TiO_2基纳米材料的制备、结构与其催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择在光催化领域备受关注的二氧化钛为研究对象,以密度泛函理论为基础,利用第一性原理的计算软件CASTEP对单斜态相TiO2的能带、态密度等电子结构进行了模拟分析,为关联单斜态相TiO2的光学特性和催化性能的研究提供理论依据。实验研究中,以Ti(SO4)2为原料、30%的H2O2为络合剂、NaOH为沉淀剂,采用新颖简单的化学络合水热合成法制备了单斜态TiO2纳米管。确定了制备单斜TiO2纳米管的最佳工艺条件和参数;结合X-射线粉末衍射仪(XRD)、激光拉曼光谱仪(LPS)、X-射线光电子能谱仪(XPS)、氮吸附BET比表面积测试、透射电镜(TEM)、热重分析仪(TG-DSC)、红外光谱仪(FT-IR)等技术,对TiO2纳米管的结构、形貌、表面性能及晶相结构进行了表征和细致的分析;以甲基橙的降解为探针反应,研究了单斜态纳米TiO2催化降解甲基橙的性能。以期为把握多晶相材料的构效关系提供科学依据,同时为水体中有机污染物的高效降解提供理论指导与技术支持。
     第一章引言主要介绍纳米TiO2的研究现状,光催化基本原理,一维TiO2纳米管的主要制备方法,第一性原理模拟计算的理论基础,以及本文的选题意义和研究内容。
     第二章采用基于密度泛函理论的平面波超软赝势方法进行材料的模拟计算,使用第一性原理方法计算了锐钛矿相TiO2和单斜态TiO2(B)结构参数、能带、态密度。结果表明:与锐钛矿型TiO2相比,单斜态TiO2(B)结构中Ti-O键也呈现较强共价键特征,但其对称性降低,Ti-O键长及重叠布居数也发生了变化;单斜态TiO2的禁带变宽(Eg为2.875 eV),比实验值3.3 eV小些,理论预测光吸收波长可发生蓝移,计算结果与已有的实验数据符合较好。
     第三章采用基于密度泛函理论的平面波赝势方法,对Na0.2TiO2的能带结构、电子态密度和电荷密度进行了分析计算。结果表明,Na0.2TiO2属于一种间接带隙半导体,禁带宽度为2.81 eV;其电子态密度主要由Ti的3d层电子和O的2p层电子的能态密度决定;该材料对紫外线有较强的宽频吸收,拓展了光谱响应范围,提高太阳能利用转化率和光催化效率;Ti-O键比Na-O键结合的更紧密,Na原子与O原子形成的是离子性较强而共价键较弱的混合键,Ti-O键的共价作用要强于Na-O键。因此,可以通过阳离子交换来调变钛酸钠的键特性及稳定性。
     第四章以Ti(SO4)2为钛源,H2O2为络合剂,NaOH为沉淀剂水热反应制备出单斜态结构的TiO2(B)纳米管,经XRD、TEM、BET测试、XPS、TG-DSC等表征结果得知:呈现规整的中空管状,纳米管两端均为开口,管的外径为6 nm至25 nm不等,管的长度可达100 nm以上,并且样品的长径比很高;另外,钠离子主要覆盖在TiO2(B)产品的表面,经过去离子水多次洗涤样品后不含有钠离子。从TEM研究认为水热法制备TiO2(B)纳米管的过程在水热过程中形成的,即TiO2晶体与NaOH溶液反应生成二维薄板层状产物,然后薄板产物以[200]晶面为轴发生卷曲生成一维TiO2(B)纳米管,整个过程经历了从3-2-1D的过程。
     第五章根据实验结果及理论分析,优化出单斜态相TiO2纳米管暗处催化降解甲基橙的最佳条件:相对于锐钛矿和P25型TiO2,单斜态TiO2(B)纳米管具有独特的红外吸收峰,有较宽的带隙和较大的比表面积;单斜态纳米TiO2(B)不仅在光照条件下存在催化活性,而且在无光条件下也有极高的催化活性。在暗处降解5 h,降解率可达到99%,为了使TiO2(B)催化剂保持高的催化活性,H2O2的存在是必需的而不是光照,TiO2(B)与H2O2具有更好的协同作用;降解反应遵循一级反应动力学规律;催化剂稳定性能较好,有利于催化剂的多次利用,降低废水处理成本,具有较强的实际应用价值。因此,单斜态纳米TiO2独特的催化性能为纳米TiO2催化性能的研究开辟了一个新的方向,具有较好的学术价值和应用前景。
TiO2, as one of the most welcome material in catalytic field, is concerned in the present research. In this paper, based on the density functional theory(DFT), the band gap, density of states of monoclinic TiO2(B) were simulated by using the calculation software CASTEP of first principles to discuss the relationship of the monoclinic phase TiO2 between its optical properties and catalytic activity. A noble and simple chemical peroxide-complex-hydrothermal method for the preparation of monoclinic TiO2(B) nanotubes from a precursor based on Ti(SO4)2, hydrogen peroxide and different base was reported. The influence of the H2O2/Ti molar ratio, the calcination temperature and acid treatment on structure and property of products were studied, and some excellent reference data were gained. The morphology, crystal structure, thermal stability, component and surface properties were intensively investigated by TEM, XRD, LRS, TG-DSC, XPS, BET and FT-IR techniques. And the catalytic degradation of methyl orange was used as model reaction to study the catalytic properties of monoclinic TiO2(B) nanotubes under different conditions. The effects of preparation and reaction conditions on the catalytic performances are studied. Meanwhile, nanostructure TiO2 with single crystal phase, anatase and rutile, were prepared by homogeneous precipitation and microemulsion-hydrothermal methods, and to study their catalytic activity. The following is the main aspects of the present research.
