矿山生态系统物能流核算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采矿活动在人类生产活动的各部门中,与自然环境资源的关系最为密切。过去由于对环境资源因素的价值认识不足,采矿活动造成生态系统的自适应性降低,以及人类后代生态福利的损失。因此,建立有效的可持续性评价指标考察矿产资源开发过程中社会与自然之间的互馈关系十分重要。
     论文以社会-经济代谢为理论基础、MEFA模型为物能流核算框架、能值理论与方法为核算工具,以进入矿山生态-经济-社会复合系统的各子系统物能流历史数据为基础,研究矿山生态系统能学过程,考察矿山特定生命周期阶段主要年份的代谢机制。选择我国东部矿区中煤集团大屯公司姚桥煤矿和兖州煤业股份有限公司济宁三号煤矿开展矿山生态系统实证研究。
     通过区域和矿山生态系统的能值评估,从系统运行、污染物排放以及与土地利用之间的关系三个方面开展系统能值流分析。实现了以统一的标准分析社会-经济系统与生态系统之间的相互联系,解决了多学科综合评价的指标难以兼容的难题。以量化的数据说明了环境资源对经济发展的贡献以及采矿活动对环境和人类的影响,评价了经济社会与生态环境相互作用的可持续性。论文主要内容:
     对矿山生态系统所在区域复合系统进行能值评估,以实例详细介绍能值理论和评估方法,通过分析能值指标的变化轨迹评价区域生态经济系统的发展状况,为矿山生态系统能值评估提供区域能值指标。其中全社会电力能值使用量比例、总电力能值使用量比例之间逐渐扩大的差距体现了徐州延长煤炭产业链开发电力能源的发展策略。
     依据能路语言符号,绘制矿山生态系统物能流概略图,极大地辅助了繁复的能值评估过程,建立了一套矿山生态系统能值评价指标体系。能值指标分析表明:2000年后的矿山生态系统物能流综合利用效率较2000年前大幅提高,近5年姚桥煤矿对环境资源和经济反馈的综合利用效率优于济三煤矿,但济三煤矿对经济反馈资源的利用效率是姚桥煤矿的3倍,万吨产量姚桥煤矿生产活动的经济反馈成本高;环境资源投入在系统总能值投入中占95%左右,其中几乎全部由煤层能值贡献,人类只需要投入数量级为10-7 J能量就能获得1 sej(等于1 J太阳能)的原煤;矿山生态系统中经济社会的投资收益越来越好,且姚桥煤矿的投资效益增速大于济三煤矿;电力系统升级、提高原煤生产效率、以及采用多种运输方式等对提升企业竞争力的成效显著;与地方的其它行业相比,获取相同经济效益,煤炭开采业要以4倍多的资源能值为代价,且济三煤矿获取1美元需要比姚桥煤矿消耗更多的能值;矿山生态系统的能值利用强度平均比地方高出7.76倍,经济发展的消耗强度大;获得相同产量,回采率低和煤质高决定了济三煤矿比姚桥煤矿动用了更多的煤炭储量能值;两矿山相同产值消耗的水资源能值逐年减少,济三煤矿万元产值水资源能值损失平均比姚桥煤矿低33%。此外,矿山生态系统的能值转换率和能值能耗指标所表现出来的差异,直观地说明了能量与能值的本质区别,体现了传统能耗核算对能质考虑的不足与能值核算在理论上和方法上的优势。比如,油脂、水泥、沙石、电缆、胶带等传统能耗指标中未考虑的项目,与一次能源一样对矿山生态系统运行具有很高的能值贡献。在研究不同能量源作用于同一系统时,应该更着重于在复合界面对系统中的各种流以同一标准进行统一评价。
     以能值为度量标准,量化矿山生态系统主要污染物排放对生态环境的影响程度,以及大气污染物对人类健康的潜在危害程度。结果表明:稀释水污染物浓度的水资源能值贡献在系统中占很大比例;年长日久的煤矸石堆置会造成大量的土地能值损失。CO2通过气候变化对人类健康造成的影响不容忽视。相同原煤产出的情况下,济三煤矿污染物排放对生态环境的负面影响有加剧趋势,研究期内平均影响程度比姚桥煤矿小,且大气污染物对职工生命健康的潜在危害(DALYs)也较后者要小。
     通过追踪系统物能流,分析矿山生态系统的代谢与土地利用/覆被变化之间的相互作用关系。结果表明:人类社会对矿山生态系统的经济反馈直接影响了水域和建设用地的土地面积变化,且能源的利用是矿山生态系统土地利用/覆被变化的重要社会-经济驱动力因子。以能值利用强度作为衡量矿山生态系统的垦殖强度指标,矿山生态系统的垦殖强度是所在区域垦殖强度的4.43倍。建立基于能值的生态足迹模型,以区域可更新自然资源和生物生产性土地的可更新部分为基础,计算能值-生态承载力;以系统物能流为基础,计算能值-生态足迹。模型应用结果表明:矿山生态系统经济反馈物能流的利用效率对系统的能值-生态足迹影响很大,人类对矿山生态系统的垦殖使得复合系统的可持续性每况愈下。
In various departments of human activities, mining has the most close relationship with natural resources. Because of the inadequate aware of environmental resources value in the past, mining activities caused not only the reduce of ecosystems adaptability, but also the loss of ecological welfares for future generations. Recently, a consensus seems to be under way to regard sustainability as a problem of the interaction between society and nature. Therefore, the establishment of effective sustainability evaluation indicators for monitoring society-nature interaction is very important during the mineral resources development.
     Based on the theory of socio-economic metabolism and the framework of MEFA, emergy theroy and methodology was employed in this dissertation. By tracking the material and energy flows in each subsystem, the energetica process and metabolic mechanism of Mine ecosystem on specific life cycle stage were investigated. Yaoqiao Mine of Datun Coal Group and Jisan Mine of Yanzhou Coal Mining Company Ltd. were selected as the Mine ecosystems of empirical research. Both of them are located in the eastern mining area China.
     With the emergy evaluation of region and the two Mine ecosystems, the quantitative relationship of various emergy flows was analysed from system process, pollutants emission, and the interaction with land use. In units of solar emjoule, the linkages between the social-economic system and the ecological systems were connected on a uniform standard. Then, the problem of difficult to compatible with each indicator among multi-disciplinary evaluation was solved. The dissertation also quantified the contribution of environmental resources and negative impact of mining activities based on emergy evaluation.
     Through the regional emergy evaluation of Xuzhou, where Yaoqiao Mine located in, the emergy theory and evaluation methods were introduced in details. The values of a series of emergy indicators were used for assessing the dynamic changes of regional development trajectories. Some main emergy indices were provided for Mine ecosystem emergy evaluation and for comparative analysis between mining and other industry in the region.
