基于金属氧化物TiO_2和Y_2O_3纳米材料光电性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文围绕Ti02和Y203纳米材料的光电性质展开研究,论文的主要内容分为三部分:
     1.采用光催化合成的方法制备Ag-TiO2纳米复合材料,并对纳米结构形成的机理做出了解释。
     令合成的过程中,在紫外光激发下Ti02纳米棒产生的电子还原Ag(Ⅰ)并产生若干Ag的纳米颗粒沉积在TiO2纳米棒的表面。通过延长光照时间,在紫外光促进的熟化作用下,粒径较小的Ag颗粒被光生空穴氧化、溶解,随后被光生电子还原并沉积在较大的Ag颗粒上,从而形成一个Ag纳米颗粒对应一根Ti02纳米棒的异质结结构。Ag纳米颗粒的粒径可以通过改变紫外光照的时间和空穴捕获剂的量来精确调节。
     (?)将Ag-TiO2纳米复合材料用作反型薄膜太阳能电池的电荷传输层,相比纯TiO2制备的器件,光电转换效率明显增加,从5.81%增加至6.92%。从外量子效率谱中可以看出,Ag的引入可以有效提高对电子的收集作用。
     2.在Ti02纳米棒催化合成Au颗粒中,通过对实验条件的控制,如反应温度、紫外光照时间、TiO2纳米棒的量等,Au纳米颗粒的形成机理得以研究(?)实验证明,单分散且粒径可控的Au纳米颗粒可以通过TiO2纳米棒光化学还原的方法被合成。
     (?) Au纳米颗粒的形成可以分为以下三个过程:Au(Ⅲ)还原形成Au(O),成核,籽晶生长。通过控制实验条件可以得出以下结论:第一步的还原反应主要取决于体系的温度,而成核和籽晶生长的速度主要取决于TiO2产生的电子的数量。
     3.通过共沉淀和热处理的合成方法制备了Er和Yb双掺的Y203纳米颗粒。通过表面活性剂引入缺陷和高温退火消除缺陷,研究了两个过程对Y203:Er,Yb纳米颗粒的形貌以及上转换发光性质的影响,在此基础上,阐述了发光颜色调控的机理。
     (?)由于表面活性剂可以在发光体系中引入缺陷,所以控制其浓度可以达到调控绿光(2H11/2,4S3/2→4I15/2)和红光(4F9/2→4◇15/2)上转换发光的强度的目的。同时,缺陷的增加导致了4F7/2,2H11/2和4S3/2向4F9/2弛豫几率的增加,进而使得材料发光的红绿比得到控制。
     (?)在体系中,通过高温退火消除缺陷,进而可以选择性的提高绿光(2H11/2,4S3/2→4I15/2)和红光(4F9/2→4I15/2)的发光强度,使材料的发光颜色从红光向绿光转变。
     图69幅,表7个,参考文献202篇
This work is focused on the investigation of optoelectroic properties based on TiO2and Y2O3nano-materials. The main contents of dissertation include three parts.
     1. A photocatalytic strategy was developed to synthesize colloidal Ag-TiO2nanorod composites and the mechanism of the formation for Ag-TiO2nanorod composites was investigated.
     (?) Under UV illumination, TiO2nanorods produces electrons which reduce Ag (Ⅰ) precursor and deposit multiple small Ag nanoparticles on the surface of TiO2nanorods. Prolonged the time of UV irradiation induces an ripening process, in which the smaller nanoparticles is dissolved by photo-generated oxidative species and then redeposited onto one largest and more stable particle attached to each TiO2nanorod. The size of the Ag nanoparticles can be precisely controlled by varying the irradiation time and the amount of alcohol additive.
     (?)The Ag-TiO2nanorod composites were used as electron transport layers in the fabrication of organic solar cells, and showed notable enhancement in power conversion efficiency (6.92%) than pure TiO2nanorods (5.81%), which is attributed to the improved electron extraction.
     2. For the photocatalytic synthesis of gold nanoparticles assisted by TiO2nanorods, the mechanism was studied carefully by change the reaction temperature, UV irradiation time and amount of the TiO2nanorods.
     (?) Monodispersed gold nanoparticles were synthesized through a photochemical reduction approach using TiO2nanorods as the photocatalysts.
     (?) The formation of Au nanoparticles ccould be divided into three processes:the reduction of Au(Ⅲ), nucleation and growth of the gold seeds. The first step mainly depends on the temperature. And nucleation and growth of the gold seeds processes highly depend on the electrons generated on the TiO2nanorods.
     3. Er and Yb co-doped Y2O3nanoparticles were prepared by using a coprecipitation method followed by a post-thermal-treatment. In order to study the upconversion properties of the Y2O3:Er, Yb nanoparticls, the defects were induced and removed by surfactant and calcination. Moreover, the mechanism of color tuning was investigated.
     (?)The green (2H11/2,4S3/2→4I15/2) and red emission (4F9/2→4I15/sn) intensity can be effectively tuned by varying the surfactant concentration, which can induce the defects in the as-obtained products. The probability of quenching from4F7/2,2H11/2, and4S3/2to4F9/2could be increased as the number of defects introduced by the surfactant increases, and thus the ratio of red to green emission is also changed.
     (?) After removing the defects via high temperature calcination, the green emission (2H11/2,4S3/2→4I15/2) and red emission (4F9/2→4I15/2) of Er ions are enhanced selectively, which leads to that the color of upconversion emittion is tuned from red to green.
引文
1. Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. Nature 1972,238,37-38.
    2. Liu, Y.; Claus, R. O., Blue light emitting nanosized TiO2 colloids. Journal of the American Chemical Society 1997,119 (22),5273-5274. 3. Zhang, S.; Wei, S.-H.; Zunger, A., Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Physical Review B 2001,63 (7),075205.
    4. Jiang, Y.; Meng, X. M.; Liu, J.; Hong, Z. R.; Lee, C. S.; Lee, S. T., ZnS nanowires with wurtzite polytype modulated structure. Advanced Materials 2003,15 (14),1195-1198.
    5. Puddu, V.; Mokaya, R.; Puma, G. L., Novel one step hydrothermal synthesis of TiO2/WO3 nanocomposites with enhanced photocatalytic activity. Chemical Communications 2007, (45), 4749-4751.
    6. Zhang, J.; Doutt, D.; Merz, T.; Chakhalian, J.; Kareev, M.; Liu, J.; Brillson, L. Depth-resolved subsurface defects in chemically etched SrTiO3. Applied Physics Letters 2009,94 (9), 092904-092904-3.
