燃气内燃机热电冷联产系统的应用实践研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对目前热电冷联产技术研究多见于理论分析而少有应用实践研究的现状,首次自主搭建一个基于燃气内燃机和烟气吸收热泵的热电冷联产系统实验平台,通过对实际系统的全面测试、模拟及分析,研究实际联产系统中可能存在的问题及解决的途径,从而为实际系统的设计及运行提供参考。
     论文研究进行的思路是:实验测试与模拟分析相结合,通过实验测试发现可能存在的问题,然后通过模拟对问题进行分析及评价,并指导实验系统进行改进。研究的内容主要从系统能效、运行策略可及性、运行安全控制及环境影响这四个角度来展开。
     系统能效研究中,通过对系统各环节性能的测试及模拟分析,提出了实验系统中目前存在的问题,并对问题的解决途径及潜力进行分析;指出了烟道构件对保温烟道散热的影响不容忽视,并对烟气吸收热泵在热电冷联产系统中应用的可行性、以及影响其能效的主要因素进行了分析与评价。
     系统运行策略可及性研究中,通过对燃气内燃机、烟气吸收热泵等动态响应性能的实测及系统热动态响应的模拟分析,对系统启停、以热定电等运行策略的可及性进行了探讨,指出了实际系统运行过程中可能存在的某些运行策略不可及的问题。
     运行安全控制研究中,针对内燃机纯发电机组缸套水控制策略在热电冷联产系统应用中易出现的问题,提出了分级控制策略;并对烟气吸收热泵启停机的安全控制流程及安全运行区域进行了分析。
     系统环境影响研究中,对燃气内燃机的噪声特征进行了实测分析,并通过降噪实践证实了燃气内燃机噪声控制的可行性;对燃气内燃机的污染排放进行了实测分析及评价。
     综述之,本论文基于实际系统的测试及模拟分析,获得了热电冷联产系统在能效、运行策略可及性、安全控制及环境影响等方面一些新的认识,为热电冷联产系统的合理应用奠定了基础。
Most research regarding Building Cooling, Heating and Power (BCHP) technology now focuses on theory analysis rather than application study. In this thesis, a BCHP system based on gas engine and exhaust-gas absorption heat pump is built, measured, simulated and analyzed for the first time. The existing problems in practical cogeneration system are studied and the solution is proposed, which would help to practical BCHP system design and operation in future.
     The main study methods applied in this thesis are field measurement and simulation. First, problems are found by field measurement. Then they are explained and analyzed by simulation. Based on the results, improving means are proposed. The research contents include system energy efficiency, operation strategies, operation safety control and environmental effect. In term of system energy efficiency, the performance of each part of the system is measured, simulated and analyzed. Existing problems in system, improving means and potential are illuminated. It is pointed out that components of exhaust pipe can have large influence on the heat transfer performance of heat-preservation pipe. Additionally, the feasibility and the main effect factors of energy efficiency of exhaust-gas absorption heat pump are analyzed and evaluated.
     In terms of system operation strategies, the dynamic response of gas engine and exhaust-gas absorption heat pump is measured, simulated and analyzed. The availability of system start and shut down and the operation strategy of“fixing power based on heat”are discussed. The problems that may occur in practical system operation are proposed.
     In terms of safety control, step control strategy of jacket water system is proposed and applied in gas engine-based BCHP system. Besides, the safeoperation range and operation schedule of exhaust-gas absorption heat pump are discussed and analyzed.
     In term of environmental effect, the noise characteristics of gas engine are analyzed. Then, the feasibility to the noise control of gas engine is approved through practice. Meanwhile the pollution emission of gas engine is measured and analyzed.
     In conclusion, based on field measurement of practical system and simulation analysis, new knowledge in the energy efficiency, operation strategy, safety control and environmental effect of BCHP system is gained, which would be the basis of the practical application of BCHP system in future.
