基于高光谱遥感的区域冬小麦生物量模拟及粮食安全评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着全球气候不断变暖,粮食产量受到影响。而人类的需求量不断增长,粮食缺口越来越大,粮食安全问题成为世界各国面临的主要问题之一。现代农业是以实现低能耗、高效率、高效益为目标的新型农业,它充分的利用科学技术和现代化设备,采用先进的管理方法进行农业种植。高光谱遥感技术为推进现代化农业进程提供了重要的技术支持,高光谱遥感具有实时监测能力强、监测范围广、精度高等优点,在农作物的长势监测和大面积估产、农业资源的调查与动态监测、农业灾害的预报与灾后评估等方面都发挥着重要的作用。由于遥感监测常常受到天气、影像分辨率、时间分辨率等诸多外界因素的制约,并且遥感信息只能对种植作物的表面进行观测,作物的内部结构变化、生理状况等都无法从遥感影像中直接获得,而且这些作物所反映出来的信息与作物本身、以及气候、土壤等环境因素息息相关。为了弥补这一不足,科技工作者采用了作物生长模拟模型,这种模型正是基于这些因素的影响对作物进行生长模拟,它综合了计算机技术、作物生理学、作物生态学、农业气象学、土壤学、农艺学、系统学等多学科的知识,对作物的生长、发育、产量多种状况进行动态模拟。卫星遥感技术能够宏观的监测植被状况,作物生长模型能够微观地模拟作物生长态势,两者优势互补,能够较好模拟出作物的产量。再结合自然、社会、经济等影响因素,可以对区域粮食产量进行评估,可以为区域粮食安全预警决策提供科学的依据。具体研究内容及结果如下:
     1)本文首先对江汉平原湖北省潜江市后湖样区的郑麦9023、皖麦369和黄淮海平原济南市长清样区的临麦2号、稳千1号和泰农18号五个品种冬小麦在不同生育期小麦冠层光谱进行分析,同时结合与光谱数据实时采集的冬小麦叶面积指数(LAI)、冬小麦叶片叶绿素值(SPAD)、冬小麦冠层有效光合辐射比率(FPAR)等冬小麦农学参量进行分析,研究发现不同区域的冬小麦在同一生育期内叶面积指数没有明显差异,冬小麦叶面积指数与高光谱720nm-760nm附近反射率相关性达到0.65。本研究选取近红外平台最大值875nm、红光波谷670nm、绿光550nm和蓝光450nm波段的光谱反射率来计算RVI、DVI、NDVI、GRVI、EVI和SAVI这6种植被指数,通过与冬小麦叶面积指数进行相关性分析发现,其相关性在0.766~0.842之间,均具有较好的相关性。将植被指数与冬小麦叶面积指数拟合建立关系模型,并进行了预测精度检验,结果显示植被指数RVI和GRVI在LAI小于3.0时拟合度较好,但随着冬小麦的覆盖度增加拟合精度下降。RVI和GRVI这两种植被指数都较敏感,特别是LAI大于3.0后,对植被的变化更敏感。DVI、NDVI、EVI和SAVI这四种植被指数模拟精度在整个生育期变化不大。利用BP神经网络选取多个典型波段反射率对冬小麦叶面积指数进行估算,能够大大地提高反演精度,拟合度高达0.959,总均方根差RMSE为0.208。但是BP神经网络如果另外增加了学习样本,“训练”好的网络就需要从头开始训练,它们对以前的权值和阀值是没有记忆的,神经网络相对传统的回归模型而言,实用性有待进一步研究。
     2)研究区域的冬小麦叶片叶绿素值(后简称SPAD)在整个生育期内均呈现抛物线变化,但是两样区间冬小麦叶片SPAD值存在明显差异,主要表现在SPAD峰值出现的生育期不同,后湖样区冬小麦叶片SPAD峰值出现在抽穗期,长清样区冬小麦叶片SPAD峰值出现在拔节期。这种区别在光谱反射率曲线中也得到反映,后湖样区冬小麦光谱的蓝、红光波段在拔节期出现了降低的现象,这说明叶绿素含量在升高;而长清样区的绿光波段在拔节期至抽穗期升高,说明该时期叶片的叶绿素含量降低。两研究区域冬小麦叶绿素含量的这些变化都能从光谱变化中得到印证。两样区冬小麦SPAD值与冬小麦冠层光谱反射率分别在674nm(后湖样区)和686nm(长清样区)附近达到波谷负相关最大值,760nm-1350nm近红外波段反射率与SPAD值呈显著的正相关。由于两样区冬小麦叶片SPAD存在较大的差异,故本研究分别将两样区冬小麦叶片SPAD值与植被指数GRVI、RVI、NDVI、DVI进行相关性分析,相关系数在0.686~0.901之间,其中后湖样区的SPAD值与NDVI相关系数最高,达到0.901;长清区冬小麦SPAD值与NDVI相关系数达到0.873。通过建立植被指数与SPAD值的回归模型,经模型精度检验,NDVI预测模型显示其精度相对较高,后湖样区和长清样区冬小麦SPAD反演模型均能较好的对该地区冬小麦SPAD值进行估算。
     3)在对冬小麦冠层光合有效辐射比率(后简称FPAR)研究中发现,两样区的冬小麦FPAR值的差异不明显,冬小麦FPAR值与冠层光谱反射率绿光波段510nm处的负相关性最大,相关系数为-0.74,与760nm附近光谱反射率相关性为0.65。通过对冬小麦FPAR与RVI、DVI、NDVI、GRVI、EVI和SAVI这6种植被指数进行相关性分析,相关系数在0.737~0.837之间,说明这6种植被指数与冬小麦FPAR相关性均较好,为了找出最佳预测FPAR模型,并比较几种模型的预测精度,将6种植被指数与冬小麦FPAR进行拟合,拟合结果显示6种植被指数中NDVI较适合进行FPAR的估算,R2为0.802。其次SAVI的估算精度较高,R2为0.734。通过精度检验结果表明,NDVI适用两样区的冬小麦FPAR估算,估算结果较好。
     4)为了更好地分析研究济南市长清区冬小麦产量情况,本文将微观研究与宏观研究相结合,最终选取WOFOST (World Food Studies)作物生长模型进行模拟长清区冬小麦生长,该模型能够较好的对长清区冬小麦产量进行估算。通过中国“资源环境卫星A、B星”遥感影像与本文研究的冬小麦LAI反演模型相结合,对研究区域范围内的冬小麦LAI值进行反演。由于WOFOST作物生长模型最初是为欧洲作物进行的设计,本文对该模型进行了“本地化”的优化,通过收集长清区逐日气象资料、并实测土壤数据和作物数据,在文献检索和专家咨询的基础上,对WOFOST模型进行本地化参数设置,同时利用FSEOPT优化程序,结合遥感影像反演冬小麦LAI值结果对模拟模型参数进行调整。通过“本地化”后的WOFOST作物生长模型能够较好地预测出长清区的冬小麦产量变化趋势。为评价长清区冬小麦供应状况提供了科学的数据支持。
     5)通过收集济南市区及长清区的社会、经济和自然条件等资料,综合分析长清区的农业、人口、消费、经济等情况,发现长清区近年来人口数量呈整体下降趋势。随着经济的发展,城市居民消费结构发生了改变,由原来以“食品为主衣着为辅”的消费结构变为如今的多元化消费结构,同时城市居民的饮食结构也在发生了变化,粮食摄入量减少,乳制品、水果等其它食品摄入量增加。农村居民的生活水平在不断提高,虽然粮食的摄入量变化不是很明显,但油脂类、肉禽类的摄入量呈上升趋势。长清区近几年冬小麦的播种面积没有大的变化,基本维持在22000公顷左右。冬小麦的单产变化较为明显,冬小麦产量受到天气、环境、管理等外界因素的影响极大。本文选取长清区及济南市区的粮食产量、人口、收入及消费分别作为自然、社会及经济因素的评价指标。通过粮食安全综合评价模型,对长清区冬小麦产量变化率进行评价,评价结果显示:2007年和2009年长清区粮食产量变化率有较大波动,冬小麦总产量出现明显降低的情况,其它年份均较上一年基本持平或有所提高。长清区冬小麦粮食安全指数分为两种情景研究,一种为对内供应型,长清区冬小麦仅供给该地区;另外一种为内外兼顾型,长清区冬小麦需要供给该地区和济南市区。第一种情况,由于长清区属于粮食生产地区,区内冬小麦产量足以满足该地区居民的需求,安全指数为安全状态。第二种情况,除2007年长清区冬小麦产量出现急剧下滑的情况,该地区冬小麦产量不能满足区内居民及济南市区居民需求,安全指数为不安全状态,其它年份冬小麦产量均能满足两地区居民需求。此评价方法对未来预测区域粮食安全状况具有一定的参考价值。