    7. Ashokkumar, M., An overview on semiconductor particulate systems for photoproduction of hydrogen. International Journal of Hydrogen Energy 1998,23 (6),427-438.
    8. Hanaor, D. A.; Sorrell, C. C., Review of the anatase to rutile phase transformation. Journal of Materials Science 2011,46 (4),855-874.
    9. Joshi, K.; Shrivastava, V., Photocatalytic degradation of Chromium (VI) from wastewater using nanomaterials like TiO2, ZnO, and CdS. Applied Nanoscience 2011,1 (3),147-155.
    10.郭刚;杨定明;熊玉竹;段小平;黄婉霞;涂铭旌,纳米Ti02和纳米ZnO的紫外光学特性及其在聚丙烯抗老化改性中的应用研究[J].功能材料 2004,35(1),183-187.
    11. Li, X. D.; Han, X. J.; Wang, W. Y.; Liu, X. H.; Wang, Y.; Liu, X. R., Synthesis, characterization and photocatalytic activity of Nb-doped TiO2 nanoparticles. Advanced MaterialsResearch 2012,455,110-114.
    12. Zhang, Q.; Joo, J. B.; Lu, Z.; Dahl, M.; Oliveira, D. Q. L.; Ye, M.; Yin, Y, Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Research 2011,4(1),103-114.
    13. Mo, S.-D.; Ching, W., Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Physical Review B 1995,51 (19),13023.
    14. Reyes-Coronado, D.; Rodriguez-Gattorno, G.; Espinosa-Pesqueira, M.; Cab, C.; De Coss, R.; Oskam, G., Phase-pure TiO2 nanoparticles:anatase, brookite and rutile. Nanotechnology 2008, 19(14),145605.
    15. Li, J.-G.; Ishigaki, T.; Sun, X., Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions:phase-selective synthesis and physicochemical properties. The Journal of Physical Chemistry C 2007,111 (13),4969-4976.
    16. Robert, J.; HubertaMutin, P., Preparation of anatase, brookite and rutile at low temperature by non-hydrolytic sol-gel methods. Journal of Materials Chemistry 1996,6 (12),1925-1932.
    17. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W., Environmental applications of semiconductor photocatalysis. Chemical Reviews 1995,95 (1),69-96.
    18. Zhang, Z.; Yates Jr, J. T., Band bending in semiconductors:chemical and physical consequences at surfaces and interfaces. Chemical Reviews 2012,112 (10),5520-5551.
    19. Adhikary, P.; Venkatesan, S.; Maharjan, P. P.; Galipeau, D.; Qiao, Q., Enhanced Performance of PDPP3T/PC60BM Solar Cells Using High Boiling Solvent and UV-Ozone Treatment. Electron Devices, IEEE Transactions on 2013,60 (5),1763-1768.
    20. Wen, C. Z.; Jiang, H. B.; Qiao, S. Z.; Yang, H. G.; Lu, G. Q., Synthesis of high-reactive facets dominated anatase TiO2. Journal of Materials Chemistry 2011,21 (20),7052-7061.
    21. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q., Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008,453 (7195), 638-641.
    22. Joo, J. B.; Dahl, M.; Li, N.; Zaera, F.; Yin, Y., Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications. Energy & Environmental Science 2013,6 (7), 2082-2092.
    23. Chen, X.; Mao, S. S., Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications. Chemical Reviews 2007,107(1),2891-2959.
    24. Hochbaum, A. I.; Yang, P., Semiconductor Nanowires for Energy Conversion. Chemical Reviews 2009,110 (1),527-546.
    25. Lii, X.; Mou, X.; Wu, J.; Zhang, D.; Zhang, L.; Huang, F.; Xu, F.; Huang, S., Improved-Performance Dye-Sensitized Solar Cells Using Nb-Doped TiO2 Electrodes:Efficient Electron Injection and Transfer. Advanced Functional Materials 2010,20 (3),509-515.
    26. Linsebigler, A. L.; Lu, G.; Yates, J. T., Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results. Chemical Reviews 1995,95 (3),735-758.
    27. Chemseddine, A.; Moritz, T., Nanostructuring titania:control over nanocrystal structure, size, shape, and organization. European Journal of Inorganic Chemistry 1999,1999 (2),235-245.
    28. Liu, S.; Gan, L.; Liu, L.; Zhang, W.; Zeng, H., Synthesis of single-crystalline TiO2 nanotubes. Chemistry of Materials 2002,14 (3),1391-1397.
    29. Cozzoli, P. D.; Kornowski, A.; Weller, H., Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2 Nanorods. Journal of the American Chemical Society 2003,125 (47),14539-14548.
    30. Trentler, T. J.; Denler, T. E.; Bertone, J. F.; Agrawal, A.; Colvin, V. L., Synthesis of TiO2 Nanocrystals by Nonhydrolytic Solution-Based Reactions. Journal of the American Chemical Society 1999,121 (7),1613-1614.
    31. Jun, Y.-w.; Casula, M. F.; Sim, J.-H.; Kim, S. Y.; Cheon, J.; Alivisatos, A. P., Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. Journal of the American Chemical Society 2003,125 (51),15981-15985.
    32. Zhang, Q.; Gao, L., Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method:insights from rutile TiO2. Langmuir 2003,19 (3),967-971.
    33. Li, X. L.; Peng, Q.; Yi, J. X.; Wang, X.; Li, Y., Near monodisperse TiO2 nanoparticles and nanorods. Chemistry-A European Journal 2006,12 (8),2383-2391.
    34. Kim, C.-S.; Moon, B. K.; Park, J.-H.; Tae Chung, S.; Son, S.-M., Synthesis of nanocrystalline TiO2 in toluene by a solvothermal route. Journal of Crystal Growth 2003,254 (3-4), 405-410.
    35. Zhang, R.; Elzatahry, A. A.; Al-Deyab, S. S.; Zhao, D., Mesoporous titania:From synthesis to application. Nano Today 2012,7 (4),344-366.
    36. Yang, P.; Zhao, D.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D., Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 1998,396 (6707), 152-155.
    37. Yu, C.; Tian, B.; Zhao, D., Recent advances in the synthesis of non-siliceous mesoporous materials. Current Opinion in Solid State and Materials Science 2003,7 (3),191-197.
    38. Tian, B.; Yang, H.; Liu, X.; Xie, S.; Yu, C.; Fan, J.; Tu, B.; Zhao, D., Fast preparation of highly ordered nonsiliceous mesoporous materials via mixed inorganic precursors. Chemical Communications 2002, (17),1824-1825.