引文
[1] 左立明. 促进先进、成熟、经济的节能技术的推广与应用. 中国能源,1999(8): 21-26
    [2] 国家环保总局,2004 年中国环境状况公报:大气环境,2004
    [3] 戴永庆,耿惠彬,蔡小荣. 燃气空调及其应用. 机电设备,2003 (2): 15 -21
    [4] 王文龙等. 2005 年京津唐电网经济合理的电源结构(之一). 中国电力,1999,1: 12-14
    [5] 朱成章. 关于发展天然气电厂的讨论. 中国能源,2002, 2: 22-24
    [6] 徐 建 中 , 江 丽 霞 , 金 红 光 . 分 布 式 供 电 和 冷 热 电 联 产 的 前 景 . http: ∥www.china5e.com.
    [7] 华贲,赖元楷. 优化利用天然气资源,大力建设分布式能源站. 能源政策研究,2003, (5)
    [8] 江亿. 东部城市天然气应用方式探讨. 中国工程科学,2002,4(10): 36-39
    [9] 陈新华. “理直”才能“气壮”--论中国天然气发展的七大关系. 国际石油经济,2003,12: 34~39
    [10] 罗丽芬,张跃. 燃气空调――21 世纪的住宅空调. 制冷与空调,2002, 2(1): 6-12
    [11] 王振铭. 树立科学发展观,积极发展小型热电冷联产. 中国—欧盟热电冷分布式能源政策机制、创新技术及市场前景国际研讨会. 杭州:2004
    [12] 于吉波,王海. 日本热电联供的发展与实践. 海峡两岸第三届热电联产学术交流会论文集,2004, 6:465-472
    [13] 朱成章. 美国冷热电联产纲领及启示. 中国电力,2000,9:91-94
    [14] 李先瑞. 燃气热电冷联产是天然气供热的最佳方式. 区域供热,2003(3): 36-42
    [15] 薛 梅 , 董 华 . 天 然 气 热 电 冷 联 产 系 统 的 效 益 分 析 . 煤 气 与 热 力 , 2003, 23(5):309-311
    [16] 韩晓平. 小型燃气轮机热电联产――西气东输市场的最佳选择. 节能与环保,2002(2): 8-12
    [17] 钟史明. 21 世纪我国热电联产、集中供热的展望. 区域供热,2001(1): 1-6
    [18] 叶大均,李宇红. 燃气-蒸汽联合循环城市小区热电冷联产――我国利用天然气的理想途径. 热能动力工程,2001(3):125-128
    [19] 俞建洪. 论燃气轮机热电冷联产分布式电源系统. 福建能源开发与节约, 2003(3):10-15
    [20] 张永. 天然气热电冷联产的环保优越性. 山东电力技术,2000(2)
    [21] 北京市建筑设计研究院等. 奥运能源展示中心预可知性研究报告. 2003,11
    [22] Lazzarin R.M. A new HVAC system based on cogeneration by an I.C. engine. Applied Thermal Engineering. 1996, 16(7):551-559
    [23] 忻奇峰 . 燃气轮机热电联供系统运行经济性分析 . 能源技术, 2003, 24(5): 195-198
    [24] Mone C D, Chau D S, Phelan P E. Economic feasibility of combined heat and power and absorption refrigeration with commercially available gas turbines. Energy Conversion and Management. 2001,42: 1559-1573
    [25] Gianni B, Umberto D et al. Internal combustion engine combined heat and power plants: case study of the University of Perugia power plant. Applied Thermal Engineering. 1998,18(6): 401-412
    [26] Gunnel S, Dag H. Investments in combined heat and power: influence of fuel price on cost minimized operation. Energy Conversion and Management. 2002, 43:639-650
    [27] 耿克诚. 楼宇式天然气热电冷联产系统的评价及应用研究:[硕士学位论文]. 北京:清华大学建筑技术科学系,2005
    [28] Li H, Fu L, Geng K C, et al. Energy utilization evaluation of CCHP systems, Energy & Building. 2006, 38(3): 253-257
    [29] Yokoyama R., Ito K. Optimal operational planning of cogeneration systems with thermal storage by the decomposition method. Transactions of the ASME, Journal of energy resources technology. 1995, 117(12): 337-342
    [30] Ito K, Yokoyama R, and Shiba T. Optimal operation of a diesel engine cogeneration plant including a heat storage tank. Transactions of the ASME, Journal of engineering for gas turbines and power. 1992, 114(10): 687-694
    [31] Ito K, Shiba T and Yokoyama R. Optimal operation of a cogeneration plant in combination with electric heat pumps. Transactions of the ASME, Journal of energy resources technology. 1994, 116(3): 56-63