     Different types of material and energy flows during Mine ecosystem metabolic process were integrated in summary diagram with energy circuit language. Then, the solar emergy transformity of each flows was required to transform the original units into the uints of sej. All material and energy flows were quantified in the same uints, i.e., they are converted into emergy flows. Based on the emergy flows of Mine ecosystem, a set of emergy index was established by combining the environmental resouces input, economic system feedback and system output. Main indices results show that: after 2000, the utilization efficiency of material and energy flows in Mine ecosystem increased substantially. On the whole, the utilization efficiency environmental resources and economic feedback in Yaoqiao is better than that in Jisan in recent five years. But the utilization efficiency of feedback from economy in Jisan is 3 times higher than that in Yaoqiao. More economic feedback cost needed in Yaoqiao per 104 tons of coal production output. Environmental resources into the total emergy input in Mine ecosystem accounted for 95%, of which almost all of contributions from the coal seam emergy. Compared to other industries in Xuzhou, for the same economic benefit, the coal mining industry should take more than 4 times the emergy of resources cost. And for one U.S. dollar benefit, more emergy consumed in Jisan than that in Yaoqiao. The loss of water emergy per 104 yuan production value in Jisan is 33% less than that in Yaoqiao. And other results also were gained in chapter 5 of this dissertation.
     Based on emergy theory and accounting methodology, a set of quantitative methods for accounting the environmental support due to pollutants emission was used to quantifing the negative effects of waste emission from Mine ecosystem. Then, the impacts on environment and effects on human health caused by pollutants emission from coal mining wastes were quantified in unified units.
     By tracking the material and energy flow with emergy unit, the dissertation achieved using quantitative data analysis the interaction relationship between metabolism and land use and cover change in Mine ecosystem. To be able to measure the extend of colonization of natural processes, the emergy desity was employed. A new ecological footprint model based on emergy theory was also put forward. The new model focused on the ecological carrying capacity and the demand of ecological footprints based on material and energy flows for sustaining regional development.
     There are 41 figures, 33 tables and 267 References in this dissertation.
引文
[1] Adriaanse A, et al. Resource flows, the material basis of industrial economies[M]. Washington, DC: World Resources Institute, 1997.
    [2] Allenby B R(翁端译).工业生态学-政策框架与实施[M].北京:清华大学出版社,2005.
    [3] Anderberg S. Industrial metabolism and linkages between economics, ethics, and the environment[J]. Ecological Economics, 1998, 24(2/3): 311-320.
    [4] Ayres R U. Industrial metabolism. In: Ausubel J H and Sladovich H E(Eds): Technology and Environment[M]. Washington D C: National Academy Press, 1989, 23-49.
    [5] Ayres R U, Ayres L W. A handbook of industrial ecology[M]. Edward Elgar Publishing, Glensanda House Montpellier Parade Cheltenham, UK, 2001.
    [6] Ayres R U, Simonis U E. Industrial metabolism: Theory and policy. In: Ayres R U, Simonis U K. (Eds.), Industrial Metabolism: Restructuring for Sustainable Development. Tokyo, New York, Pairs: United Nations University Press, 1994: 3-20.
    [7] Azapagic A. Developing a framework for sustainable development indicators for the mining and minerals industry[J]. Journal of Cleaner Production, 2004, 12(6): 639-662.
    [8] Basu A J, Zyl D J A. Industrial ecology framework for achieving cleaner production in the mining and minerals industry[J]. Journal of Cleaner Production, 2006, 14(3/4): 299-304.
    [9] Bergb?ck B, Anderberg S, Lohm U. Lead Load: Historical Pattern of Lead Use in Sweden[J]. Ambio, 1992, 21(2): 159-165.
    [10] Bicknell K B, Ball R J, Cullen R, Bigsby H R. New methodology for the ecological footprint with an application to the New Zealand economy[J]. Ecological Economics, 1998, 27(2): 149-160.
    [11] Brown M T, Arding J. Transformities Working Paper[R]. Gainesville: Center for Wetlands, University of Florida. 1991.
    [12] Brown M T, Bardi E. Handbook of Emergy Evaluation. Folio #3: Emergy of Ecosystems. Gainesville: Center for Environmental Policy, Environmental Engineering Sciences, University of Florida. 2001: 61-62.
    [13] Brown M T, Buranakarn V. Emergy evaluation of material cycles and recycle options[A]. In: Brown M T. Emergy Synthesis: Theory and Application of the Emergy Methodology[M]. Gainesville, F1: The Center for Environmental Policy, 2000. 141-154.
    [14] Brown M T, Herendeen R A. Embodied energy analysis and EMERGY analysis: a comparative view[J]. Ecological Economics, 1996, 19 (3): 219-235.
    [15] Brown M T, McClanahan T R. EMergy analysis perspectives of Thailand and Mekong River dam proposals[J]. Ecological Modelling, 1996, 91(1-3): 105-130.
    [16] Brown M T, Odum H T, Murphy R C, et al. Rediscovery of the world: developing an interface of ecologyand economics[M]. Maximum Power. Press of Colorado, Niwot, 1995, 216-250.
    [17] Brown M T, Ulgiati S. Emergy-based indices and ratios to evaluate sustainability: monitoring economies and technology toward environmentally sound innovation[J]. Ecological Engineering, 1997, 9(1/2): 51-69.
    [18] Brown M T, Ulgiati S. Emergy measures of carrying capacity to evaluate economic investments[J]. Population and Environment, 2001, 22 (5): 451-471.
    [19] Brown M T, Ulgiati S. Emergy evaluations and Environmental loading of electricity production systems[J]. Journal of Cleaner Production, 2002, 10 (4): 321-334.
    [20] Cavalett O, Queiroz J F D, Ortega E. Emergy assessment of integrated production systems of grains, pig and fish in small farms in the South Brazil[J]. Ecological Modelling, 2006, 193(3/4): 205-224.
    [21] Chen B, Chen G Q. Ecological footprint accounting based on emergy-A case study of the Chinese society[J]. Ecological Modelling, 2006, 198(1/2): 101-114.
    [22] Chen B, Chen G Q.Modified ecological footprint accounting and analysis based on embodied exergy-a case study of the Chinese society 1981-2001[J]. Ecological Economics,2007, 61(2/3): 335-376.
    [23] Chen X Q, Qiao L J. A preliminary material input analyses of China [J]. Population and Environment, 2001, 23 (1) : 117-126.
    [24] Cherubini F, Raugei M, Ulgiati S. LCA of magnesium production: Technological overview and worldwide estimation of environmental burdens[J]. Resources, Conservation and Recycling, 2008,52 (8/9): 1093-1100.
    [25] Cook E. The flow of energy in an industrial society[J]. Scientific American 1971, 224(3):135-144.
    [26] Costanza R, d'Arge R, Groot de R S, Faber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill R V, Paruelo J, Raskin R G, Sutton P, van der Belt M. The value of the world’s ecosystem services and natural capital[J]. Nature, 1997, 387, 15 May: 253-260.