     In chapter 1, the research status of TiO2, photocatalytic principles, the main preparation methods of one-dimensional TiO2 nanotubes, the basic theory of first principles simulation, as well as significance and content of topics were introduced
     In chapter 2, with the density functional theory(DFT), the band gap, density of states of anatase TiO2 and monoclinic TiO2(B) were simulated by using the plane wave pseudo potentials(PWPP). The calculation showed that compared to anatase, Ti-O bonds of TiO2(B) have been changed by tomic population analysis; the band gap of monoclinic TiO2(B) was wider, which was smaller than the experimental result.The results of theoretical simulation were in accordance with experimental results.
     In chapter 3, the band gap, density of states, electron density of monoclinic Nao.2Ti02 were simulated by using the plane wave pseudo potentials (PWPP) based on the density functional theory (DFT). Calculated results show that Na0.2TiO2 is an indirect semiconductor with the band gap of 2.81 eV. The density of states is mainly made up of Ti 3d and O 2p. The material has strong broadband UV absorption, extends the range of spectral response and increases utilization rate of solar energy and photocatalytic efficiency. While the Na and O atoms is connected by a strong ionic and weak covalent mixed bond, the Ti-O bond is shorter and has more covlent component than Na-0 bond. This work may provides a theoretical guid for the molecular design and applications of Na0.2TiO2 and related materials. Therefore, the bond-characteristics and stability of Sodium Titanate can be changed by Cation-exchange.
     In chapter 4, a new approach, to synthesize TiO2(B) nanotubes by peroxide-complex-hydrothermal treatment in concentrated NaOH solution, was presented. The as-prepared nanotubes were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and N2 adsorption-desorption isotherm measurements (BET). The diameter of the nanotube was from 6 to 25 nm. In addition, the sodium ions covering the surface of the TiO2(B), were not presence after washing with the deionized water, repeated. It was suggested that the nanotubes TiO2(B) were formed during the hydrothermal process from the TEM, which two-dimensional thin layer fromTiO2 crystal and NaOH solution, generated one-dimensional TiO2(B) nanotube by the axis of crystal plane [200], with the whole process through 3-2-ID.