    [32] Asano H, et al. Impacts of time-of-use rates on the optimal sizing and operation of cogeneration systems. Transaction on power systems. 1992, 7(4):1444-1450
    [33] Yokoyama R, Ito K and Matsumoto Y. Optimal sizing of a gas turbine cogeneration plant in consideration of its operational strategy. Transactions of the ASME, Journal of engineering for gas turbines and power. 1994, 116(1): 32-38
    [34] Collet P.J. Cogeneration and Heat Pumps in Combination with Thermal Storage. ASHRAE Trans. 1988,26(1): 1933-1946
    [35] Marek C. Building load profiles and optimal CHP systems. ASHRAE Transaction. 2002: 682-690
    [36] Tsay M, Lin W, Lee J. Application of evolutionary programming for economic dispatch of cogeneration systems under emission constraints. Electrical Power and Energy Systems. 2001, 23:805-812
    [37] Tsay M. Applying the multi-objective approach for operation strategy of cogeneration systems under environmental constraints. Electrical Power and Energy Systems. 2003, 25:219-226
    [38] Tsay M, Lin W. Application of evolutionary programming to optimal operational strategy cogeneration system under time-of-use rates. Electrical Power and Energy Systems. 2000,22: 367-373
    [39] Lahdelma R, Hakonen H. An efficient linear programming algorithm for combined heat heat and power production. European Journal of Operational Research. 2003, 148: 141-151
    [40] Wong K P, Algie C. Evolutionary programming approach for combined heat and power dispatch. Electric Power Systems Research. 2002, 61: 227-232
    [41] Arivalagan A and Raghavendra B G, Rao A R K. Integrated energy optimization model for a cogeneration based energy supply system in the process industry. Electrical Power & Energy Systems. 1995, 17(4): 227-233
    [42] Manolas D A, Gialamas T P, Frangopoulos C A, et al. A genetic algorithm for operation optimization of an industrial cogeneration system. Computers Chem. Engineering. 1996, 20(1): 1107-1112
    [43] Dimitri A, Christos M, Frangopoulos A, et al. Operation optimization of an industrial cogeneration system by a genetic algorithm. Energy Convers. 1997,38(15-17): 1625-1636
    [44] Song Y H, Chou C S, Stonham T J. Combined heat and power economic dispatch by improved ant colony search algorithm. Electric Power Systems Research. 1999, 52:115-121
    [45] Gamou S, yokoyama R, Ito k. Optimal unit sizing of cogeneration systems in consideration of uncertain energy demands as continuous random variables. Energy Conversion and Management. 2002, 43: 1349-1361
    [46] 张蓓红,龙惟定. 热电冷联产系统优化配置研究. 暖通空调,2005,35(4)1-4
    [47] 付林. 热电冷联产系统电力调峰运行研究:[博士学位论文]. 北京:清华大学建筑技术科学系,2000
    [48] Wojcieh K, Janusz S. Thermodynamic and economic analysis of heat storage application in co-generation systems. International Journal of Energy Research. 2004,12:177-188
    [49] 胡文斌,华贲,郭荷清. 蓄冷模式下楼宇热电冷联产系统的分析. 煤气与热力,2004,12:670-674