    [27] Cuadra M, Rydberg T. Emergy evaluation on the production, processing and export of coffee in Nicaragua[J]. Ecological Modelling, 2006, 196(3/4): 128-140.
    [28] Cuadra M, Bj?rklund J. Assessment of economic and ecological carrying capacity of agricultural crops in Nicaragua[J]. Ecological Indicators, 2007, 7(1): 133-149.
    [29] CussóX, Garrabou R, Tello E. Social metabolism in an agrarian region of Catalonia (Spain) in 1860-1870: Flows, energy balance and land use[J]. Ecological Economics, 2006, 58(1): 49-65.
    [30] Daily G C. Introduction: what are ecosystem services. In: Daily G C. (Ed.), Nature’s Services: Societal Dependence on Natural Ecosystems[M]. Washington D C, Island Press, 1997: 1-10.
    [31] Daniels P L, Moore S. Approaches for quantifying the metabolism of physical economies: a comparative survey. Part I-methodological overview[J]. Journal of Industrial Ecology, 2001, 5 (4): 69-93.
    [32] Dubreuil A, editor. Life-cycle assessment of metals: issues and research directions. Proceedings of International Workshop on Life-Cycle Assessment of Metals (Montreal, Canada, 2002)[C]. Society ofEnvironmental Toxicology and Chemistry(SETAC), 2005. pensacola, FL, USA
    [33] Durucan S, Korre A, Munoz-Melendez G. Mining life cycle modelling: a cradle-to-gate approach to environmental management in the minerals industry[J]. Journal of Cleaner Production, 2006, 14(12/13): 1057-1070.
    [34] EPA. Guidelines for Assessing the Quality of Life-Cycle Inventory Analysis[M]. EPA 530-R-95-010, PB95-191:235, 1995a.
    [35] EPA. Life-Cycle Impact Assessment: A Conceptual Framework, Key Issues, and Summart of Existing Method[M]. EPA-452/R-95-002.1995b.
    [36] European Commission. EU Non-Energy Extractive Industry-Sustainable Development Indicators 2001-2003[R]. Brussels, 2006.
    [37] Eurostat. Economy-wide material flow accounts and derived indicators: A methodological guide[M]. Luxembourg: European Commission, 2001.
    [38] Ferng J J. Using composition of land multiplier to estimate ecological footprint associated with production activity[J]. Ecological Economics, 2001, 37(2): 159-172.
    [39] Fischer-Kowalski M, Haberl H. Sustainable development: socio-economic metabolism and colonization of nature [J]. International Social Science Journal, 1998, 50(158): 573-587.
    [40] Fischer-Kowalski M, Weisz H. Society as hybrid between material and symbolic realms: towards a theoretical framework of society-nature interaction[J]. Advances in Human Ecology, 1999, 8, 215-251.
    [41] Fischer-Kowalski M. Society’s metabolism: The intellectual history of materials flow analysis, Part I, 1860-1970[J]. Journal of Industrial Ecology, 1998, 2(1): 61-78.
    [42] Foth H D.土壤科学原理[M].唐耀先,谭世文,张伯泉,须湘成,劳家柽,胡童坤,陈小萱译.北京:农业出版社,1984:124-136.
    [43] Fourie A, Brent A C. A project-based Mine Closure Model (MCM) for sustainable asset Life Cycle Management[J]. Journal of Cleaner Production, 2006, 14(12/13): 1085-1095.
    [44] Frosch R A, Gallopoulos N E. Strategies for manufacturing[J]. Scientific American, 1989, 261(3): 144-153.
    [45] Garrels R M, Mackenzie F T, Hunt C. Chemical cycles and the Global Environment. William Kaufmann, Los Altos, Calif. 1975, 206.
    [46] G?ssling S, Hansson C B, Homtmeier O, Stefan Saggel. Ecological footprint analysis as a tool to assess tourism sustainability[J]. Ecological Economics, 2002, 43(2/3): 199-211.
    [47] Giljum S, Hubacek K. Conceptual foundations and applications of physical input-output tables(PIOTs). In: Suh, S. (Ed.). Eco-Efficiency in Industry and Science 23: Handbook of input-output economics for industrial ecology[M]. Springer: Dordrecht, The Netherlands, 2009: 61-75.
    [48] Goedkoop M, Spriensma R. The Eco-indicator 99: a damage oriented method for life cycle impact assessment, methodology report[R]. PRéConsultants b.v., Amersfoort, The Netherlands, 1999.
    [49] Haberl H, Batterbury S, Moran E. Using and shaping the land: a long-term perspective[J]. Land Use Policy 2001a, 18(1): 1-8.
    [50] Haberl H, Erb K-H, Krausmann F, Adensam H and Schulz N B. Land-use change and socio-economic metabolism in Austria-Part II: land-use scenarios for 2020[J]. Land Use Policy, 2003, 20(1): 21-39.
    [51] Haberl H, Erb K-H, Krausmann F, Loibl W, Schulz N and Weisz H. Changes in ecosystem processes induced by land use: human appropriation of net primary production and its influence on standing crop in Austria[J]. Global Biogeochemical Cycles. 2001b, 15(4): 929-942.
    [52] Haberl H, Fischer-Kowalski M, Krausmann F, Weisz H, Winiwarter V. Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer[J]. Land Use Policy, 2004, 21(3): 199-213.
    [53] Haberl H. The global socioeconomic energetic metabolism as a sustainability problem[J], Energy, 2006, 31(1): 87-99.
    [54] Hall C A S, Cleveland C J, Kaufmann R. Energy and resource quality: the ecology of the economic process[M]. New York: Wiley, 1986.
    [55] Hamann R. Mining companies role in sustainable development: the“why”and“how”of corporate social responsibility from a business perspective[J]. Development Southern Africa, 2003, 20(2): 237-254.
    [56] Hamilton C. The genuine progress indicator methodological developments and results from Australia[J]. Ecological Economies, 1999, 30 (1): 13-28.
    [57] Hau J L, Bakshi B R. Promise and problems of emergy analysis[J]. Ecological Modelling, 2004a, 178 (1/2): 215-225.
    [58] Hau J L, Bakshi B R. Expanding Exergy Analysis to account for Ecosystem Products and Services[J]. Environmental science & technology, 2004b, 38(13): 3768-3777.
    [59] Hilson G. Defining“cleaner production”and“pollution prevention”in the mining context[J]. Minerals Engineering, 2003, 16(4): 305-321.
    [60] Hilson G, Basu A J. Devising indicators of sustainable development for the mining and minerals industry: an analysis of critical background issues[J]. International Journal of Sustainable Development and World Ecology, 2003, 10: 319-331.
    [61] Hilson G, Murck B. Sustainable development in the mining industry: clarifying the corporate perspective[J]. Resources Policy, 2000, 26(4): 227-238.
    [62] Hilson G M. Introduction to this special issue,‘Improving Environmental, Economic and Ethical Performance in the Mining Industry’. Part 2: life cycle and process analysis, innovation and technical change[J]. Journal of Cleaner Production, 2006, 14(12/13): 1039.