In recent years, food production has affected by been global warming. With the increasing demand in grain, food security has become one of the major problems the world faced. Modern agriculture is a new-type agriculture aimed at low energy consumption, high efficiency and effectiveness through making the best use of modern science and technology and equipment, also adopting advanced management methods. Hyperspectral remote sensing is an important technology in promoting the modernization of agriculture. With a high real-time monitoring capability and a high precision to monitor a wide range of farm, it played an important role in monitoring the crops growth condition and in yield assessment of a large area, investigation and dynamic monitoring of agricultural resources, agricultural disaster forecast and post-disaster assessment. As remote sensing is often affected by the weather, image resolution, time resolution, and many other external factors. Remote sensing information can only make observations of crops on the surface of the ground, so crop's internal structure changes, physical condition, etc. Cannot be obtained directly from the remote sensing images. Also, that information is related to the crops, environmental, climatic and pedantic factors. The crops-growth simulation model which based on those factors influence to the growth of wheat. It combining the computer technology, crop physiology, crop ecology, pedology, meteorology, systematic and so on. Then making dynamic simulation for crops growth, development and yields.Satellite remote-sensing techniques can monitor the growth situation of vegetation macroscopic. Crop-growth simulation models can simulate plant growth by macroscopic. Being united, they can into play bring their respective advantages and can better simulated crop yields. By combining the crop yields with natural, social, economic and other factors, the assessment of the food security problems within the scope of area can provide scientific data for the food security warning of region in decision-making.
     1)Firstly, this paper analysed five kinds of wheat's canopy spectra, including Zhengmai 9023, Wanmai 369, Linmai2,wenqian land Tainong 18,in two plots (Houhu District in Qianjiang City of Hubei province in central China and Changqing District in Jinan City in northern China) in their different Growth stages. Then, combined the spectral data in real time with collection of wheat leaf area index (LAI), Leaf chlorophyll values (SPAD), canopy photo synthetically active radiation ratio (FPAR) and other wheat agronomic parameters. Study found that different varieties of wheat in the same growth stage did not differ significantly in leaf area index. Correlation between wheat leaf area index and hyperspectral reflectance