     In chapter 5, TiO2(B)has been used for the first time as a hydrogen peroxide catalyst and showed remarkable activity for the removal of MO in aqueous solution at darkness. The experiment compares the photocatalysts of monocline TiO2 (B) and anatase TiO2 in stationary MO solution both in absence and presence of H2O2 under Hg lamp, the results have shown that the presence of H2O2 obviously improved the activity of TiO2 catalyst(the degradation ratio 99%) and accelerated the decomposition of MO, and H2O2 must be necessary to achieve high MO decomposition especially for TiO2 (B). At the same time, we found that TiO2 (B) exhibited excellent repetitive-use performance; degradation reaction followed the first order kinetics; the better stability catalyst was conducive to strong practical applications value and Cutting down costs of wastewater treatment with repeated use. Therefore, the unique catalytic properties of nano-TiO2/H2O2 have opened up a new direction for conventional catalytic research, with a certain degree of academic values and application prospects.
引文
[1]Fujishima A. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238:37-38.
    [2]Bard A J. Photoelectrochemistry[J]. Science,1980,207(4427):139-144.
    [3]Rosenberg L, Brock J R, Heller A. Collection optics of TiO2 photocatalyst on hollow glass microbeads floating on oil slicks[J]. Chem.Phys.,1992,96(8):3423-3428.
    [4]Wold A. Photocatalytic properties of titanium dioxide(TiO2)[J]. Chem.Mater., 1993,5(3):280-283.
    [5]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. J.Photo-chem. Photobiolo. C:Photochem. Reviews,2000,1(1):1-21.
    [6]Yu J C, Lin J, Kwok R W M. Ti1-xZrxO2 solid solution for the photocatalytic degradation of acetone in ai[J]. J.Phys.Chem.,1998,102(26):5094-5098.
    [7]Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Environmental Applications of Semiconductor Photocatalysis[J]. Chem.Review,1995,95:69-96.
    [8]Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results[J]. Chem.Review,1995,95:735-758.
    [9]沈伟韧,赵文宽,贺飞.TiO2光催化及其在废水处理中的应用[J].化学进展,1998,10(4):349-361.
    [10]韩兆慧,赵华侨.半导体多相光催化应用的研究进展[J].化学进展,1999,11(1):1-10.
    [11]Masakazu A. Use of visible light. Second generation titanium oxide photo-catalysts prepared by the application of an advanced metal ion-implantation method[J]. Pure Appl.Chem.,2000,72(7):1265-1270.
    [12]Hu C, Wang Y Z, Tang H X. Preparation and characterization of surface bond-conjugated TiO2/SiO2 and photocataiysis for azo dyes[J]. Appl.Catal.B: Environ.,2001,30(3/4):277-285.
    [13]Shang D M, Ching W Y. Electonic and optical properties of three phases of titanium dioxide:Rutile, anatase, and brookite[J]. Phy.Review B.1995,51(19): 13023-13031.
    [14]Marchand R, Brohan L, Tournoux M. TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17[J]. Mater.Res Bull,1980,15:1129-1133.
    [15]Banfield J, Veblen D, Smith D. The identification of naturally occurring TiO2(B) by structure determination using high resolution electron microscopy, image simulation, and distance leas squares refinement[J]. Am.Mineral,1991,76: 343-353.
    [16]Brohan L, Verbaere A, Tournoux M. La transformation TiO2(B)→anatase[J]. Mater.Res.Bull,1982,17(3):355-361.
    [17]Betz G, Tributsch H, Marchand R. Hydrogen insertion (intercalation) and light induced proton exchange at TiO2(B)-electrodes[J]. J.Appl.Electrochem.,1984, 14:315-322.
    [18]赵洁,邱克辉,董宏伟.锐钛型纳米TiO2光催化降解与环保应用研究进展[J].中国非金属矿工业,2006,56(4):50-55.