    [63] Horowitz L. Editorial Section 2: mining and sustainable development. Journal of Cleaner Production 2006,14(3-4):307-308.
    [64] Huang S L, Lee C L, Chen C W. Socioeconomic metabolism in Taiwan: Emergy synthesis versus materialflow analysis[J]. Resources Conservation & Recyling, 2006, 48(2): 166-196.
    [65] Hubacek K, Giljum S. Applying physical input-output analysis to estimate land appropriation (ecological footprint) of international trade activities[J], Ecological Economics, 2003, 44 (1): 137-151.
    [66] Hunter C. Sustainable tourism and the touristic ecological footprint[J]. Environment, Development and Sustainability, 2002, 4(1): 7-20.
    [67] Jelinski L W, Graedel T E, Laudise R A, McCall D W, and Patel C K. Industrial Ecology: Concepts and approaches[J]. Proceedings of the National Academy of Sciences of the United States(PNAS), 1992, 89(3): 793-797.
    [68] Jenerette G D, Wu W, Goldsmith S, et a1. Contrasting waterfotprints of cities in China and the United States[J]. Ecological Economics, 2006, 57(3): 346-358.
    [69] Krausmann F, Haberl H, Erb Karl-Heinz, et al. Resource flows and land use in Austria 1950-2000: using the MEFA framework to monitor society-nature interaction for sustainability[J]. Land Use Policy, 2004, (21): 215-230.
    [70] Krausmann F, Haberl H, Schulz N B, Erb K-H, Darge E and Gaube V. Land-use change and socio-economic metabolism in Austria—Part I: driving forces of land-use change: 1950-1995[J]. Land Use Policy, 2003, 20 (1): 1-20.
    [71] Kuhn M, et al. Environmental-economical trends 1960-1990 (Umwelto¨konomische Trends 1960 bis 1990)[J]. Wirtschaft Statistik, 1994, (8): 658-677 (in German).
    [72] Lan S F, Odum H T, Liu X M. Energy flow and emergy analysis of the agroecosystems of China[J]. Ecologic Science, 1998, 17(1): 33-39.
    [73] Lan Shengfang, Odum H T, Liu Xinmao. Energy flow and emergy analysis of the agroecosystems of China[J]. Ecological Science, 1998,17(1): 32-39.
    [74] Lefroy E, Rydberg T. Emergy evaluation of three cropping systems in southwestern Australia[J]. Ecological Modelling, 2003, 161(3): 193-209.
    [75] Lei K P, Wang Z S. Municipal wastes and their solar transformities: An emergy synthesis for Macao[J]. Waste Management, 2008, 28(12): 2522-2531.
    [76] Lenzen M, Murray S A. A modified ecological footprint method and its application to Australia[J]. Ecological Economics, 2001, 37(2): 229-255.
    [77] Lindeijer E. Biodiversity and life support impacts of land use in LCA[J]. Journal of Cleaner Production, 2000, 8(4): 313-319.
    [78] Lindeman R L. The trophic-dynamic aspect of ecology[J]. Ecology, 1942, 23(4): 399-418.
    [79] Liu Q P, Lin Z S, Feng N H, Liu Y M. A modified model of ecological footprint accounting and its application to cropland in Jiangsu, China. Pedosphere, 2008, 18(2): 154-162.
    [80] Loebenstein J R. The materials flow of Arsenic in the United States[M]. U.S. Bureau of Mines Information Circular 9382. 1994. 1-12.
    [81] Mangena S J, Brent A C. Application of a Life Cycle Impact Assessment framework to evaluate and compare environmental performances with economic values of supplied coal products[J]. Journal of Cleaner Production, 2006, 14(12/13): 1071-1084.
    [82] Martin J F. Emergy valuation of diversions of river water to marshes in the Mississippi River Delta[J]. Ecological Engineering, 2002, 18(3): 265-286.
    [83] Martin J F, Diemont S A W, Powell E, Stanton M, Levy-Tacher S. Emergy evaluation of the performance and sustainability of three agricultural systems with different scales and management[J]. Agriculture, Ecosystems & Environment, 2006, 115(1-4): 128-140.
    [84] Martinez-Alier J. Ecological Economics. Energy, Environment and Society[M]. Oxford: Blackwell, 1987.
    [85] Maryanne G G, Financial incentives for improved sustainability performance: the business case and the sustainability dividend[M]. International Institute for Environment and Development, London, and World Business Council for Sustainable Development, Geneva, 2002.
    [86] Matthews E, Amann C, Fischer-Kowalski M, Hüttler W, Kleijn R, Moriguchi Y, Ottke C, Rodenburg E, Rogich D, Schandl H, Schütz H, van der Voet E and Weisz H. The Weight of Nations, Material Outflows From Industrial Economies[M]. Washington, DC: World Resources Institute, 2000.
    [87] Michaelis P, Jackson T. Material and energy flow through the UK iron and steel sector Part 1: 1954-1994[J]. Resources, Conservation and Recycling, 2000a, 29(1/2): 131-156.
    [88] Michaelis P, Jackson T. Material and energy flow through the UK iron and steel sector Part 2: 1994-2019[J]. Resources, Conservation and Recycling, 2000b, 29(3): 209-230.
    [89] Milgrom T. Environmental aspects of rehabilitating abandoned quarries: Israel as a case study[J]. Landscape and Urban Planning, 2008, 87(3): 172-179.
    [90] Miller G A. The flux of tidal energy out of the deep oceans[J]. J. Geophys. Res. 1966, 71: 2485-2489.
    [91] MMSD North America, Task 2 Work Group. Seven questions to sustainability: how to assess the contribution of mining and mineral activities[R]. Winnipeg: IISD, 2002.
    [92] Mudd G M. Global trends in gold mining: towards quantifying environmental and resource sustainability? Resources Policy 2007, 32(1/2): 42-56.
    [93] Nedved M, Jansz J. Waste water pollution control in the Australian mining industry[J]. Journal of Cleaner Production, 2006, 14(12/13): 1118-1120.
    [94] Nguyen H X, Yamamoto R. Modification of ecological footprint evaluation method to include non-renewable resource consumption using thermodynamic approach[J]. Resources Conservation and Recycling, 2007, 51(4): 870-884.
    [95] Norgate T, Haque N. Energy and greenhouse gas impacts of mining and mineral processing operations[J]. Journal of Cleaner Production, 2010, 18(3): 266-274.
    [96] Odum H T. Environment, Power and Society[M]. John Wiley, New York , 1971.
    [97] Odum H T. Systems Ecology: An Introduction[M]. John Wiley, New York, 1983.
    [98] Odum H T. Ecology and Economy: Emergy Analysis and Public Policy in Texas[R]. Policy Research Project Report, Austin: University of Texas. 1987.
