溶液除湿新风机组的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是经济和社会发展的物质基础。随着社会经济的发展,世界能源逐渐出现紧缺现象,节约能源已经成为人类的共识。在社会的能源消耗中,建筑能耗所占的比重高达30%左右;在建筑能耗中,空调能耗又占到50%以上。降低空调能耗作为一种节约能源、缓解能源危机的有效措施,得到人类的普遍关注。
     现有制冷设备和空气处理设备已经比较完善,虽然能满足人类舒适性的要求,但是要在此基础上进一步提高机组的COP值比较困难。要进一步提高机组的节能效果,应该从新设备新形式上入手。在这种情况下温湿度独立控制空调系统对现有空调系统进行改进,通过对进入室内空气的温度和湿度分开处理,很好的解决了现有空调系统所存在的问题。
     本文介绍了目前的能源现状、现有空调系统的形式和所存在的问题,对温湿度独立控制空调系统进行了系统的介绍。结合天津建筑节能管理中心的实际情况,选择使用温湿度独立控制空调系统,新风机组选用热泵驱动的全热回收形式,并对温湿度独立控制空调系统的核心部件—热泵驱动的全热回收新风机组进行了性能测试。通过对新风机组在冬、夏两个季节运行情况的测试,分析得出在夏季工况下能够满足室内空气湿度的要求,在部分负荷时新风机组的能效比保持在2.9~3.7之间;在冬季工况下,新风机组同样能满足室内空气湿度的要求,并且新风机组的能效比保持在5.4~6.5之间。通过比较,可以看出,新风机组的能效比在夏季随着温度的升高而升高,在冬季随着温度的降低而升高,因此,在高温或低温季节,使用新风机组更具有节能效果;过渡季节可关闭新风机组,直接利用机组的风机为室内提供自然风。
Energy is the basic material factor for the development of economy and society. As the economy evolves, energy of this world is emerging shortage, saving energy is becoming a conmen sense of society. Of all the energy consumptions, construction energy consumption occupies about 30%, while air-conditioning energy consumption more than 50%. Lowering the consumption of the air conditioner becomes a focus because it is an efficient way to save energy and release the energy crises.
     Nowadays Refrigeration equipment and air handling equipment are completed, though they can meet the demands of comfortableness, it is quit hard to improve the COP based on that. If saving-energy effects are hoped to be improved, new style of equipment must be concerned. Under such circumstance, independent humidity control air conditioning system should be replaced the current system, through dividing the degree of temperature and humidity of fresh air, solving the problems of current control air conditioning system successfully.
     For this paper, current condition of energy source , problems of system of current air conditioning , and independent humidity control air conditioning system were introductioned. Considering the reality of a building in tianjin, choosing and using independent humidity control air conditioning system to test the style of fresh air handling unit and the properties of core part of it---fresh air handling solution with liquid desiccant total heat recovery, this paper get to the conclusion that the new system could meet the demand humidity of inner air, while with effect of parts of loaded, the EER of fresh air handling unit was kept at 2.9~3.7. In winter, while maintaining the demanded inner humidity, the EER of fresh air handling unit could keep between 5.4~6.5. By contrast, it is clear that the ratio of energy and effect changes like this : the hotter in summer and the colder in winter the temperature is, the higher the efficiency is, so the conclusion is that in hottest and coldest season use fresh air handling unit could save more energy, while in transition season ,the best way is to turn off fresh air handling unit and use nature fresh air.
引文
[1]李建保.现代科学知识热点问题450例[M].北京:科学普及出版社,1999-01-01.
    [2]梁珍.城市民用建筑能耗模拟和统计方案设计[D].哈尔滨:哈尔滨工业大学,2001.
    [3]何天棋,牙侯专,张萍.办公建筑空调设计冷负荷相关因素的考察与分析[J].重庆建筑大学学报,1998,20(6):56—60.
    [4] JGJ134-2001,夏热冬冷地区居住建筑节能设计标准[S]. 2001.
    [5] GB50189-2005,公共建筑节能设计标准[S].2005.
    [6]钱以明.高层建筑空调与节能[M].上海:同济大学出版社,1990.2.
    [7]ASHRAE Standard 90.1-2001[S]. Energy Standard for Buildings Except Low-Rise Residential Buildings.1996.
    [8]S.K.Chou* , W.L.Chang. Large Building Cooling Load And Energy Use Estimation[J].International Journal Of Energy Research, 1997.69-183.
    [9]孙建平,徐冬梅.建筑节能窗技术进展[J].工业建筑,2004,34(7):97—98.
    [10]陈国义.建筑节能标准体系的关键环节[J].建设科技,2004(2):50—51.
    [11]李江南,齐黎阳.零能建筑概念在建筑设计中的运用[J].节能与环保,2004(2):29—32.
    [12]卢求.德国新型建筑节能理念与应用[J].建筑学报,2004(3):46—48.