    [19]Wingkei H, Jimmy C Y, Shuncheng L. Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity[J]. J.Solid State Chem., 2006,179:1171-1176.
    [20]Iskandar B F, Nandiyanto A, Yun K M. Enhanced Photocatalytic Performance of Brookite TiO2 Macroporous Particles Prepared by Spray Drying with Colloidal Templating[J]. Adv.Mater.,2007,19:1408-1412.
    [21]Shibata T, Irie H, Ohmori M. Comparison of photochemical properties of brookite and anatase TiO2 films[J]. Phys.Chem.,2004,6:1359-1362.
    [22]Paola A D, Addamo M, Bellardita M. Preparation of photocatalytic brookite thin films[J]. Thin Solid Films.,2007,515:3527-3529.
    [23]聂茶庚,龚正良,孙岚.软化学法合成TiO2(B)纳米带及其储锂性能研究[J].电化学,2004,10(3):330-333.
    [24]Kuo H L, Kuo C Y, Liu C H. A highly active bi-crystalline photocatalyst consisting of TiO2(B)gas from neat ethanol nanotube and anatase particle for producing H2 [J]. Catal.Lett.,2007,113:7-12.
    [25]Papachryssanthou J, Bordes E, Courtine P. TiO2(B), A new support for V2O5 in the oxidation O-xylene[J]. Catal. Today,1987,1(1-2):219-227.
    [26]Tanaka T, Capule MFV, Hisanaga T. Effect of crystallinity of TiO2 on its photocatalytic action[J]. Chem.Phys.Lett.,1991,187(1-2):73-76.
    [27]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bull. Environ. Contam. Toxicol.,1976,16(6):697-701.
    [28]高伟,吴凤清,罗臻.TiO2晶型与光催化活性关系的研究[J].高等学校化学学报,2001,22(4):660-662.
    [29]戴智铭,朱中南,古宏晨.半导体气固相光催化氧化反应介绍[J].化学反应工程与工艺,2000,16(2):185-192.
    [30]Rajeshwar K. Photoelectrochemistry and the environment[J]. Appl.Electrochem., 1995,25:1067.
    [31]Gratzel M. Material Science Ultrafast colour displays[J]. Nature,2001,414:338.
    [32]Ward M D, White J M. Electrochemical Investigation of the Energetics of Particulate Titanium Dioxide Photocatalysts. The Methyl Viologen-Acet ate System[J]. Am.Chem. Soc.,1983,105:27-31.
    [33]Gratzel M. Heterogeneous photochemical electron transfer[C]. CRC press, Inc., Boca Raton, Florida 1989.
    [34]徐伯兴,王毓芳,徐章法.光催化降解水中有机污染物[J].上海化工,1999,16(8):14-16.
    [35]王保玉,张景会.TiO2纳米管的制备[J].精细化工,2003,20(6):333-336.
    [36]Hoffman M S, Martin S T, Choi W. Environmental application of semiconductor photocatalysis[J].Chem.Rev.,1995,95(1):69-96.
    [37]Sakata Y, Yamamoto T, Okazake T. Visible light response of titania photocatalyst containing toper ion[J]. Chem.Lett.,1998,324(12):1253-1254.
    [38]Kasudat, Hiramatsum. Formation of titanium oxide nanotube[J]. Langmuir, 1998,14:3160-3163.
    [39]Sun X M, Li Y D. Synthesis and characterization of ion-exchangetable titanate nanotubes[J]. J.Chem.Eur.,2003,9:2229-2238.
    [40]Wang W Z, Varghese 0 K, Paulose M. A study on the growth and structure of titania nanotubes[J], J.Mater.Res.,2004,19(2):417-422.
    [41]王芹,陶杰,翁履谦.TiO2纳米管的合成机理与表征[J].材料开发与应用,2004,19(5):9-12.
    [42]Yang J J, Jin Z S, Wang X D. Study on composition process of nanotube Na2Ti2O4(OH)2[J]. Daltom Trans.,2003,20:3898-3901.