    [99] Odum H T. Environmental accounting: Emergy and Environmental Decision Making [M]. New York: John Wiley, 1996.
    [100] Odum H T. Handbook of Emergy Evaluation. Folio #2: Emergy of Global Processes[R]. Gainesville: Center for Environmental Policy, Environmental Engineering Sciences, University of Florida. 2000: 17.
    [101] Odum H T, Best G R, Miller M A, et al. Accelerating natural processes for wetlands restoration after Phosphate mining[R]. Bartow, Florida Insititute of Phosphate Research(FIPR 03-041-086). 1990.
    [102] Odum H T, Brown M T, Williams S B. Handbook of Emergy Evaluation. Folio #1: Introduction and Global Budget[R]. Gainesville: Center for Environmental Policy, Environmental Engineering Sciences, University of Florida. 2000: 7-8.
    [103] Odum H T, Odum E C. Energy Basis for Man and Nature[M]. McGrawHall, New York , 1976.
    [104] Parris T M, Kates R W. Characterizing and measuring sustainable development[J]. Annual Review of Environment and Resources, 2003, 28:559-86.
    [105] Pereira J T V, Nebra S A. Transformities and exergetic cost - a discussion[A]. In: Brown M T. Emergy Synthesis: Theory and Application of the Emergy Methodology[M]. Gainesville: The Center for Environmental Policy, 2000. 71-80.
    [106] Rappaport R A. The flow of energy in an agricultural society[J]. Scientific American, 1971, 224(3): 117-133.
    [107] Rees W E. Ecological footprint and appropriated carrying capacity: what urban economics leaves out[J]. Environment and Urbanization, 1992, 4(2): 121-130.
    [108] Reid C, Bécaert V, Aubertin M, Rosenbaum R K, Deschênes L. Life cycle assessment of mine tailings management in Canada[J]. Journal of Cleaner Production, 2009, 17(4): 471-479.
    [109] Rene Van Berkel. Environmental Workshop-Mineral Council of Australia[R], 29 Oct., 1 Nov., Perth W A, 2000.徐曙光译.矿业生产环境改善的生命周期评价[J].国土资源情报,2005,5:17-23,26.
    [110] Ripmeester Wendy. Canada’s minerals and metals indicators (MMI) initiative[R]. Mineral economics and management society twelfth annual conference. Cincinnati, Ohio. 2003, 4.
    [111] Ross S, Evans D. Use of life cycle assessment in environmental management[J]. Environmental Management, 2002, 29(1): 132-142.
    [112] Schandl H, et al. Material flow analysis Austria 1960-1997[J]. Statistische Nachrichten, 2000, 55(2): 128-37 (in German).
    [113] Schandl H, Schulz N. Changes in the United Kingdom’s natural relations in terms of society’s metabolism and land-use from 1850 to the present day[J]. Ecological Economics, 2002, 41(2): 203-221.
    [114] Sciubba E. Extended exergy accounting applied to energy recovery from waste: The concept of total recycling[J]. Energy, 2003, 28(13): 1315-1334.
    [115] Sciubba E, Ulgiati S. Emergy and exergy analyses: Complementary methods or irreducible ideological options?[J]. Energy, 2005, 30(10): 1953-1988.
    [116] Sclater J F, Taupart G, Galson I D. The heat flow through the oceanic and continental crust and the heat loss of the earth. Rev. Geophys. Space Phys. 1980, 18: 269-311.
    [117] Shpirt M Y, Rainbow A K M. Ecological Problems caused by Coal Mining and Processing with Suggestions for Remediation[M]. The Netherlands, Millpress Publishers, 2004.
    [118] Siegel F R. Applied Geochemistry[M]. Wiley, New York. 1974.
    [119] Simmons C, Lewis K, Barrett J. Two feet-two approaches: a component-based model of ecological footprinting[J]. Ecological Economics, 2000, 32(3):375-380.
    [120] SMR. Sustainable Minerals Roundtable. Criteria and indicators of sustainable development for energy and mineral systems[EB/OL]. http://www.unr.edu/mines/smr/Indicators.pdf (June 2003).
    [121] Stigliani W M, Anderberg S, JafféP R.陈定茂译.莱茵河流域中积累的化学品的工业代谢与长期风险[J].产业与环境,1994a,16(3):30-35.
    [122] Stigliani W M, Anderberg S. Industrial metabolism at the regional 1evel: the Rhine Basin. In: Ayres R U, Simonis U K. (Eds.), Industrial Metabolism: Restructuring for Sustainable Development[M]. Tokyo, New York, Pairs: United Nations University Press, 1994b.
    [123] Suppen N, Carranza M, Huerta M, Hernández M A. Environmental management and life cycle approaches in the Mexican mining industry[J]. Journal of Cleaner Production, 2006, 14(12/13): 1101-1115.
    [124] Sznopek J L, Goonan T G. The materials flow of Mercury in the economies of the United States and the world[M]. U. S. Geological Survey Circular 1197. 2000. (2009-10-05)[2009-11-29] http://www.eoearth.org/article/Materials_flow_of_mercury_in_the_economies_of_the_United_States_and_the_world.
    [125] Tan R B H, Khoo H H. An LCA study of a primary aluminum supply chain[J]. Journal of Cleaner Production, 2005, 13(6): 607-618.
    [126] Tilley D R. Brown M T. Dynamic emergy accounting for assessing the environmental benefits of subtropical wetland stormwater management systems[J]. Ecological Modelling, 2006, 192(3/4): 327-361.
    [127] Tribus M, McIrvine E D. Energy and information[J]. Sci. Am. 1971, 225: 179-188.
    [128] U. S. Interagency Working Group on Industrial Ecology: Material and Energy Flows. Industrial Ecology Material and Energy Flows in the United State[R], Washington D. C., 2000.
    [129] Ukidwe N U, Bakshi B R. Thermodynamic Accounting of Ecosystem Contribution to Economic Sectors with Application to 1992 US Economy[J]. Environmental Science & Technology, 2004, 38(18): 4810-4827.
    [130] Ukidwe N U, Bakshi B R. Industrial and ecological cumulative exergy consumption of the United Statesvia the 1997 input-output benchmark model[J]. Energy, 2007, 32(9): 1560-1592.
    [131] Ulgiati S, Odum H T, Bastianoni S. Emergy use, environmental loading and sustainability an emergy analysis of Italy[J]. Ecological Modelling, 1994, 73(3/4): 215-268.
    [132] Ulgiati S, Brown M T, Bastianoni S, Marchettini N. Emergy-based indices and ratios to evaluate sustainable use of resources[J]. Ecological Engineering, 1995, 5(4): 519-531.
    [133] Ulgiati S, Brown M T. Monitoring patterns of sustainability in natural and man-made ecosystems[J]. Ecological Modelling. 1998, 108 (1-3): 23-36.