    39. Chen, H.; Nanayakkara, C. E.; Grassian, V. H., Titanium dioxide photocatalysis in atmospheric chemistry. Chemical Reviews 2012,112 (11),5919-5948.
    40. Chen, S.; Li, J.; Qian, K.; Xu, W.; Lu, Y.; Huang, W.; Yu, S., Large scale photochemical synthesis of M@TiO2 nanocomposites (M= Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Research 2010,3 (4),244-255.
    41. Jakob, M.; Levanon, H.; Kamat, P. V., Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles:Determination of Shift in the Fermi Level. Nano Letters 2003,3 (3), 353-358.
    42. Fox, M. A.; Dulay, M. T., Heterogeneous photocatalysis. Chemical Reviews 1993,93 (1), 341-357.
    43. Taing, J.; Cheng, M. H.; Hemminger, J. C., Photodeposition of Ag or Pt onto TiO2 Nanoparticles Decorated on Step Edges of HOPG. ACS nano 2011,5 (8),6325-6333.
    44. Zhang, H.; Li, X.; Chen, G., Ionic liquid-facilitated synthesis and catalytic activity of highly dispersed Ag nanoclusters supported on TiO2. Journal of Materials Chemistry 2009,19 (43), 8223-8231.
    45. Berger, T.; Monllor-Satoca, D.; Jankulovska, M.; Lana-Villarreal, T.; Gomez, R., The Electrochemistry of Nanostructured Titanium Dioxide Electrodes. ChemPhysChem 2012,13 (12), 2824-2875.
    46. Gomes Silva, C.; Juarez, R.; Marino, T.; Molinari, R.; Garcia, H., Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. Journal of the American Chemical Society 2010,133 (3),595-602.
    47. Qu, Y.; Duan, X., Progress, challenge and perspective of heterogeneous photocatalysts. Chemical Society Reviews 2013,42 (7),2568-2580.
    48. Marschall, R., Semiconductor Composites:Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Advanced Functional Materials 2013.
    49. Guijarro, N.; Lana-Villarreal, T.; Mora-Sero, I.; Bisquert, J.; Gomez, R., CdSe quantum dot-sensitized TiO2 electrodes:effect of quantum dot coverage and mode of attachment. The Journal of Physical Chemistry C 2009,113 (10),4208-4214.
    50. Brus, V.; Ilashchuk, M.; Kovalyuk, Z.; Maryanchuk, P.; Ulyanytsky, K., Electrical and photoelectrical properties of photosensitive heterojunctions n-TiO2/p-CdTe. Semiconductor Science and Technology 2011,26 (12),125006.
    51. Lesnyak, V.; Voitekhovich, S. V.; Gaponik, P. N.; Gaponik, N.; Eychmuller, A., CdTe Nanocrystals Capped with a Tetrazolyl Analogue of Thioglycolic Acid:Aqueous Synthesis, Characterization, and Metal-Assisted Assembly. ACS nano 2010,4 (7),4090-4096.
    52. Ronson, T. K.; McQuillan, A. J., Infrared spectroscopic study of calcium and phosphate ion coadsorption and of brushite crystallization on TiO2. Langmuir 2002,18 (12),5019-5022.
    53. Serpone, N.; Lawless, D.; Disdier, J.; Herrmann, J.-M., Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids:naked and with the lattice doped with Cr3+, Fe3+, and V3+ cations. Langmuir 1994,10 (3),643-652.
    54. Shah, S.; Li, W.; Huang, C.-P.; Jung, O.; Ni, C., Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles. Proceedings of the National Academy of Sciences of the United States of America 2002,99 (Suppl 2),6482-6486.
    55. Wang, X.; Li, J.-G.; Kamiyama, H.; Moriyoshi, Y.; Ishigaki, T., Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron (Ⅲ)-doped TiO2 nanopowders under UV and visible light irradiation. The Journal of Physical Chemistry B 2006,110 (13),6804-6809.
    56. Sathish, M.; Viswanathan, B.; Viswanath, R.; Gopinath, C. S., Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chemistry of Materials 2005,17(25),6349-6353.
    57. Park, J. H.; Kim, S.; Bard, A. J., Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Letters 2006,6(1),24-28.
    58. Yu, J. C.; Yu, J.; Ho, W.; Jiang, Z.; Zhang, L., Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chemistry of Materials 2002,14 (9), 3808-3816.
    59. Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K., Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters 2002,81 (3),454-456.
    60. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001,293 (5528),269-271.
    61. Chandiran, A. K.; Sauvage, F. d. r.; Casas-Cabanas, M.; Comte, P.; Zakeeruddin, S. M.; Graetzel, M., Doping a TiO2 Photoanode with Nb3+ to Enhance Transparency and Charge Collection Efficiency in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2010,114 (37), 15849-15856.
    62. Hsu, S.-C.; Liao, W.-P.; Lin, W.-H.; Wu, J.-J., Modulation of Photocarrier Dynamics in Indoline Dye-Modified TiO2 Nanorod Array/P3HT Hybrid Solar Cell with 4-tert-Butylpridine. The Journal of Physical Chemistry C 2012.
    63. Kang, H.; Lee, C.; Yoon, S. C.; Cho, C.-H.; Cho, J.; Kim, B. J., Layer-by-Layer Assembled Multilayer TiOx for Efficient Electron Acceptor in Polymer Hybrid Solar Cells. Langmuir 2010,26 (22),17589-17595.
    64. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature materials 2005,4 (11),864-868.
    65. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P., Hybrid Nanorod-Polymer Solar Cells. Science 2002,295 (5564),2425-2427.
    66. He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y., Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics 2012,6 (9),593-597.
    67. Chen, S.; Small, C. E.; Amb, C. M.; Subbiah, J.; Lai, T.-h.; Tsang, S.-W.; Manders, J. R.; Reynolds, J. R.; So, F., Inverted Polymer Solar Cells with Reduced Interface Recombination. Advanced Energy Materials 2012,2 (11),1333-1337.
    68. Zou, J.; Yip, H.-L.; Zhang, Y.; Gao, Y.; Chien, S.-C.; O'Malley, K.; Chueh, C.-C.; Chen, H.; Jen, A. K. Y., High-Performance Inverted Polymer Solar Cells:Device Characterization, Optical Modeling, and Hole-Transporting Modifications. Advanced Functional Materials 2012,22 (13), 2804-2811.