    [43]梁建,马淑芳,韩培德.TiO2纳米管的合成及其表征[J].稀有金属材料与工程,2005,34(2):287-290.
    [44]邵颖,薛宽宏,陈巧玲.TiO2纳米管的光催化作用[J].应用化学,2003,5(20):433-436.
    [45]高原,马永祥,力虎林.用模板法制备TiO2纳米线阵列膜及光催化性能的研究[J].高等化学学报,2003,1(24):1089-1092.
    [46]李晓红,张校刚.TiO2纳米管的模板法制备及表征[J].高等化学学报,2001,22(1):130-132.
    [47]Michailowski A. Hight regular anatase nanotube anays fabricated in porous anodic templates[J], Chem.Phy.lett.,2002,349:1-5.
    [48]Jong H J. Creation of novel helical ribbon and double-layered nanotube TiO2 sreuctures using an oranganogel templale[J], Chem.Mater.,2002,14(4):1445-1447.
    [49]赖跃坤,孙岚,左娟.氧化钛纳米管阵列制备及形成机理[J].物理化学学报,2004,20(9):1063-1066.
    [50]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys.Rev.,1965,140:1133-1140.
    [51]Perdew J P, Wang Y. Accurate and simple density functional for the electronic exchange energy:Generalized gradient approximation[J]. Phys.Rev.B,1986,33: 8800-8802.
    [52]Hohenberg P, Kohn W. Inhomeneous Eleetron Gas[J]. Phys.Rev.B,1964,136: 864-868.
    [53]Reiter R. A theory of diagnosis from first principles [J]. Artifi.Intell.,1987,32 (1):57-95.
    [54]Segall M D, Lindan P J D, Probert M J. First-principles simulation:ideas, illustrations and the CASTEP code[J]. J. Phys. Condens. Matter,2002,14 (11):2717-2721.
    [55]Gonze X, Beuken J M. First-principles computation of material properties:the abinit software project[J]. Comp. Mater. Science,2002,25 (3):478-492.
    [56]Kohn W, Sham L J. Self-consistent Equations Including Exchange and Correlation Effeets[J]. Phys.Rev.A.,1965,40:1133-1138.
    [57]Vosko S J, Wilk L, Nusair M. Aceurates Pin-dependent Eleetron Liquid Correlation Energies for Local Spin Density Calculations:a Critical Analysis[J]. J. Can. Phys.,1980,58:1200-1211.
    [58]Perdew J P, Zunger A. Self-interaetion Correetion to Density-functional Approximations for Many-electron Systems[J]. Phys.Rev.B,1981,23:5048-5079.
    [59]Hammer B, Hansen L B. Improved adsorption energetics within density functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Phys. Rev. B,1999,59(11):7413-7421.
    [60]Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Aade Simple[J]. Phys. Rev. Lett.,1996,77:3865-3868.
    [61]Vanderbilt D. Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J]. Phys. Rev. B.,1990,41:7892-7895.
    [62]Carey J H, Lawrence J, Tosine H M. Photodechiorination of PCB in the presence of titanium dioxide in aqueous suspensions [J]. Bull Environ. Contam.Toxic.,1976, 16(6):697-701.
    [63]刘正宝,姚清照.光催化氧化技术及其发展[J].工业水处理,1997,17(6):7-8.
    [64]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社,2003:39
    [65]Sanati M,Wallenberg L R, Andersson A. Vanadia catalysts on anatase, rutile, and TiO2(B) for the ammoxidation of toluene:an ESR and high-resolution electron microscopy characterization[J]. J. Catal.,1991,132(1):128-144.
    [66]田晓宁,赵玉宝.新结构TiO2(B)的常温合成和表征[C].第十四届全国催化学术会议论文集,南京,2008,126-127.
    [67]Asahi R, Mannstadt W. Electronic and optical properties of anatase TiO2[J]. Phys. Rev. B,2000,61(11):7459.