    [134] Ulgiati S. Energy, emergy and embodied exergy: diverging or converging approaches?[A]. In: Brown M T. Emergy Synthesis: Theory and Application of the Emergy Methodology[M]. Gainesville: The Center for Environmental Policy, 2000. 15-32.
    [135] Ulgiati S, Brown M T. Quantifying the environmental support for dilution and abatement of process emissions The case of electricity production[J]. Journal of Cleaner Production, 2002, 10(4): 335-348.
    [136] UNSDC, United Nation’s Sustainable Development Commission. In: Proceedings of the First Session on Agenda 21[R]. New York, USA, April and June 1997.
    [137] Von der Haar T H, Suomi V E. Satellite observations of the earth’s radiation budget. Science, 1969, 169: 657-659.
    [138] Wackernagel M, Monfreda C, Moran D, et al. National Footprint and Biocapacity accounts 2005: The Underlying Calculation Method[EB/OL]. http://www.footprintnetwork.org/download.php?id=5
    [139] Wackernagel M, Oniste L, Bello P, Linares A C, Falfan I S L, Garcia J M, Guerrero A I S, Guerrero, M G S. National natural capital accounting with the ecological footprint concept[J]. Ecological Economics, 1999, 29(3): 375-390.
    [140] Wackernagel M, Rees W E. Our Ecological Footprint: Reducing Human Impact on the Earth[M]. Gabriola Island: New Society Publishers, 1996: 9-12.
    [141] Wackernagel M, Yount J D. Footprints for sustainability: the next steps[J]. Environment, Development and Sustainability, 2000, 2(1): 21-42.
    [142] Walker J, Howard S. Finding the way forward: how could voluntary actions move mining towards sustainable development?[R]. MMSD Working Paper, International Institute for Environment and Development, London, 2002.
    [143] WCED, World Commission on Environment and Development. Our common future[M]. Oxford: Oxford University Press, 1987, 43.
    [144] Weisz H, Fischer-Kowalski M, Grünbühel C M, Haberl H, Krausmann F and Winiwarter V. Global environmental change and historical transitions[J]. Innovation, 2001, 14(2): 117-142.
    [145] Wernick I, Ausubel J H. National material flows and the environment[J]. Annual Review of Energy and Environment, 1995, 20: 463-492.
    [146] Wilson J, Tyedmers P, Pelot R. Contrasting and comparing sustainable development indicator metrics[J].Ecological Indicators, 2007, 7(2): 299-314.
    [147] Wilson M A, Carpenter S. Economic valuation of freshwater ecosystem services in the United States: 1971-1997[J]. Ecological Applications, 1999, 9 (3): 772-783.
    [148] Wolman A. The metabolism of cities[J]. Scientific American, 1965, 213(3): 178-193.
    [149] World Resources Institute. The weight of nations: material outflows from industrial economics[M]. Washington, DC: World Resource Institute, 2000.
    [150] Worrall R, Neil D, Brereton D, Mulligan D. Towards a sustainability criteria and indicators framework for legacy mine land[J]. Journal of Cleaner Production 2009, 17(16): 1426-1434.
    [151] WWF. Living Planet Report 1998, 1999, 2000, 2002, 2004, 2006, 2008[EB/OL]. http://www.panda.org/about_our_earth/all_publications/living_planet_report/linving_planet_report_timeline/.
    [152] Xu J C. Ecodesign for wear resistant ductile iron with medium manganese content[J]. Material & Design, 2003, 24: 63-68.
    [153] Yang H, Li Y R, Shen J Z, Hu S Y. Evaluating waste treatment, recycle and reuse in industrial system: an application of the eMergy approach[J]. Ecological Modelling, 2003, 160(1/2): 13-21.
    [154] Zhang X H, Jiang W J, Deng S H, Peng K. Emergy evaluation of the sustainability of Chinese steel production during 1998-2004[J]. Journal of Cleaner Production, 2009, 17 (11): 1030-1038.
    [155] Zhao S, Li Z Z, Li W L. A modified method of ecological footprint calculation and its application[J]. Ecological Modelling, 2005, 185(1): 65-75.
    [156] Zhao S, Wu C W, Hong H S, Wang W P. The theoretical model for quantifying the value of ecosystem services[J]. Journal of Biotechnology, 2008, 136 (S1): S766-S767.
    [157] Odum H T.蒋有绪,徐德应等译.系统生态学[M].北京:科学出版社,1993.
    [158]柏智勇.生态系统特征的系统科学思考[J].中南林业大学学报,2007,27(6):174-178.
    [159]鲍玉麟,陈甲斌,顾晓林.不同阶段矿山企业经营战略选择分析[J].中国非金属矿工业导引,2005,4:53-54.
    [160]曹顺爱.土地利用规划中的能值分析研究[D].杭州:浙江大学,2006.
    [161]陈超,胡聃,文秋霞,张大康.中国水泥生产的物质消耗和环境排放分析[J].安徽农业科学,2007,35(28):8986-8989.
    [162]陈栋.广州国家农业科技园区能值评价的研究[D].长沙:湖南农业大学,2007.
    [163]陈丽萍.国外矿产资源和矿业可持续发展方面行动综述.国土资源部信息中心,国际国土资源可持续发展研究理论与实践[M].北京:地质出版社. 2005. 14-19.
    [164]陈伟强,石磊,钱易.国家尺度上铝的社会流动过程解析[J].资源科学,2008,30(7):1004-1012.
    [165]陈晓.基于生态经济学模型的新疆可持续发展度量研究[D].乌鲁木齐:新疆大学,2005.
    [166]陈效逑,乔立佳.中国经济—环境系统的物质流分析[J].自然资源学报,2000,15(1):17-23.
    [167]陈效逑,赵婷婷,郭玉泉,宋升佑.中国经济系统的物质输入与输出分析[J].北京大学学报(自然科学版),2003,39(4):538-547.
    [168]陈跃,邓南圣.面向二十一世纪的环境管理工具——物质与能流流动分析[J].重庆环境科学,2003,25(3):1-5.
    [169]崔学增,张凤岗,张连华.唐山城市生态系统能流物流的分析[J].生态学杂志,1986,5(4):41-45.
    [170]邓南圣,吴峰.工业生态学[M].北京:化学工业出版社,2002.
    [171]邓南圣,王小兵.生命周期评价[M].北京:化学工业出版社,2003.
    [172]杜涛,蔡九菊.钢铁企业物质流、能量流和污染物流研究[J].钢铁,2006,41(4):82-87.
    [173]段宁,程胜高,葛娣.生态指标法用于铁矿资源的开发利用规划生态环境影响评价[J].安徽农业科学,2009,37(9):4158-4161.
    [174]段宁,柳楷玲,孙启宏,李艳萍.基于MFA的1995-2005年中国物质投入与环境影响研究[J].中国人口·资源与环境,2008,18(6):105-109.
    [175]范晓秋.水资源生态足迹研究与应用[D].南京:河海大学水资源环境学院,2005.