    69. Wang, D.; Hou, S.; Wu, H.; Zhang, C.; Chu, Z.; Zou, D., Fiber-shaped all-solid state dye sensitized solar cell with remarkably enhanced performance via substrate surface engineering and TiO2 film modification. Journal of Materials Chemistry 2011,21 (17),6383-6388.
    70. Park, M.-H.; Li, J.-H.; Kumar, A.; Li, G.; Yang, Y, Doping of the Metal Oxide Nanostructure and its Influence in Organic Electronics. Advanced Functional Materials 2009,19 (8), 1241-1246.
    71. Chen, S.; Manders, J. R.; Tsang, S.-W.; So, F., Metal oxides for interface engineering in polymer solar cells. Journal of Materials Chemistry 2012,22 (46),24202-24212.
    72. Cai, X.; Hou, S.; Wu, H.; Lv, Z.; Fu, Y.; Wang, D.; Zhang, C.; Kafafy, H.; Chu, Z.; Zou, D., All-carbon electrode-based fiber-shaped dye-sensitized solar cells. Physical Chemistry Chemical Physics 2012,14 (1),125-130.
    73. Mor, G. K.; Kim, S.; Paulose, M.; Varghese, O. K.; Shankar, K.; Basham, J.; Grimes, C. A., Visible to Near-Infrared Light Harvesting in TiO2 Nanotube Array-P3HT Based Heterojunction Solar Cells. Nano Letters 2009,9 (12),4250-4257.
    74. Li, S.-S.; Chang, C.-P.; Lin, C.-C.; Lin, Y.-Y.; Chang, C.-H.; Yang, J.-R.; Chu, M.-W.; Chen, C.-W., Interplay of Three-Dimensional Morphologies and Photocarrier Dynamics of Polymer/TiO2 Bulk Heterojunction Solar Cells. Journal of the American Chemical Society 2011,133 (30),11614-11620.
    75. Salim, T.; Yin, Z.; Sun, S.; Huang, X.; Zhang, H.; Lam, Y. M., Solution-Processed Nanocrystalline TiO2 Buffer Layer Used for Improving the Performance of Organic Photovoltaics. ACS Applied Materials & Interfaces 2011,3 (4),1063-1067.
    76.白木;子荫,稀土发光材料的发光原理与应用.椤与照明 2002,6,019.
    77.李建保;周益春,新材料科学及其实用技术.清华大学出版社有限公司:2004.
    78. Dieke, G. H.; Crosswhite, H. M.; Crosswhite, H., Spectra and energy levels of rare earth ions in crystals.1968.
    79. Auzel, F., Upconversion and anti-stokes processes with f and d ions in solids. Chemical reviews 2004,104 (1),139-174.
    80. Zou, X.; Izumitani, T., Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses. Journal of Non-Crystalline Solids 1993,162 (1),68-80.
    81. Antich, P.; Tsyganov, E.; Malakhov, N.; Sadygov, Z., Avalanche photo diode with local negative feedback sensitive to UV, blue and green light. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment 1997, 389(3),491-498.
    82. Kumar, R.; Nyk, M.; Ohulchanskyy, T. Y.; Flask, C. A.; Prasad, P. N., Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Advanced Functional Materials 2009,19 (6),853-859.
    83. Guyot, Y.; Manaa, H.; Rivoire, J.; Moncorge, R.; Gamier, N.; Descroix, E.; Bon, M.; Laporte, P., Excited-state-absorption and upconversion studies of Nd 3+-doped single crystals Y3 Al5 O12, YLiF4, and LaMgAl11O19. Physical Review B 1995,51 (2),784.
    84. Wang, F.; Deng, R.; Wang, J.; Wang, Q.; Han, Y.; Zhu, H.; Chen, X.; Liu, X., Tuning upconversion through energy migration in core-shell nanoparticles. Nature materials 2011,10 (12), 968-973.
    85. Hwang, B.-C.; Jiang, S.; Luo, T.; Watson, J.; Sorbello, G.; Peyghambarian, N., Cooperative upconversion and energy transfer of new high ErJ+ and Yb3+ Er3+ doped phosphate glasses. JOSA B 2000,17 (5),833-839.
    86. Wang, Y.; Ohwaki, J., New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion. Applied Physics Letters 1993,63 (24),3268-3270.
    87. Joubert, M.-F., Photon avalanche upconversion in rare earth laser materials. Optical materials 1999,11 (2),181-203.
    88. Heer, S.; Kompe, K.; Gudel, H. U.; Haase, M., Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide-Doped NaYF4 Nanocrystals. Advanced Materials 2004,16(23-24),2102-2105.
    89. Chung, S.-J.; Kim, K.-S.; Lin, T.-C.; He, G. S.; Swiatkiewicz, J.; Prasad, P. N., Cooperative enhancement of two-photon absorption in multi-branched structures. The Journal of Physical Chemistry B 1999,103 (49),10741-10745.
    90. Wang, F.; Liu, X., Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chemical Society Reviews 2009,38 (4),976-989.
    91. Zhou, J.; Liu, Z.; Li, F., Upconversion nanophosphors for small-animal imaging. Chemical Society Reviews 2012,41 (3),1323-1349.
    92. Haase, M.; Schafer, H., Upconverting nanoparticles. Angewandte Chemie International Edition 2011,50 (26),5808-5829.
    93. Diamente, P. R.; Raudsepp, M.; van Veggel, F. C. J. M., Dispersible Tm3+-Doped Nanoparticles that Exhibit Strong 1.47μm Photoluminescence. Advanced Functional Materials 2007, 17(3),363-368.
    94. Van Dijk, J.; Schuurmans, M., On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f-4f transitions in rare-earth ions. The Journal of Chemical Physics 1983,78 (9),5317-5323.
    95. Wang, L.; Li, Y., Na (Y1.5Na0.5) F6 single-crystal nanorods as multicolor luminescent materials. Nano letters 2006,6 (8),1645-1649.
    96. Hu, H.; Chen, Z.; Cao, T.; Zhang, Q.; Yu, M.; Li, F.; Yi, T.; Huang, C., Hydrothermal synthesis of hexagonal lanthanide-doped LaF3 nanoplates with bright upconversion luminescence. Nanotechnology 2008,19 (37),375702.
    97. Li, Z.; Zhang, Y, An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 2008,19 (34),345606.
    98. Mai, H.-X.; Zhang, Y.-W.; Si, R.; Yan, Z.-G.; Sun, L.-d.; You, L.-P.; Yan, C.-H., High-Quality Sodium Rare-Earth Fluoride Nanocrystals:Controlled Synthesis and Optical Properties. Journal of the American Chemical Society 2006,128 (19),6426-6436.