    [68]Fahmi A, Minot C, Silvi B. Electronic and optical properties of three phases of titanium dioxide:rutile, anatase, and brookite[J]. Phys.Rev.B,1995,51:13023.
    [69]郭玉宝,杨儒.金红石型纳米TiO2(110)表面原子结构和电子结构的理论研究[J].北京化工大学学报,2004,31(5):64-68.
    [70]负江妮,张志勇,邓周虎.Sb掺杂SrTiO3电子结构的第一性原理计算[J].半导体学报,2006,27(9):1537.
    [71]廖斌,覃礼钊,侯兴刚,刘安东.线性缀加平面波法计算掺杂钨和钒锐钛矿二氧化钛的电子结构[J].化学学报,2008,66(2):281-284.
    [72]张勇,唐超群,戴君.锐钛矿TiO2及其掺Fe所导致的红移现象研究:赝势计算和紫外光谱实验[J].物理学报,2005,54(1):323-327.
    [73]Shieh D L, Ho C H, Lin J L. Study of preparation of mesoporous TiO2-B nanofibers from mesoporous anatase TiO2 and interaction between CH3I and TiO2-B[J]. Micro. Meso. Mater.,2008, (109):362-369.
    [74]Sorapong Pavasupree, Yoshikazu Suzuki. Synthesis of titanate, TiO2 (B), and anatase TiO2 nanofibers from natural rutile sand[J]. J.Solid State Chem.,2005, (178):3110-3116.
    [75]Armstrong G, Armstrong A R, Canales J, Bruce P G. Nanotubes with the TiO2-B structure[J]. Chem. Commun.,2005,2454-2456.
    [76]Armstrong A R, Armstrong G, Canales J. TiO2-B Nanowires[J]. Angew.Chem. Int. Ed.,2004,43(17):2286-2288.
    [77]Feist T P, Davies P K. The soft chemical synthesis of TiO2 (B) from layered titanates[J]. J. Solid State Chem.,1992, (101):275-295.
    [78]Clark S J, Segall M D, Pickard C J. First principles methods using CASTEP[J]. Z. Kristallogr.,2005,220:567-570.
    [79]Howard C J, Sabine T M, Dickson F. Structural and thermal parameters for rutile and anatase[J]. Acta. Crys:Sect.B:struct.Sci.,1991,47:462-466.
    [80]高濂.纳米氧化钛光催化材料及应用[M].化学化工出版社,北京,2002.12.
    [81]Kim S, Park H, Choi W. Comparative study of homogeneous and heterogeneous photocatalytic redox reactions:PW12O403- vs TiO2[J]. J.Phys.Chem.B,2004,108: 6402-6411.
    [82]Khulbe K C, Matsuura T. Characterization of synthetic membranes by Raman spectroscopy, electron spin resonance, and atomic force microscopy; a review[J]. Polymer,2000,5(41):1917-1935.
    [83]Halberstadt M L, Rhee S K, Mansfield J A. Effects of potassium titanate fibre on the wear of automotive brake linings[J]. Wear,1978,46 (1):109-126.
    [84]Matsui Toshiaki, Takeshita Shinya. Proton conductivity of (NH4)2TiP4O13-based material for intermediate temperature fuel cells[J]. Elec.chem.commun.,2004, 6:180-182.
    [85]Peters T, Hobbs D. Strontium and Actinide Separations from High Level Nuclear Waste Solutions Using Monosodium Titanate 2. Actual Waste Testing[J]. Sep. Sci. Tech.,2006,41(11):2409-2427.
    [86]Wang X D, Jin Z S, Zhang Z J. Nanotube sodium titanate and its derivatives [J]. in Prog. Chem.,2006,18(9):1208-1217.
    [87]Andersson S. NaxTi4O8 an alkali metal titanium dioxide bronze[J]. Acta. Cryst., 1962,15:201-206.