near 720nm~760nm reached 0.65. This study selected the maximum platform near infrared 875nm, red trough 670nm,550nm green and 450nm blue band to calculate the six vegetation indexes of the RVI, DVI, NDVI, GRVI, EVI and SAVI, the correlation analysis of the wheat leaf Area index showed correlation between the 0.766~0.842, all have good correlation. If modeling vegetation indexes and the wheat of leaf area index to test models'prediction precision, results showed that when LAI is less than 3.0, RVI and GRVI are fit to each other.But with the increase in coverage and decrease in degree of fitting the two types of vegetation indexes (RVI and GRVI) are very sensitive, especially when LAI is more than 3.0, vegetation index is much sensitive. These four kinds of vegetation indexes'simulated precision just changed a little during the whole growth period. Selecting some typical band to estimate leaf area index by BP neural network can greatly improve the retrieval accuracy degree of fitting up to 0.959, with a total mean root square RMSE of 0.208. However, if the BP neural network adds more learning samples, the trained network will need to start training from scratch. Since the BP neural network has no memory of the previous values and the thresholds. Compared to traditional regression model's the neural network'utility, needs further study.
     2) The values of wheat leaf chlorophyll (the following are referred to as SPAD) in two study areas during the whole growth period showed a parabola change, but the two wheat leaf SPAD values are significantly different, mainly in different growth period when SPAD peak values appear.Houhu plot's wheat SPAD peak value appears at the heading stage, the latter at the jointing stage, this difference has also been reflected in the spectral reflectance curve. In the Houhu plot, the blue, red band of wheat spectra reduced at the heading stage. This shows that chlorophyll content increased. However, in the Changqing plot green band increased at the jointing stage, indicating that the leaf chlorophyll content decreased. The chlorophyll content change of wheat in the two plots can be confirmed from the spectral changes. Those two wheat SPAD values and canopy spectral reflectance at 674nm (Houhu plot) and 686nm (1 Changqing plot) reached through negative correlation maximum, 760nm~1350nm near-infrared reflectance and SPAD values were significantly positive. Since there is a big difference between the two plots'wheat SPAD values. So the study will do correlation analysis of the two plots'wheat SPAD values and GRVI. RVI, NDVI respectively, the correlation coefficient between 0.686~0.901.The wheat SPAD value in Houhu plot and NDVI showed the highest correlation coefficient, reaching to 0.901; In Changqing District the correlation coefficient of the wheat SPAD value and NDVI was as high as 0.873. Setting up regression models with Vegetation index and SPAD values, then testing the model that showed a relatively high precision, which means wheat SPAD inversion models of the two plots both can estimate the SPAD values suitably.