    99. Yi, G. S.; Chow, G. M., Synthesis of Hexagonal-Phase NaYF4:Yb, Er and NaYF4:Yb, Tm Nanocrystals with Efficient Up-Conversion Fluorescence. Advanced Functional Materials 2006, 16(18),2324-2329.
    100. Chen, G.; Ohulchanskyy, T. Y.; Kumar, R.; Agren, H.; Prasad, P. N., Ultrasmall Monodisperse NaYF4:Yb3+/Tm3+ Nanocrystals with Enhanced Near-Infrared to Near-Infrared Upconversion Photoluminescence. ACS Nano 2010,4 (6),3163-3168.
    101. An, L.; Zhang, J.; Liu, M.; Wang, S., Preparation and Upconversion Properties of Yb3+, Ho3+:Lu2O3 Nanocrystalline Powders. Journal of the American Ceramic Society 2005,88 (4), 1010-1012.
    102. Wang, X.; Kong, X.; Yu, Y.; Sun, Y.; Zhang, H., Effect of Annealing on Upconversion Luminescence of ZnO:Er3+ Nanocrystals and High Thermal Sensitivity. The Journal of Physical Chemistry C 2007,111 (41),15119-15124.
    103. Capobianco, J. A.; Vetrone, F.; Boyer, J. C.; Speghini, A.; Bettinelli, M., Enhancement of Red Emission (4F9/2→4I15/2) via Upconversion in Bulk and Nanocrystalline Cubic Y2O3:Er3+. The Journal of Physical Chemistry B 2002,106(6),1181-1187.
    104. Guo, H.; Dong, N.; Yin, M.; Zhang, W.; Lou, L.; Xia, S., Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals. The Journal of Physical Chemistry B 2004,108 (50),19205-19209.
    105. Tromp, R. M.; Hannon, J. B., Thermodynamics of nucleation and growth. Surface Review and Letters 2002,9,1565-1593.
    106. Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J., Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews 2004,104 (9),3893-3946.
    107. Ehlert, O.; Thomann, R.; Darbandi, M.; Nann, T., A Four-Color Colloidal Multiplexing Nanoparticle System. ACS Nano 2008,2(1),120-124.
    108. Liu, C.; Chen, D., Controlled synthesis of hexagon shaped lanthanide-doped LaF3 nanoplates with multicolor upconversion fluorescence. Journal of Materials Chemistry 2007,17 (37), 3875-3880.
    109. Heer, S.; Lehmann, O.; Haase, M.; Gudel, H. U., Blue, Green, and Red Upconversion Emission from Lanthanide-Doped LuPO4 and YbPO4 Nanocrystals in a Transparent Colloidal Solution. Angewandte Chemie International Edition 2003,42 (27),3179-3182.
    110. Jia, G.; You, H.; Song, Y.; Huang, Y.; Yang, M.; Zhang, H., Facile synthesis and luminescence of uniform Y2O3 hollow spheres by a sacrificial template route. Inorganic chemistry 2010,49 (17),7721-7725.
    111. Vetrone, F.; Naccache, R.; Mahalingam, V.; Morgan, C. G.; Capobianco, J. A., The Active-Core/Active-Shell Approach:A Strategy to Enhance the Upconversion Luminescence in Lanthanide-Doped Nanoparticles. Advanced Functional Materials 2009,19 (18),2924-2929.
    112. Wang, F.; Wang, J.; Liu, X., Direct Evidence of a Surface Quenching Effect on Size-Dependent Luminescence of Upconversion Nanoparticles. Angewandte Chemie 2010,122 (41), 7618-7622.
    113. Chen, G.; Zhang, Y.; Somesfalean, G.; Zhang, Z.; Sun, Q.; Wang, F., Two-color upconversion in rare-earth-ion-doped ZrO 2 nanocrystals. Applied Physics Letters 2006,89 (16), 163105-163105-3.
    114. Wang, L.; Yan, R.; Huo, Z.; Wang, L.; Zeng, J.; Bao, J.; Wang, X.; Peng, Q.; Li, Y., Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles. Angewandte Chemie International Edition 2005,44 (37),6054-6057.
    115. Wang, F.; Liu, X., Upconversion Multicolor Fine-Tuning:Visible to Near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles. Journal of the American Chemical Society 2008,130 (17),5642-5643.
    116. Tu, D.; Liu, L.; Ju, Q.; Liu, Y; Zhu, H.; Li, R.; Chen, X., Time-Resolved FRET Biosensor Based on Amine-Functionalized Lanthanide-Doped NaYF4 Nanocrystals. Angewandte Chemie International Edition 2011,50 (28),6306-6310.
    117. Wang, L.; Li, P.; Wang, L., Luminescent and hydrophilic LaF3-polymer nanocomposite for DNA detection. Luminescence 2009,24(1),39-44.
    118. He, M.; Huang, P.; Zhang, C.; Hu, H.; Bao, C.; Gao, G.; He, R.; Cui, D., Dual Phase Controlled Synthesis of Uniform Lanthanide-Doped NaGdF4 Upconversion Nanocrystals Via an OA/Ionic Liquid Two-Phase System for In Vivo Dual-Modality Imaging. Advanced Functional Materials 2011,21 (23),4470-4477.
    119. Capobianco, J. A.; Vetrone, F.; Boyer, J. C.; Speghini, A.; Bettinelli, M., Enhancement of red emission (4F9/2→ 4I15/2) via upconversion in bulk and nanocrystalline cubic Y2O3:Er3+. The Journal ofPhysical Chemistry B 2002,106(6),1181-1187.
    120. Boyer, J.-C; Van Veggel, F. C., Absolute quantum yield measurements of colloidal NaYF4 Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2010,2 (8),1417-1419.
    121. Wang, F.; Wang, J.; Liu, X., Direct Evidence of a Surface Quenching Effect on Size-Dependent Luminescence of Upconversion Nanoparticles. Angewandte Chemie 2010,122 (41), 7618-7622.
    122. Yi, G.-S.; Chow, G.-M., Water-soluble NaYF4:Yb, Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chemistry of Materials 2007,19 (3),341-343.
    123. Guo, H.; Li, Z.; Qian, H.; Hu, Y.; Muhammad, I. N., Seed-mediated synthesis of NaY F4: Y b, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity. Nanotechnology 2010,21 (12),125602.