    [88]Yang J J, Jin Z S, Wang X D. Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2[J]. Dalton Trans.,2003(20):3898-3901.
    [89]Baliteau S, Sauvet A. Controlled synthesis and characterization of sodium titanate composites Na2Ti3O7/Na2Ti6O13[J]. Solid State Ionics.,2007,178(27-28): 1517-1522.
    [90]Armstrong A, Armstrong G. TiO2-B nanowires[J]. Angew. Chem. Int. Ed.,2004, 43(17):2286-2288.
    [91]赵庆勋,王书彪.Pb(Zr0.4Ti0.6)O3电子结构的第一性原理研究[J].原子与分子物理学报,2007,24(5):951-956.
    [92]赵新新,宓一鸣.Cu(001)表面CO吸附单层结构和电子态的第一性原理研究[J].物理化学学报,2008,24(1):127-132.
    [93]Masahiro M, Kumagai Y, Katsuyuki Matsunaga, Tanaka I. First-principles investigation of atomic structures and stability of proton-exchanged layered sodium titanate[J].Phys. Rev. B.,2009,79(14):41171-41176.
    [94]张士晶,李光华.αt-SrMnO3电子结构的第一性原理研究[J].高等学校化学学报,2009,30(2):227-230.
    [95]陈琦丽,唐超群.N/F掺杂和N-F双掺杂锐钛矿相TiO2(101)表面电子结构的第一性原理计算[J].物理化学学报,2009,25(5):915-920.
    [96]Zarate R A, Fuentes S. Structural characterization of single crystals of sodium titanate nanowires prepared by hydrothermal process[J]. J.Crystal Growth,2008, 310(15):3630-3637.
    [97]Meng X D, Wang D Z, Liu J H, Zhang S Y. Preparation and characterization of sodium titanate nanowires from brookite nanocrystallites[J]. Mater. Res. Bulletin, 2004,39 (14-15):2163-2170.
    [98]Wei M, Qi Z M. Synthesis of one-dimensional sodium titanate nanostructures [J]. J. Nano.sci Nanotechnol.,2007,7(3):1065-1068.
    [99]Tao Y R, Zhang Y L, Zhang L L. Synthesis, characterization and gas-sensing properties of sodium titanate nanobelts[J]. J. Chin. Inorg. Chem.,2008,24(10): 1570-1575.
    [100]Kim I D, Rothschild A, Lee B H, Kim D Y. Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers[J]. Nano.Lett.,2006,6:2009-2013.
    [101]Lei Y, Zhang L D, Meng G W, Li G H. Preparation and photoluminescence of highly ordered TiO2 nanowire arrays[J]. Appl. Phys. Lett.,2001,78:1125-1127.
    [102]Park I S, Jang S R, Hong J S. Preparation of composite anatase TiO2 nanostructure by precipitation from hydrolyzed TiCl4 solution using anodic alumina membrane[J]. Chem. Mater.,2003,15:4633-4636.
    [103]Lin Y, Wu G S, Yuan X Y, Xie T. Fabrication and optical properties of TiO2 nanowire arrays made by sol-gel electrophoresis deposition into anodic alumina membranes[J]. J. Phys.:Condens. Matter.,2002,15:2917-2922.
    [104]Miao Z, Dong S X, Ouyang J. Electrochemically induced sol-gel preparation of single-crystalline TiO2[J]. Nanowires Nanoletters,2002,2:717-720.
    [105]Lei Y, Zhang L D, Fan J C. Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3[J]. Chem. Phys. Lett.,2001,338:231-236.
    [106]Dupuis A C, Jordin L, Rouviere J E. Catalytic growth of TiO2 nanowires from a TiN thin film[J]. Appl. Surf. Sci.,2006,253:1227-1235.
    [107]Morgado E, de Abreu M A S, Moure G T, Marinkovic B A, Jardim P M. Characterization of nanostructured titanates obtained by alkali treatment of TiO2-anatases with distinct crystal sizes[J]. Chem. Mater.,2007,19:665-676.