     3) From the study of Wheat canopy's Fraction of photo-synthetically Active Radiation absorbed by the canopy in the PAR ratio, (the following are referred to as FPAR). We found that there is no significant difference between the wheat FPAR values in the two plots, wheat FPAR value and canopy spectral reflectance at 510nm reached the maximum negative correlation of-0.74, and spectral reflectance near 760nm correlation is 0.65. By analyzing the six vegetation indices correlation (RVI, DVI, NDVI, GRVI, EVI and SAVI) we found the correlation coefficients are between 0.737~0.837, indicating the 6 types of vegetation indices were corrdated with wheat FPAR well. To find the best FPAR prediction model and compare precision of different models, we fitted the six types of vegetation indexes into wheat FPAR values, the results showed that the NDVI is quite suitable for the estimation of with R2= 0.8021 and SAVI has a higher estimation accuracy, with R2= 0.734.From the last results of the test, NDVI is suited the estimation of the wheat FPAR value in the two plots.
     4) In order to make a better analysis of wheat yields. In Changqing District of Jinan city, this paper integrated the microcosmic with macroscopic research and ultimately selected the WOFOST (World Food Studies) crop growth model to simulate the growth of wheat in Changqing District. This model can estimate wheat production of Changqing District better. Combining the remote sensing image gained by "China Resources and Environment Satellite A, B" with the wheat LAI inversion model studied in this paper, we inverted the wheat LAI value within the study area. Since the crop growth model WOFOST was designed for European crops initially. This article gave the model a "localization" optimization. In Changqing District, by collecting daily weather data, measuring soil data and crop data, combining the literature with and consulting experts'advices, we made use of the remote sensing image and FSEOPT to invert the wheat LAI values to optimize the results. The crop growth model WOFOST optimized localizable can better predict wheat output trends in Changqing District. This model provided reliable scientific data for wheat output security situational in Changqing District.
     5) Through collecting the social, economic and natural and other information of Changqing District of Jinan city and analyzing its agriculture, population, consumption, economy, comprehensively, we found that the population and natural population growth rate is on an overall downward trend in recent years. With the economic development, on one hand, the consumption structures of urban residents are constantly changing, from food-based supplement to the diversified consumption structure. Near urban residents'diet structure changed to they take less grains, but more dairy products, fruits and other food.On the other hand, the living standards of rural residents is also raising. Although there is no obvious changes in food intake, fats and oils, meat and poultry intake increased. The wheat acreage in Changqing District remained at around 22,000 hectares in recent years. However, obvious changes happened in wheat yields which influenced by weather, environment, personnel management and other external seriously. This paper selects food production, population and income and consumption, of Changqing District as the natural, social and economic indices evaluation respectively. With the food safety assessment model, we evaluated the change rate of wheat yield in Changqing District. The results showed the rate of change of grain production decreased in 2007 and 2009 significantly. The rates in other years, compared to the previous year, keep the same basically or increased. The wheat food security index in Changqing District indicates wheat production is in a safe condition.The research on the wheat food security index in Changqing District included two conditions:one is internal supply.That means the wheat yield only supply the Changqing District.The other is internal and external supply. That means the wheat yield supply the Changqing District and Jinan City.In the first condition the wheat yiels can need the citizen's demand.For the Changqing District is acrops production,the wheat yields can't need the citizen's demand except a sharp decrease in 2007.So the food security index in a unsafe condition. The quantity can not only meet the demand of residents in Changqing District, but also will meet the residents of other areas.This method is useful for predicting the regional security condition in the future.
