Actuators, 2003, B95: 90- 96
    158. M.S.Berberich, S. Strathmann, U. Weimar, et al. Strategies to avoid VOC crosssensitivity of SnO2-based CO sensors [J]. Sens. Actuators, 1999, B58: 318–324
    159. D.Kohl, Surface Processes in the deteetion of reducing gases with SnO2- based devices [J],Sensors and Actuactors,1989,18,71 -113
    160.徐毓龙,金属氧化物气敏传感器(VI) [J],传感技术学报,1996,3, 72-78
    161. P R.Weisz,Effects of electronic charge transfer between adsorate and solidon chemisoprtion and catalysis,J.Chem.Phys.,1953,21,1531-1538
    162. N.Barsan, D.Koziej, U.weimar. Metal oxide-based gas sensor research: How to? [J]. Sens. Actuators B 121(2007) 18-35
    163.刘凤敏《SnO2及其复合氧化物气体传感器的修饰改性研究》[D].吉林:吉林大学微电子学与固体电子学专业, 2005.
    164. Y. Yamaguchi, Y. Nagasawa, A.Murakami, et al. Stability of oxygen anions and hydrogen abstraction from methane on reduced SnO2 (110) surface [J] .International Journal of Quantum Chemistry, 69, 669-678 (1998)
    165. N. Yamazoe, J. Fuchigami, M. Kishikawa, et al, Interactions of tin oxide surface with O2, H2O and H2 [J]. Surf. Sci. 86 (1978) 335–344
    166. S. Saukko, U. Lassi, V. Lantto, et al. Experimental studies of O-2-SnO2 surface interaction using powder, thick films and monocrystalline thin films [J]. Thin Solid Films 490 (2005) 48–53
    167. V.E. Henrich, P.A. Cox, The Surface Science of Metal Oxides [M], University Press, Cambridge, 1994
    168. S.C. Chang, Oxygen chemisorption on tin oxide: correlation between electrical conductivity and EPR measurements [J]. J. Vac. Sci. Technol. 17 (1980) 366
    169. M. Che, A.J. Tench, Characterisation and reactivity of mononuclear oxygen species on oxide surfaces [J]. Adv. Catal. 31 (1982) 40–42
    170. N. Yamazoe, J. Fuchigami, M. Kishikawa, et al, Interactions of tin oxide surface with O2, H2O and H2 [J].Surf. Sci. 86 (1978) 335–344.
    171. S. Saukko, U. Lassi, V. Lantto, et al, Experimental studies of O-2-SnO2 surface interaction using powder, thick films and monocrystalline thin films [J]. Thin Solid Films 490 (2005) 48–53.
    172. S.C. Chang, Oxygen chemisorption on tin oxide: correlation between electrical conductivity and EPR measurements [J]. J. Vac. Sci. Technol. 17 (1980) 366.
    173. N. Yamazoe. New approaches for improving semiconductor gas sensors [J]. Sensors Actuators 1991; 5: 7-19
    174. J Kappler, N Barsan, U Weimar, A Dieguez, et al. Correlation between XPS, Raman and TEM measurements and the gas sensitivity of Pt and Pd doped SnO2 based gas sensors [J]. J.Anal.Chem. 1998; 361:110-4
    175. X. Cao, L.Cao, W.Yao, et al, Structural Characterization of Pd-doped SnO2 Thin Films Using XPS [J]. Surface and Interface Analysis, 24(9), 662-666,1998
    176. Marion E. Franke, Tobias J. Koplin, Ulrich Simon, Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter? [J]. Small, 2(1), 36– 50
    177. N.Yamazoe, G. Sakai and K. Shimanoe. Oxide Semiconductor Gas Sensors [J]. Catalysis Surveys from Asia, 2003, 7, 63-75
    178. A.R.Phani, X-ray photoelectron spectroscopy studies on Pd doped SnO2 liquid petroleum gas sensor [J]. Appl.Phys.Lett. 71(16), 1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700