    [108]Yuan Z Y, Su B L. Titanium oxide nanotubes, nanofibers and nanowires[J]. Colloids Surf. A,2004,241:173-183.
    [109]Suzuki Y, Yoshikawa S. Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method[J]. J. Mater. Res.,2004,19: 982-985.
    [110]Yoshida R, Suzuki Y, Yoshikawa S. Effects of synthetic conditions and heattreatment on the structure of partially ion-exchanged titanate nanotubes, Mater. Chem. Phys.,2005,91:409-416.
    [111]Yoshida R, Suzuki Y, Yoshikawa S, Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments[J]. J. Solid State Chem.,2005,178:2179-2185.
    [112]Jitputti J, Suzuki Y, Yoshikawa S, Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution[J]. Catal. Commun.,2008,9: 1265-1271.
    [113]Kakihana M, Tomita K, Petrykin V. Chelating of titanium by lactic acid in the water soluble diammonium tris(2-hydroxypropionato) titanate[J]. Inorg. Chem., 2004,43:4546-4548.
    [114]Tomita K, Petrykin V, Kobayashi M, Shiro M, Yoshimura M, Kakihana M. A water-soluble titanium complex for the selective synthesis of nanocrystalline Brookite, Rutile, and Anatase by a hydrothermal method[J]. Angew. Chem. Int. Ed.,2006,45:2378-2381.
    [115]Kobayashi M, Tomita K, Petrykin V, Yoshimura M, Kakihana M. Direct synthesis of brookite-type titanium oxide by hydrothermal method using water-soluble titanium complexes[J]. J. Mater. Sci.,2008,43:2158-2162.
    [116]Zhu J F, Zhang J L, Chen F, Anpo M. Preparation of high photocatalytic activity TiO2 with a bicrystalline phase containing anatase and TiO2(B)[J]. J. Mater. Lett.,2005,59:3378-3381.
    [117]Bavykin D V, Friedrich J M, Walsh FC. Protonated titanates and TiO2 nanostructured materials:synthesis, properties, and applications[J]. Adv Mater., 2006,18:2807-2824.
    [118]Barka N, Assabbane A, Nounah A, Dussaud J, Ichou Y A. Photocatalytic degradation of methyl orange with immobilized TiO2 nanoparticles:effect of pH and some inorganic anions[J]. Phys. Chem. News,2008,41:85-88.
    [119]Hoffman M S, Martin S T, Choi W. Environmental application of semiconductor photocatalysis[J]. Chem. Rev.,1995,95(1):69-96.
    [120]Bavykin D V, Parmon V N, Lapkin A A. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes[J]. J. Mater. Chem., 2004,14:3370-3377.
    [121]Wang Y Q, Hu G Q, Duan X F. Microstructure and formation mechanism of titanium dioxide nanorubes[J]. Chem. Phys. Lett.,2002,365:427-431.
    [122]Reddy B M, Rao K N, Reddy G K. Characterization and catalytic activity of V2O5/Al2O3-TiO2 for selective oxidation of 4-methylanisole[J]. J. Mol. Catal. A: Chem.,2006,253:44-51.
    [123]Jing L, Xin B, Yuan F. Effects of Surface Oxygen Vacancies on Photophysical and Photochemical Processes of Zn-Doped TiO2 Nanoparticles and Their Relationships[J]. J. Phys. Chem. B.,2006,110(36):17860-17865.
    [124]Perez-Hernandez R, Gomez-Cortes A, Arenas-Alatorre J. SCR of NO by CH4 on Pt/ZrO2-TiO2 sol-gel catalysts[J]. Catal. Today,2005,107/108:149-156.
    [125]Jenny B, Pichat P. Determination of the actual photocatalytic rate of H2O2 decomposition over suspended TiO2. Fitting to the Langmuir-Hinshelwood form[J]. Langmuir,1991,7(5):947-954.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700