    [50] 李永红. 蓄能模式下楼宇热电冷联产系统优化运行和设计分析:[硕士学位论文]. 北京:清华大学建筑技术科学系,2005
    [51] 韩晓平. 热电冷/冰电池联合循环――异步融错能源系统发电技术的梦之组合. 中国-欧盟热电冷分布式能源国际研讨会论文集. 2004,4
    [52] 姜周曙,胡亚才,屠传经,等. 应用溴化锂吸收式制冷技术提高燃气轮机电站发电效率的研究. 动力工程,1999,19(4): 300-304
    [53] Jens P. Thermodynamic Modeling and performance of combined solid oxide fuel cell and gas turbine systems. [博士学位论文]. Lund University,Sweden. 2002,5
    [54] 谢英柏,马一太,杨昭,等. 燃气机热泵的热电冷三联供系统分析. 工程热物理学报,2002, 23(3):283-285
    [55] 候根富,威穆,春峰. 燃气热泵式冷热水机组运行特性分析. 煤气与热力, 2001,2: 133-135
    [56] 焦文玲,胥杰. 燃气热泵技术及其应用. 煤气与热力,2001,7: 54-56
    [57] 刘万福,马一太,杨昭,等. 内燃机拖动地源热泵系统的实验研究. 工程热物理学报,2002,6: 9-12
    [58] 候根富,王威,穆春峰. 燃气热泵式冷热水机组运行特性分析. 煤气与热力,2001, 21(2):133-135
    [59] 候根富,段常贵,马最良. 风冷燃气机驱动压缩式热泵冷热水机组运行特性实验研究. 暖通空调,2001, 31(3): 5-8
    [60] 刘晓华,耿克成,张野. BCHP 与溶液除湿系统在某示范建筑中的应用,分布式能源热电冷联产研讨会论文集,2003,12: 93-99
    [61] 刘晓华,李震,耿克成. 溶液除湿系统与 BCHP 复合系统的应用研究,分布式能源热电冷联产研讨会论文集,2003,12: 100-108
    [62] Hwang Y. Potential energy benefits of integrated refrigeration system with microturbine and absorption chiller, International Journal of Refrigeration 2004,27: 816-829
    [63] Matthew C, Xiaohong L, Radermacher R. Performance comparison of waste heat-driven desiccant systems. ASHRAE Transaction. 2003, 5(3): 572-579
    [64] Popovic P, Marantan A, Radermacher R, et al. Integration of microturbine with single-effect exhaust-driven absorption chiller and solid wheel desiccant system. ASHRAE Transaction. 2002, 5(3): 660-669
    [65] Marantan A, Popovic P, Radermacher R. The potencial of CHP technology in commercial buildings – characterizing the CHP demonstration building. ASHRAE Transaction. 2002, 18(1): 1025-1031
    [66] Labinov S D, Zaltash A, Rizy D T, et al. Predictive algorithms for microturbine performance for BCHP systems. ASHRAE Transaction. 2002, 5(4): 670-681
    [67] Henderson H I, Jr. R E, Sand J R, An hourly building simulation tool to evaluate hybrid desiccant system configuration options. ASHRAE Transaction. 2003, 5(1): 551-564
    [68] Petrov AY, Zaltash A, Vineyard E A, et al. Baseline and IES performance of a direct-fired desiccant dehumidification unit under various environmental conditions. ASHRAE Transaction. 2003, 5(2): 565-571
    [69] Petrov A Y, Zaltash A, Labinov S D, et al. Dynamic performance of a 30-kW microturbine-based CHP system. ASHRAE Transaction. 2005, 9(3): 802-809
    [70] 崔永章,钱中贤. 翅片换热器中天然气烟气的冷凝传热. 山东建筑工程学院学报,2000, l15(2): 41-45
    [71] 伍成波. 高温换热器烟气侧传热特性的研究. 工业沪,1997,3:15-20
    [72] 曹彦斌,艾效逸,郭全,等. 伴随有水蒸气凝结的烟气对流换热的实验研究. 工程热物理学报,2000, 21(6): 729-733
    [73] 贾力,彭晓峰,王锡高. 具有混合气体冷凝的燃气锅炉系统. 工业加热, 2001,5:1-3
    [74] 贾力,张秋宏. 冷凝式 PT FF 换热器研究初步.北京建筑下程学院学报,1998, 2: 1-6
    [75] 贾力,孙金栋,李孝萍. 湿烟气冷凝换热研究. 北京建筑工程学院学报,2001, 6: 16-18
    [76] 王随林,刘贵,吕温治. 新型防腐镀膜烟气冷凝换热器换热实验研究. 暖通空调,2005,35(2): 71-74
    [77] 白敏丽,沈胜强. 内燃机传热全仿真模拟研究进展综述. 内燃机学报,2000, 18(1): 96-99
    [78] 张世刚. 燃气机热泵仿真与优化匹配研究:[博士学位论文].天津:天津大学工程热物理,2003