    [176]付晓,吴钢,刘阳.生态学研究中的分析与能值分析理论[J].生态学报,2004,24(11):2621-2626.
    [177]高峰,聂祚仁,王志宏,左铁镛.中国皮江法炼镁的资源消耗和环境影响分析[J].中国有色金属学报,2006,16(8):1456-1461.
    [178]高丽荣,华贲,王小伍. LCA+GSA评价中国铝工业产业链布局研究[J].轻金属,2007,4:3-8.
    [179]郭学益,宋瑜,王勇.我国铜资源物质流分析研究[J].自然资源学报,2008,23(4):665-673.
    [180]郝琳琳,乔忠.生态工业园区物质流探析[J].科技管理研究,2008,28(11):56-57.
    [181]胡长庆,张春霞,张旭孝,齐渊洪,殷瑞钰.钢铁联合企业炼焦过程物质与能量流分析[J].钢铁研究学报,2007,19(6):16-20.
    [182]环境保护部环境规划院.中国绿色国民经济核算研究报告2004 (公众版) [EB/OL]. http://www.caep.org.cn/uploadfile/greenGDP/gongzhongban2004.pdf. (2006-09-07)[2009-09-03]
    [183]黄和平,毕军,李祥妹,张炳,杨洁.区域生态经济系统的物质输入与输出分析——以常州市武进区为例[J].生态学报,2006,26(8):2578-2586.
    [184]黄书礼,赖晓莹.台北盆地生态能量流动与土地使用之关系(2):生态能量分区[J].都市与计划,1999,26(1):l-17.
    [185]黄书礼,李佳伦,赖晓莹.台北盆地生态能量流动与土地利用之关系(1):土地使用能量阶层分析[J].都市与计划,1998,25(2):205-221.
    [186]黄晓芬,诸大建.上海市经济-环境系统的物质输入分析[J].中国人口·资源与环境,2007,17(3):96-99.
    [187]江丹,亓海录,董和梅,杜庆平.工业生态学理论在莱钢资源综合利用中的应用与实践[J].中国资源综合利用,2004,1:38-41.
    [188]姜金龙,徐金城,侯尚林等.共生矿石生产电解镍/铜的生命周期评价研究[J].环境科学学报,2005,25(11):1570-1574.
    [189]蒋桂芹,吴泽宁.郑州市水资源生态足迹与可持续利用状况分析[J].人民黄河,2009,31(9):57-58,60.
    [190]金丹.采煤业生态足迹及地区间差异研究——以徐州市和长治市为例[D].徐州:中国矿业大学,2005.
    [191]金丹,卞正富.基于能值的生态足迹模型及其在资源型城市的应用[J].生态学报, 2010, 30(7): 1725-1733.
    [192]蓝盛芳.生态经济系统的能值分析.刘建国主编,当代生态学博论[M].北京:中国科学技术出版社,1992. 268-278.
    [193]蓝盛芳,陈飞鹏.农业生态经济系统的能值分析[J].生态科学,1995,2:172-181
    [194]蓝盛芳,钦佩.生态系统的能值分析[J].应用生态学报, 2001, 12(1): 129-131.
    [195]蓝盛芳,钦佩,陆宏芳.生态经济系统能值分析[M].北京:化学工业出版社, 2002.
    [196]李宏.中国煤炭运输:能力、消耗和价格[M].北京:中国市场出版社,2008
    [197]李加林,张正龙,曾昭鹏.江苏环境经济系统的能值分析与可持续发展对策研究[J].中国人口·资源与环境,2003,13(2):73-78.
    [198]李健,金钰,陈力洁.生态工业园区产业结构物质流分析[J].现代财经:天津财经学院学报,2006,26(10):73-76.
    [199]李英顺,路迈西,胡华龙等.用生命周期的方法评价铜炉渣作为铜选矿原料的环境影响[J].环境工程学报,2009,3(2):349-353.
    [200]李智,鞠美庭,刘伟,邵超峰.中国1996年~2005年能源生态足迹与效率动态测度与分析[J].资源科学,2007,29(6):54-60.
    [201]梁潇蕾,王芳.矿产富集区生命周期研究[J].合作经济与科技,2008,5:22-23.
    [202]刘法宪.对我国矿业城市可持续发展问题的思考[J].中国国土资源经济,2007,20(2):18-19.
    [203]刘敏,牟俊山.煤炭生态经济系统研究——“煤炭开发利用协同发展研究”课题系列报告之一[J].煤炭经济研究,2003,(9):10-13.
    [204]刘钦普.基于生态足迹改进模型的江苏省耕地利用可持续性研究[D].南京:南京师范大学,2007.
    [205]刘绍民,吴文良.县域农业生态经济系统的分析(Ⅱ)——功能和效率[J].农业环境科学学报,2003,22(1):78-81.
    [206]刘文剑.环境压力下海洋经济可持续发展研究[D].青岛:中国海洋大学,2004.
    [207]刘艳中,李江风,张祚,胡鹏.生态足迹模型在我国土地可持续利用评价中的应用及启示[J].地理与地理信息科学,2008,24(1):80-84.
    [208]刘耀东.我国煤炭工业的现状、问题及其调整对策[J].中国能源,2008,30(11):5-12.
    [209]刘毅,陈吉宁.中国磷循环系统的物质流分析[J].中国环境科学,2006,26(2):238-242.
    [210]卢远.吉林西部土地利用/土地覆盖变化及其生态效应[D].吉林:吉林大学,2005.
    [211]陆宏芳,陈烈,林永标,陈飞鹏,彭少麟.基于能值的顺德市农业系统生态经济动态[J].农业工程学报,2005,21(12):20-24.
    [212]陆宏芳,蓝盛芳等.评价系统可持续发展能力的能值指标[J].中国环境科学,2002,22(4):380-384.
    [213]陆宏芳,叶正,赵新锋,彭少麟.城市可持续发展能力的能值评价新指标[J].生态学报,2003,23(7):1363-1368.
    [214]吕国平,刘法宪.矿业城市:调整生命周期促进可持续发展——由“矿竭城衰”现象引发的思考[J].中国地质矿产经济,2002,15(5):17-21.
    [215]罗玉和,丁力行.生物质直燃发电CDM项目可持续性的能值评价[J].农业工程学报,2009,25(12):102-108.
    [216]骆世明.农业生态学[M].北京:中国农业出版社,1987:450-456.
    [217]欧阳志云,王效科,苗鸿.中国陆地生态系统服务功能及其生态经济价值的初步研究[J].生态学报,1999,19(5):607-613.
    [218]钱鸣高.对中国煤炭工业发展的思考[J].中国煤炭,2005,(6):5-10.
    [219]任丽燕.湿地景观演化的驱动力、效应及分区管制研究[D].杭州:浙江大学,2009.
    [220]尚清芳.干旱区绿洲农业生态经济系统能值分析——以武威市凉州区为例[D].兰州:兰州大学, 2006:27-28.