    124. Wang, F.; Wang, J.; Liu, X., Direct Evidence of a Surface Quenching Effect on Size-Dependent Luminescence of Upconversion Nanoparticles. Angewandte Chemie International Edition 2010,49 (41),7456-7460.
    125. Feng, W.; Sun, L.-D.; Yan, C.-H., Ag nanowires enhanced upconversion emission of NaYF4:Yb, Er nanocrystals via a direct assembly method. Chemical Communications 2009, (29), 4393-4395.
    126. Liu, N.; Qin, W.; Qin, G.; Jiang, T.; Zhao, D., Highly plasmon-enhanced upconversion emissions from Au@ β-NaYF4:Yb, Tm hybrid nanostructures. Chemical Communications 2011,47 (27),7671-7673.
    127. Zhang, H.; Li, Y.; Ivanov, I. A.; Qu, Y.; Huang, Y.; Duan, X., Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angewandte Chemie 2010,122 (16),2927-2930.
    128. Zhang, F.; Braun, G. B.; Shi, Y.; Zhang, Y.; Sun, X.; Reich, N. O.; Zhao, D.; Stucky, G., Fabrication of Ag@ SiO2@ Y2O3:Er nanostructures for bioimaging:Tuning of the upconversion fluorescence with silver nanoparticles. Journal of the American Chemical Society 2010,132 (9), 2850-2851.
    129. Zhang, F.; Shi, Q.; Zhang, Y.; Shi, Y.; Ding, K.; Zhao, D.; Stucky, G. D., Fluorescence Upconversion Microbarcodes for Multiplexed Biological Detection: Nucleic Acid Encoding. Advanced Materials 2011,23 (33),3775-3779.
    130.Xiong, L.-Q.; Chen, Z.-G.; Yu, M.-X.; Li, F.-Y.; Liu, C.; Huang, C.-H., Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials 2009,30 (29),5592-5600.
    131. Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J.; Wang, L.-W.; Alivisatos, A. P., Colloidal nanocrystal heterostructures with linear and branched topology. Nature 2004,430 (6996), 190-195.
    132. Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V., Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chemical Reviews 2010,110 (1),389.
    133.Menagen, G.; Macdonald, J. E.; Shemesh, Y.; Popov, I.; Banin, U., Au Growth on Semiconductor Nanorods:Photoinduced versus Thermal Growth Mechanisms. Journal Of The American Chemical Society 2009,131 (47),17406-17411.
    134. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One-Dimensional Nanostructures:Synthesis, Characterization, and Applications. Advanced Materials 2003,15 (5),353-389.
    135. Zhang, Q.; Lima, D. Q.; Lee, I.; Zaera, F.; Chi, M.; Yin, Y, A Highly Active Titanium Dioxide Based Visible-Light Photocatalyst with Nonmetal Doping and Plasmonic Metal Decoration. Angewandte Chemie 2011,123 (31),7226-7230.
    136. Cozzoli, P. D.; Comparelli, R.; Fanizza, E.; Curri, M. L.; Agostiano, A.; Laub, D., Photocatalytic Synthesis of Silver Nanoparticles Stabilized by TiO2 Nanorods:A Semiconductor/Metal Nanocomposite in Homogeneous Nonpolar Solution. Journal of the American Chemical Society 2004,126 (12),3868-3879.
    137. Petronella, F.; Fanizza, E.; Mascolo, G.; Locaputo, V.; Bertinetti, L.; Martra, G.; Coluccia, S.; Agostiano, A.; Curri, M. L.; Comparelli, R., Photocatalytic Activity of Nanocomposite Catalyst Films Based on Nanocrystalline Metal/Semiconductors. The Journal of Physical Chemistry C 2011, 115(24),12033-12040.
    138. Zheng, Z.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y.; Whangbo, M.-H., Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M= Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. Journal Of Materials Chemistry 2011,21 (25), 9079-9087.
    139. Tian, Y; Tatsuma, T., Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles. Journal of the American Chemical Society 2005,127 (20),7632-7637.
    140. Hirakawa, T.; Kamat, P. V., Charge Separation and Catalytic Activity of Ag@TiO2 Core-Shell Composite Clusters under UV-Irradiation. Journal Of The American Chemical Society 2005,127 (11),3928-3934.
    141. Subramanian, V.; Wolf, E. E.; Kamat, P. V., Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration. Journal of the American Chemical Society 2004,126(15),4943-4950.
    142. You, X.; Chen, F.; Zhang, J.; Anpo, M., A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide. Catalysis Letters 2005,102 (3-4),247-250.
    143. Zhang, Q.; Ge, J.; Pham, T.; Goebl, J.; Hu, Y.; Lu, Z.; Yin, Y., Reconstruction of Silver Nanoplates by UV Irradiation:Tailored Optical Properties and Enhanced Stability. Angewandte Chemie International Edition 2009,48 (19),3516-3519.
    144. Dinh, C.-T.; Nguyen, T.-D.; Kleitz, F.; Do, T.-O., A New Route to Size and Population Control of Silver Clusters on Colloidal TiO2 Nanocrystals. ACS Applied Materials & Interfaces 2011, 3 (7),2228-2234.
    145. Kamat, P. V, Meeting the Clean Energy Demand:Nanostructure Architectures for Solar Energy Conversion. The Journal of Physical Chemistry C 2007,111 (7),2834-2860.
    146. Zhang, D.; Choy, W. C. H.; Xie, F.; Sha, W. E. I.; Li, X.; Ding, B.; Zhang, K.; Huang, F.; Cao, Y, Plasmonic Electrically Functionalized TiO2 for High-Performance Organic Solar Cells. Advanced Functional Materials 2013, DOI:10.1002/adfm.201203776.
    147. Choi, H.; Ko, S.-J.; Choi, Y.; Joo, P.; Kim, T.; Lee, B. R.; Jung, J.-W.; Choi, H. J.; Cha, M.; Jeong, J.-R., Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nature Photonics 2013,7 (9),732-738.
    148. Xu, M.-F.; Zhu, X.-Z.; Shi, X.-B.; Liang, J.; Jin, Y.; Wang, Z.-K.; Liao, L.-S., Plasmon Resonance Enhanced Optical Absorption in Inverted Polymer/Fullerene Solar Cells with Metal Nanoparticle-Doped Solution-Processable TiO2 Layer. ACS Applied Materials & Interfaces 2013,5 (8),2935-2942.
    149. Pearson, W., Lattice spacings and structures of metals and alloys. Vols. I and II (Pergamon Press, Oxford,1964,1967) 1958.