    [79] Liu H, Chalhoub, Nabil G et al. Simulation of a single cylinder diesel engine under cold start conditions using Simulink. ASME, Internal Combustion Engine Division (Publication) ICE, 1997, 28(1): 9-18
    [80] Zhao H, Calnan P, Ladommatos N. Development of an engine simulation program and its application to stratified charge SI engines. International Journal of Vehicle Design. 1999, 22(3): 159-194
    [81] Thomas M, Rifat K. Warmup characteristics of a spark ignition engine as a function of speed and load. SAE Technical Paper Series, 1990, 900683: 9
    [82] Aly H M. Prediction of internal combustion engine performance using microcomputer simulation. Computers in Engineering, Proceedings of the International Computers in Engineering Conference. 1985, 2: 345-350
    [83] Rakopoulos C D. Evaluation of a spark ignition engine cycle using first and second law analysis techniques. Energy Conversion and Management. 1993, 34(12): 1299-1314
    [84] Dekanski C W, Bloor, M.I.G, et al. Parametric model of a 2-stroke engine for design and analysis. Computer Methods in Applied Mechanics and Engineering. 1996, 137(3-4): 411-425
    [85] Charlton S J, Jager D J, Wilson M. Computer modeling and experimental investigation of a lean burn natural gas engine. SAE Technical Paper Series. 1990, 900228: 7
    [86] Jie M, Robert A, Richard B. Mathematical simulation of the transient performance of a petrol engine. SAE Special Publications. 1993: 17-23
    [87] 朱访君,吴坚. 内燃机工作过程数值计算及其优化. 北京:国防工业出版社,1997
    [88] 刘永长. 内燃机热力过程模拟. 北京:机械工业出版社,2001
    [89] 周龙保. 内燃机学. 北京:机械工业出版社,1999。
    [90] Abd G H, Alla. Computer simulation of a four stroke spark ignition engine. Energy Conversion and Management. 2002, 43: 1043-1061
    [91] 高孝洪. 内燃机工作过程数值计算. 北京:国防工业出版社,1986
    [92] Hendricks E, Chevaller A, Jensen M, Modeling of the intake manifold filling dynamics. SAE 1996 transactions, Journal of engines. 1996: 122-146
    [93] 林宗虎. 强化传热及其工程应用. 机械工业出版社,1985: 101-113
    [94] 戴永庆. 溴化锂吸收式制冷技术及应用. 机械工业出版社,1996: 111-117
    [95] Grossman G, Zaltash A. ABSIM - Modular simulation of advanced absorption systems. International Journal of Refrigeration. 2001, 24(6): 531-543
    [96] Yoshio K. Simulation results of triple-effect absorption cycles. International Journal of Refrigeration. 2002, 25(7): 999-1007
    [97] 蔡睿贤,胡自勤. 余热锅炉变工况计算. 工程热物理学报,1990, 11(1): 17-20
    [98] [德]W.柏夫劳姆,K.摩伦浩尔. 内燃机传热. 哈尔滨::哈尔滨船舶工程学院出版社,1992
    [99] Hellmann H M, Grossman G Improved property data correlations of absorption fluids for computer simulation of heat pump cycles. ASHRAE Transactions. 1996, 102(1): 980-997
    [100] 耿克成,田贯三,付林等. 天然气烟气冷凝热效率计算及影响因素分析. 煤气与热力,2004, 24(8): 427-431
    [101] 秦冰. 集中供热系统热动态特性研究:[博士学位论文]. 北京:清华大学建筑技术科学系,2005
    [102] 柏木孝夫,天然气热电冷系统方案设计,日本工业出版社,2002
    [103] 李辉,付林,杨巍巍. 热电冷三联供系统中热电冷负荷的计算方法. 第三届海峡两岸热电联产学术会议论文集,2004:498-501

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700