    [221]尚清芳,张静,米丽娜.定量分析生态经济系统演化的新途径——能值分析[J].甘肃科技,2007,23(2): 114-118.
    [222]沈镭,刘晓洁.资源流研究的理论与方法探析[J].资源科学,2006,28(3):9-16.
    [223]史培军.人地系统动力学研究的现状与展望[J].地学前缘(中国地质大学,北京),1997,4(1/2):201-211.
    [224]粟娟,蓝盛芳.评估森林综合效益的新方法——能值分析法[J].世界林业研究,2000,13(1):32-37
    [225]孙波.可持续发展评价指标体系述评[EB/OL].(2004-06-27)[2009-08-19]. http://www.nre.cn/htm/07/kcxfz/2004-06-27-12734.htm
    [226]汪淑奇,黄素逸.物质流、能量流与信息流协同的探讨及应用[J].华中科技大学学报:自然科学版,2002,30(11):71-73.
    [227]王飞儿,史铁锤.基于物质代谢的中国纺织业生态效率评价[J].中国人口·资源与环境,2008,18(6):116-120.
    [228]王金南,於方,曹东.中国绿色国民经济核算研究报告2004[J].中国人口·资源与环境,2006,16(6):11-17.
    [229]王兰甫.把握煤矿生命周期外向拓展相关多元[J].中国煤炭工业,2007,12:47-48.
    [230]王寿兵,吴峰,刘晶茹.产业生态学[M].北京:化学工业出版社,2005.
    [231]闻大中.农业生态系统能流的研究方法(一)、(二)、(三)[J].农村生态环境,1985,4:47-52,1986,1:52-56,2:48-51
    [232]闻大中.农业生态系统的能量分析.能量生态——理论、方法与实践[M].长春:吉林科技出版社,1993:209-215.
    [233]闻大中.农业生态系统能流和能量分析研究的某些新进展[J].农村生态环境,1995,11(2):43-48.
    [234]吴玉琴,严茂超,许力峰.城市生态系统代谢的能值研究进展[J].生态环境学报,2009,18(3):1139-1145.
    [235]夏传勇.经济系统物质流分析研究述评[J].自然资源学报,2005,20(3):415-421.
    [236]肖骁,肖松文,刘卫平等.株冶和韶冶锌冶炼过程的生命周期评价和清洁生产措施[J].有色金属,2003,55(3):72-75.
    [237]谢鸿宇,陈贤生,林凯荣,胡安焱.基于碳循环的化石能源及电力生态足迹[J].生态学报,2008,28(4):1729-1735.
    [238]徐大伟,王子彦,李亚伟.基于工业代谢的工业生态链梯级循环物质流研究[J].环境科学与技术,2005,28(2):43-44,53.
    [239]徐明,张天柱.中国经济系统中化石燃料的物质流分析[J].清华大学学报(自然科学版),2004,44(9):1166-1170.
    [240]徐曙光.可持续发展与澳大利亚矿业部门.国土资源部信息中心,国际国土资源可持续发展研究理论与实践[M].北京:地质出版社. 2005. 73-83.
    [241]徐一剑,张天柱,石磊,陈吉宁.贵阳市物质流分析[J].清华大学学报(自然科学版),2004,44(12):1688-1691,1699.
    [242]徐中民,陈东景,张志强,程国栋.中国1999年的生态足迹分析[J].土壤学报,2002,39(3):441-445.
    [243]徐中民,张志强.甘肃省1998年生态足迹计算与分析[J].地理学报,2000,55(5):607-616.
    [244]徐州市统计局.徐州统计年鉴[M].北京:中国统计出版社, 2001-2009.
    [245]闫旭骞,王广成.矿区复合生态系统理论初探[J].中国矿业,2003,12(8):22-25.
    [246]严茂超,Odum H T.西藏生态经济系统的能值分析与可持续发展的政策建议[J].资源生态环境网络研究动态,1997,8(3):1-9.
    [247]严茂超,李海涛,程鸿,沈文清.中国农林牧渔业主要产品的能值分析与评估[J].北京林业大学学报,2001,23(6):66-69
    [248]杨开忠、杨咏.生态足迹分析理论与方法[J].地理科学进展,2000,15(6):630-636.
    [249]杨,胡山鹰,梁日忠,陈定江,房鑫,李有润,沈静珠,冯久田,孔令泉.中国鲁北生态工业模式[J].过程工程学报,2004,4(5):467-474.
    [250]叶文虎、仝川.联合国可持续发展指标体系述评[J].中国人口资源与环境, 1997, 7(3): 83-87.
    [251]余花琴,陈敬超.镍矿冶过程的生命周期评价研究[J].云南冶金,2007, 36(4): 38-41.
    [252]岳强,陆钟武.中国铜循环现状分析(Ⅱ)——具有时间概念的产品生命周期物流分析方法[J].中国资源综合利用,2005,5:4-8.
    [253]战彦领.国有煤炭企业产业转型的障碍、模式及对策研究[J].煤炭经济研究,2007,8:25-27.
    [254]张炳,黄和平,毕军.基于物质流分析和数据包络分析的区域生态效率评价——以江苏省为例[J].生态学报,2009,29(5):2473-2480.
    [255]张大瑜.吉林省粮食作物生产系统的能值分析与比较优势研究[D].北京:中国农业大学,2005.
    [256]张迪.土地可持续利用指标体系简述[J ].国土资源情报,2005,(9):22-27.
    [257]张雷.现代区域开发的矿产资源需求生命周期研究及意义[J].地理学报,1997,52(6):500-506.
    [258]张耀辉,蓝盛芳.海南省资源环境与可持续发展的能值分析[J].生态科学,1998,17(2):121-122.
    [259]张志强,徐中民,程国栋.生态足迹的概念及计算模型[J].生态经济,2000,(10):8-10.
    [260]张志强,徐中民,程国栋,陈东景.中国西部12省(区市)的生态足迹[J].地理学报,2001,56(5):599-610.
    [261]章锦河,张捷.旅游生态足迹模型及黄山市实证分析[J].地理学报,2004,59(5):763-771.
    [262]赵志强,李双成,高阳.基于能值改进的开放系统生态足迹模型及其应用[J].生态学报,2008,28(5):2220-2231.
    [263]甄翌.旅游生态足迹改进方法及应用研究——以张家界市为例[J].地域研究与开发,2009,28(5):85-88.
    [264]周笛,赵光洲,张明凯.基于生命周期的企业成长模式研究——以A矿业有限责任公司为例[J].昆明理工大学学报理工版,2008,33(4): 106-110.
    [265]周红.基于生态学的大型公共工程可持续能力研究[D].南京:东南大学,2006.
    [266]朱明善,刘颖,史琳编.工程热力学题型分析[M(]第二版).北京:清华大学出版社. 2000:153-154.
    [267]朱训.世界矿业的发展特点及对中国矿业的启示[J],中国矿业,1999,8(1):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700