    [13]曹叔维,初春玲.建筑能耗综合指标[J].建筑节能,1999(12):26—29.
    [14]俞善庆.国内外建筑节能现状[J].建筑节能,2001(3):35—37.
    [15]刘涛.中央空调节能措施探讨[J].中国科技信息,2005(21A):89—89.
    [16]C.S.Khalid Ahmed, P.Gandhidasan, S.M.Zubair,A.A.Al-Farayedhi. Exergy Analysis of A Liquid-desiccant-based,Hybrid Air-conditioning System[J]. Thermal Engineering,1999:51-59.
    [17]Sanjeev Jain*, P.L.Dhar, S.C.Kaushik. Experimental studies on the dehumidifier and regenerator of a liquid desiccant cooling system[J].Thermal Engineering,2000:253-267.
    [18]Gershon Grossman.Solar-Powered Systems For Cooling Dehumidification And Air—Conditioning[J].Solar Energy,2002:53-62.
    [19]G.I.Sultan,Ahmed M.Hamed,A.A.Sultan.The effect of inlet parameters On theper formance of packed tower-regenerator[J]. Renewable,Energy2002: 271-283.
    [20]S.P.Halliday,C.B.Beggs*,P.A.Sleigh. The use of solar desiccant Cooling in the UK a feasibility study[J].Thermal Engineering,2002:1327-1338.
    [21]Arshad Y.Khan.Cooling And Dehumidification Performance Analysis Of Internally-cooled Liquid Desiccant Absorbers[J].Thermal Engineering, 1998:265-281.
    [22]P.Gandhidasan.Prediction of pressure drop in a operating with liquid desiccant[J].Thermal Engineering,2002:11-17.
    [23]Yunus Cerci.A new ideal evaporative freezing cycle[J].International Journal of Heat and Mass Transfer,2003:2967-2972.
    [24]X.J.Zhang, Y.J.Dai,R.Z.Wang. A simulation study of heat and mass transfer in ahoneycombed rotary desiccant dehumidifier[J].Thermal Engineering ,2003:989-1003.
    [25]方承超,孙克涛.太阳能液体除湿空调系统模型的建立与分析[J].太阳能学报,1997,18(2):1—28.
    [26]徐士鸣.蓄能技术新概念--制冷制热潜能储存技术[J].电力需求侧管理,2003,17(50):43—56.
    [27]冯青,俞金娣,张鹤飞.转轮式固体干燥剂制冷空调系统的数值计算与分析[J].太阳能学报,1996,17(1):27—33.
    [28]江亿,李震,陈晓阳,等.溶液式空调及其应用[J].暖通空调,2004,34(11):88—97.
    [29]师奇威,胡连森,王建.有关空调节能的若干措施探讨[J].供热制冷,2005(30):33—36..
    [30]于家义,杨金刚,朱林等.军团病成因及防治[J].吉林建筑工程学院学报,2006.6, 23(2):55—58.
    [31]彦启森.空气调节用制冷技术[M].北京:中国建筑工业出版社,1995.12.1
    [32]袁一军.Genius湿能空调器[J].暖通空调,2000,30(3):46—47.
    [33]陈晓阳,江亿,李震.湿度独立控制空调系统的工程实践[J].暖通空调,2004,34(11):103—109.
    [34]李强民.置换通风原理、设计及应用[J].暖通空调,2000,30(5):41—46
    [35]朱明善.能量系统的火用分析[M].北京:清华大学出版社,1985.
    [36]赵云,施明恒.太阳能液体除湿空调系统中除湿器形式的选择[J].太阳能学报,2002,23(1):32—35.
    [37]Patil K R,Tripathi A D,Pathak G,eta1.Thermodynamic properties of aqueous electrolyte solutions[J].1 Vapor pressure of aqueous solutions of LiC1,LiBr,and LiI. J Chem Eng Data,1990:166—168.
    [38] Patil K R,Tripathi A D,Pathak G,et a1.Thermodynamic properties of aqueous electrolyte solutions[J].2 Vapor pressure of aqueous solutions of NaBr,NaI,KC1,KBr,KI,RbC1,CsC1,CsBr,CsI,MgC12,CaC12,CaBr2,CaI2, SrC12,SrBr2,SrI2,BaC12 and BaBr2.J Chem Eng Data,1991:25—230.
    [39]ASHRAE[S].ASHRAE Handbook Fundamentals 2001.
    [40]刘晓华,江亿等.温湿度独立控制空调系统[M].北京:中国建筑工业出版社,2006.1.
    [41]徐红梅.中央空调冷热源设备的节能与选择[J].河南科技,2006,(10):58—59.
    [42]谢晓云,江亿,刘栓强,等.新型高效热驱动溶液除湿空调原理及应用[A].2006年全国暖通空调制冷学术文集[C].北京:中国建筑工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700