引文
[1]国家粮食局调控司.关于我国粮食安全问题的思考[J].宏观经济研究,2004(9):6-9
    [2]卢良恕.当前粮食安全问题的战略分析[J].作物杂志,2004(3):1-4
    [3]Schmidhuber J, Tubiello F N. Global food security under climate change. Proceedings of the National Academy of Science[J],2007,104:19703-19708
    [4]张锐.全球粮食安全:瓶颈与破除[J].生态经济,2009(10):18-23
    [5]杨晓智.世界粮食供求格局变化及保障中国粮食安全问题研究[J].生产力研究,2010(2):7-11
    [6]郑新广,于峰.世界粮食危机的诱因及应对[J].国际经贸探索,2008(8):4-7.
    [7]潘旭东,马晓平.世界粮食危机背景下我国粮食安全问题探析[J].价格月刊,2010,12:70-75
    [8]杨建荣,孙京盟.阿拉伯国家粮食安全问题探究[J].西亚非洲,2009(11):33-40
    [9]公茂刚,王学真.发展中国家粮食安全状况分析[J].中国农村经济,2009(6):90-96
    [10]英国发布新粮食战略,确保粮食安全[J].食品与发酵工业,2010,36(1):51
    [11]毛泽东选集:第5卷[M].北京:人民出版社,1977:268
    [12]徐兆权.谈新时期我国的粮食安全问题[J].中国农垦,2010(12):22-24
    [13]邓小平文选:第2卷[M].北京:人民出版社,1983.
    [14]江泽民.论社会主义市场经济[M].北京:中央文献出版社,2006:144.
    [15]马晓河,蓝海涛.我国粮食综合生产能力和粮食安全的突出问题及政策建议[J].改革.2008(9):37-50
    [16]王文龙,唐德善.中国粮食安全问题:治标更要治本[J].改革与战略.2007(4):39-41
    [17]吴照云,蔡文著.粮食主产区农业发展与国家粮食安全问题研究[J].安徽农业科学,2007,35(11):3425-3427
    [18]http://news.sina.com.cn/z/xngh/index.shtml[EB],2010
    [19]余晓峰.论中国的粮食安全问题[J].经济研究导刊,2010(19):154-156
    [20]简保权.国务院叫停粮食燃料乙醇[J].新能源产业,2007(4):36-38
    [21]王景平,张晶.试论中国粮食安全问题[J].安徽农业科学,2007,35(11):3379-3381
    [22]姚云军,秦其明,张自力,等.高光谱技术在农业遥感中的应用研究进展[J].农业工程学报,2008,24(7):301-306
    [23]Lillesand,Thomas,M.Kiefer, Ralph W. Remote sensing and image interpretation[M].Wiley & Sons.1994
    [24]梅安新,彭望碌,秦其明,等.遥感导论[M].北京:高等教育出版社,2001
    [25]Vane G.,Goetz A. F. H., Terrestrial imaging spectrometry:Current status, future trends:Remote Sensing of Environment,1993,44:117-126.
    [26]郑兰芬,王晋年.成像光谱遥感技术及其图像光谱信息提取的分析研究[J].环境遥感.1992,7(1):49-58
    [27]Hunt G R. Electromagnetic radiation:the communication link in remote sensing.In Remote Sensing in Geology.Siegal B,Gillespia A.Wiley New York,1980:702
    [28]浦瑞良,宫鹏.高光谱遥感及其应用[M].高等教育出版社,2000
    [29]唐延林,黄敬峰.农业高光谱遥感研究的现状与发展趋势[J].遥感技术与应用,2001,16(4):248-251
    [30]郭建茂.基于遥感与作物生长模型的冬小麦生长模拟研究[D].南京:南京信息工程大学,2007
    [31]姚云军,秦其明,张自力,等.高光谱技术在农业遥感中的应用研究进展[J].农业工程学报,2008,24(7):301-306
    [32]李存东.农学概论[M].科学出版社,2007
    [33]信乃诠.许世卫.孔繁涛.我国基础农学学科发展战略研究[J].前言科学.2003.3(2):9-18
    [34]孔繁涛.基础农学发展现状及趋势分析[J].中国科技论坛.2007,7:100-104
    [35]杜华平.作物生长模拟研究浅析[J].上海农业科技,1993,(3):2-4
    [36]谢文霞,王光火,张奇春WOFOST模型的发展及应用[J].土壤通报.2006,37(1):154-158
    [37]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:华文出版社,2000.1-15
    [38]余福水EPIC模型应用于黄淮海平原冬小麦估产的研究[D].中国农业科学院.2007
    [39]宋晓宇,王纪华,阎广建,等.基于多时相航空高光谱遥感影像的冬小麦长势空间变异研究[J].光谱学与光谱分析,2010,30(7):1820-1824
    [40]柳钦火,辛晓洲,唐娉,等.定量遥感模型、应用及不确定性研究[M].北京:科学出版社,2010
    [41]Jacquemoud S, Bacour C, Poilve H, J P Frangi. Comparison of four radiative transfer models to simulate plant canopies reflectance:Direct and inverse mode[J]. Remote Sensing Environment, 2000,74:417-481.