    150.黄惠忠;材料学,纳米材料分析.化学工业出版社:2003;Vol.3.
    151.叶恒强;王元明,透射电子显微学进展.科学出版社:2003.
    152.朱永法,纳米材料的表征与测试技术.化学工业出版社:2006.
    153. Joo, J.; Kwon, S. G.; Yu, T.; Cho, M.; Lee, J.; Yoon, J.; Hyeon, T., Large-Scale Synthesis of TiO2 Nanorods via Nonhydrolytic Sol-Gel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation of E. coli. The Journal of Physical Chemistry B 2005,109 (32), 15297-15302.
    154. Zhang, H.; Finnegan, M.; Banfield, J. F., Preparing Single-Phase Nanocrystalline Anatase from Amorphous Titania with Particle Sizes Tailored by Temperature. Nano Letters 2000,1 (2), 81-85.
    155. Choi, W.; Termin, A.; Hoffmann, M. R., The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. The Journal of Physical Chemistry 1994,98 (51),13669-13679.
    156. Shkrob, I. A.; Sauer, M. C., Hole Scavenging and Photo-Stimulated Recombination of Electron-Hole Pairs in Aqueous TiO2 Nanoparticles. The Journal of Physical Chemistry B 2004,108 (33),12497-12511.
    157. You, J.; Li, X.; Xie, F.-X.; Sha, W. E. I.; Kwong, J. H. W.; Li, G.; Choy, W. C. H.; Yang, Y., Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode. Advanced Energy Materials 2012,2 (10),1203-1207.
    158. Xiao, Y.; Yang, J. P.; Cheng, P. P.; Zhu, J. J.; Xu, Z. Q.; Deng, Y. H.; Lee, S. T.; Li, Y Q.; Tang, J. X., Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles. Applied Physics Letters 2012,100 (1),013308.
    159. Wang, C. C.; Choy, W. C.; Duan, C.; Fung, D. D.; Wei, E.; Xie, F.-X.; Huang, F.; Cao, Y, Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells. Journal of Materials Chemistry 2012,22 (3),1206-1211.
    160. Subramanian, V.; Wolf, E. E.; Kamat, P. V., Influence of Metal/Metal Ion Concentration on the Photocatalytic Activity of TiO2-Au Composite Nanoparticles. Langmuir 2002,19 (2),469-474.
    161. Chan, S. C.; Barteau, M. A., Preparation of Highly Uniform Ag/TiO2 and Au/TiO2 Supported Nanoparticle Catalysts by Photodeposition. Langmuir 2005,21 (12),5588-5595.
    162. Mohamed, H. H.; Dillert, R.; Bahnemann, D. W., Kinetic and Mechanistic Investigations of the Light Induced Formation of Gold Nanoparticles on the Surface of TiO2. Chemistry-A European Journal 2012,18 (14),4314-4321.
    163. Zhang, Q.; Joo, J.-B.; Lu, Z.; Dahl, M.; Oliveira, D. Q.; Ye, M.; Yin, Y, Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Research 2011,4(1),103-114.
    164. Joo, J. B.; Zhang, Q.; Dahl, M.; Lee, I.; Goebl, J.; Zaera, F.; Yin, Y, Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energy & Environmental Science 2012,5 (4),6321-6327.
    165. Cozzoli, P. D.; Curri, M. L.; Giannini, C.; Agostiano, A., Synthesis of TiO2-Au Composites by Titania-Nanorod-Assisted Generation of Gold Nanoparticles at Aqueous/Nonpolar Interfaces. Small 2006,2 (3),413-421.
    166. Sahyun, M. R. V.; Serpone, N., Primary Events in the Photocatalytic Deposition of Silver on Nanoparticulate TiO2. Langmuir 1997, 13(19),5082-5088.
    167. Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S., Dumbbell-like Bifunctional Au-Fe3O4 Nanoparticles. Nano Letters 2005,5(2),379-382.
    168.Xu, C.; Xie, J.; Ho, D.; Wang, C.; Kohler, N.; Walsh, E. G.; Morgan, J. R.; Chin, Y. E.; Sun, S., Au-Fe3O4 Dumbbell Nanoparticles as Dual-Functional Probes. Angewandte Chemie International Edition 2008,47 (1),173-176.
    169. Xing, M.-Y.; Yang, B.-X.; Yu, H.; Tian, B.-Z.; Bagwasi, S.; Zhang, J.-L.; Gong, X.-Q., Enhanced Photocatalysis by Au Nanoparticle Loading on TiO2 Single-Crystal (001) and (110) Facets. The Journal of Physical Chemistry Letters 2013,4 (22),3910-3917.
    170. Lu, X.; Tuan, H.-Y.; Korgel, B. A.; Xia, Y., Facile Synthesis of Gold Nanoparticles with Narrow Size Distribution by Using AuCl or AuBr as the Precursor. Chemistry-A European Journal 2008,14(5),1584-1591.
    171. Chen, S. F.; Li, J. P.; Qian, K.; Xu, W. P.; Lu, Y.; Huang, W. X.; Yu, S. H., Large scale photochemical synthesis of M@ TiO2 nanocomposites (M= Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Research 2010,3 (4),244-255.
    172. Cozzoli, P. D.; Curri, M. L.; Giannini, C.; Agostiano, A., Synthesis of TiO2-Au Composites by Titania-Nanorod-Assisted Generation of Gold Nanoparticles at Aqueous/Nonpolar Interfaces. Small 2006,2 (3),413-421.
    173. Zheng, Z.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y.; Whangbo, M. H., Facile in situ synthesis of visible-light plasmonic photocatalysts M@ TiO2 (M= Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. Journal of Materials Chemistry 2011,21 (25), 9079-9087.
    174. Wilson, R.; Cossins, A. R.; Spiller, D. G., Encoded Microcarriers For High-Throughput Multiplexed Detection. Angewandte Chemie International Edition 2006,45 (37),6104-6117.
    175. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., Quantum dot bioconjugates for imaging, labelling and sensing. Nature materials 2005,4 (6),435-446.
    176. Han, M.; Gao, X.; Su, J. Z.; Nie, S., Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnology 2001,19 (7),631-635.
    177. Silversmith, A. J.; Lenth, W.; Macfarlane, R. M., Green infrared-pumped erbium upconversion laser. Applied Physics Letters 1987,51 (24),1977-1979. 178. Chen, D.; Yu, Y.; Huang, P.; Weng, F.; Lin, H.; Wang, Y., Optical spectroscopy of Eu3+ and Tb3+ doped glass ceramics containing LiYbF4 nanocrystals. Applied Physics Letters 2009,94 (4), 041909.
    179. Heer, S.; Lehmann, O.; Haase, M.; Giidel, H.-U., Blue, Green, and Red Upconversion Emission from Lanthanide-Doped LUPO4 and YbPO4 Nanocrystals in a Transparent Colloidal Solution. Angewandte Chemie International Edition 2003,42 (27),3179-3182.
    180. Wang, F.; Xue, X.; Liu, X., Multicolor Tuning of (Ln, P)-Doped YVO4 Nanoparticles by Single-Wavelength Excitation. Angewandte Chemie International Edition 2008,47 (5),906-909.
    181. Chen, G. Y.; Zhang, Y G.; Somesfalean, G.; Zhang, Z. G.; Sun, Q.; Wang, F. P., Two-color upconversion in rare-earth-ion-doped ZrO2 nanocrystals. Applied Physics Letters 2006,89 (16), 163105.
    182. Chen, G. Y.; Liu, Y.; Zhang, Y. G.; Somesfalean, G.; Zhang, Z. G.; Sun, Q.; Wang, F. P., Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals. Applied Physics Letters 2007,91 (13),133103.
    183.Pires, A.; Heer, S.; Gudel, H.; Serra, O., Er, Yb Doped Yttrium Based Nanosized Phosphors:Particle Size, "Host Lattice" and Doping Ion Concentration Effects on Upconversion Efficiency. Journal of Fluorescence 2006,16 (3),461-468.
    184. Pires, A. M.; Serra, O. A.; Heer, S.; Gudel, H. U., Low-temperature upconversion spectroscopy of nanosized Y2O3:Er,Yb phosphor. Journal of Applied Physics 2005,98 (6),063529-7.
    185. Bai, X.; Song, H.; Pan, G.; Lei, Y.; Wang, T.; Ren, X.; Lu, S.; Dong, B.; Dai, Q.; Fan, L., Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects. The Journal of Physical Chemistry C 2007,111 (36),13611-13617.
    186. Vetrone, F.; Boyer, J.-C.; Capobianco, J. A.; Speghini, A.; Bettinelli, M., Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals. Journal of Applied Physics 2004,96 (1),661-667.
    187. Qin, X.; Yokomori, T.; Ju, Y, Flame synthesis and characterization of rare-earth (Er3+, Ho3+, and Tm3+) doped upconversion nanophosphors. Applied Physics Letters 2007,90 (7),073104.
    188. Portales, H.; Goubet, N.; Saviot, L.; Yang, P.; Sirotkin, S.; Duval, E.; Mermet, A.; Pileni, M.-P., Crystallinity Dependence of the Plasmon Resonant Raman Scattering by Anisotropic Gold Nanocrystals. ACS nano 2010,4 (6),3489-3497.
    189.杨南如;南京化工大学,无机非金属材料测试方法.武汉工业大学出版社:1990.
    190. Readey, M. J.; Lee, R.-R.; Halloran, J. W.; Heuer, A. H., Processing and Sintering of Ultrafine MgO-ZrO2 and (MgO, Y2O3)-ZrO2 Powders. Journal of the American Ceramic Society 1990,73(6),1499-1503.
    191. Jadhav, A. P.; Kim, C. W.; Cha, H. G.; Pawar, A. U.; Jadhav, N. A.; Pal, U.; Kang, Y. S., Effect of Different Surfactants on the Size Control and Optical Properties of Y2O3:Eu3+ Nanoparticles Prepared by Coprecipitation Method. The Journal of Physical Chemistry C 2009,113 (31),13600-13604.
    192. Pang, Q.; Shi, J.; Liu, Y.; Xing, D.; Gong, M.; Xu, N., A novel approach for preparation of Y2O3:Eu3+ nanoparticles by microemulsion-microwave heating. Materials Science and Engineering: B 2003,103(1),57-61.
    193. Li, N.; Yanagisawa, K., Controlling the morphology of yttrium oxide through different precursors synthesized by hydrothermal method. Journal of Solid State Chemistry 2008,181 (8), 1738-1743.
    194. Bai, X.; Song, H.; Yu, L.; Yang, L.; Liu, Z.; Pan, G.; Lu, S.; Ren, X.; Lei, Y.; Fan, L., Luminescent Properties of Pure Cubic Phase Y2O3/Eu3+ Nanotubes/Nanowires Prepared by a Hydrothermal Method. The Journal of Physical Chemistry B 2005,109 (32),15236-15242.
    195. Dhanaraj, J.; Jagannathan, R,; Kutty, T. R. N.; Lu, C.-H., Photoluminescence Characteristics of Y2O3/Ev3+ Nanophosphors Prepared Using Sol-Gel Thermolysis. The Journal of Physical Chemistry B 2001,105 (45),11098-11105.
    196. Yongqing, Z.; Zihua, Y; Shiwen, D.; Mande, Q.; Jian, Z., Synthesis and characterization of Y2O3/Eu3+ nanopowder via EDTA complexing sol-gel process. Materials Letters 2003,57 (19), 2901-2906.
    197. Yan, T.; Zhang, D.; Shi, L.; Yang, H.; Mai, H.; Fang, J., Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3/Eu3+ nanospheres. Materials Chemistry and Physics 2009,117 (1),234-243.
    198. Zhang, J.; Wang, S.; Rong, T.; Chen, L., Upconversion Luminescence in Er3+Doped and Yb3+/Er3+Codoped Yttria Nanocrystalline Powders. Journal of the American Ceramic Society 2004,87(6),1072-1075.
    199.Wang, F.; Han, Y.; Lim, C. S.; Lu, Y; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M.; Liu, X., Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010,463 (7284),1061-1065.
    200. Cao, T.; Yang, Y; Gao, Y; Zhou, J.; Li, Z.; Li, F., High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. Biomaterials 2011,32 (11),2959-2968.
    201. Shi, W.; Zeng, H.; Sahoo, Y; Ohulchanskyy, T. Y; Ding, Y; Wang, Z. L.; Swihart, M.; Prasad, P. N., A General Approach to Binary and Ternary Hybrid Nanocrystals. Nano Letters 2006,6 (4),875-881.
    202. Lu, Q.; Hou, Y.; Tang, A.; Wu, H.; Teng, F., Upconversion multicolor tuning:Red to green emission from Y2O3:Er, Yb nanoparticles by calcination. Applied Physics Letters 2013,102 (23), 233103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700