    [42]Qi J, Cabot F, Moran M S, Dedieut G. Biophysical parameter estimations using multidirectional spectral measurements[J]. Remote Sensing of Environment,1995,54:71-83.
    [43]Fassnacht K, Gower S, MacKenzie D, Nordheim E, Lillesand T M.Estimating the leaf area index of north central Wisconsin forest using Landsat Thematic Mapper[J]. Remote Sensing of Environment,1997,61:229-245.
    [44]Choudhury B J.Relationships between Vegetation Indices Radiation Absorption and Net Photosynthesis Evaluated by Sensitivity Analysis[J].Remote Sesing Environment,1987,22(2): 209-233
    [45]Hvete A R. A Soil-adjusted vegetation Index(SAVI)[J].Remote Sesing Environment,1988,25(3): 295-309
    [46]Coward S N, Hvemmrich K F. Vegetation Canopy PAR Absorptance and the Normalized Difference Vegetation Index:An Assessment using the SAIL Model[J].Remote Sesing Environment,1990,32(1):47-54
    [47]Pu Rui-ling,Gong Peng.Correlating Leaf Area Index of Ponderosa Pinewith Hyperspectral CASI Dada[J].Remote Sensing of Environment,1993,8(2):112-124
    [48]Huete A R, Epiphanio J C N. Dependence of NDVI and SAVI onsun/sensor geometry and its effect on fAPAR relationships in alfalfa[J].Remote Sens Environ,1995,51:351-360
    [49]Fensholt R, Sandholt I, Rasmussen M S. Evaluation of MODISLAI, fAPAR and the relation between fAPAR and NDVI in asemi-arid environment using in situ measurements[J]. Remote Sensing of Environment,2004,91:490-507
    [50]Daniel C, Steinberg S J G, Hyer E J. Validation of MODIS FPARproducts in Boreal forests of Alaska[J]. IEEE Trans Geosci RemoteSens,2006,44:1818-1828
    [51]Mocrif M. Impacts of Model Parameter Uncertainties on Crop Reflectance Estimates:A Regional Case Study on Wheat [J].International Journal of Remote Sensing,1999,20:213-218
    [52]Lichtenthaler H K. Chlorophylls and Carotenoids:Pigments of Photosynthetic Biomembranes [J]. Methods in Enzymology,l987,148:350-382.
    [53]Buschmann C, Nagel E. In Vivo Spectroscopy and Internal Op tics of Leaves as Basis for Remote Sensing of Vegetation [J].International Journal of Remote Sensing,1993,14:711-722.
    [54]Thenkabail PS, Smith RB, Pauw ED. Hyperspectral vegetation indices and their relationship with agricultural crop characteristics. Remote Sens Environ,2000,71:158-182
    [55]Wiegand CL, Maas SJ, Aase J K, et al. Multisite analyses of spectral-biophysical data for wheat. Remote Sens Environ.1992,42:1-21
    [56]Gitelson A A, Kaufman Y, MerzlyakM N. Use of Green Channel in Remote of Sensing Global Vegetation from EOS-MODIS[J].Remote Sensing of Environment,1996,58:289-298.
    [57]Andres Vina. Remote Estimation of Leaf Area Index and Biomass in Corn and Soybean [D]. The University of Nebraska,2004.
    [58]Huete A R, Justice C, Liu H. Development of Vegetation and Soil Indices for MODIS-EOS [J]. Remote Sensing of Environment,1994,49:224-234
    [59]Casanova D., G.F.Epema, J.Goudriaan. Monitoring rice reflectance at field level for estimating biomass and LAI [J]. Field Crops Research,1998,55(1-2):83-92.
    [60]Shibayama M.,Akiyama T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry biomass[J].Remote Sensing of Environment, 1989,27(2):119-197
    [61]Hansen P M, and Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen statue in wheat crops using normalized difference vegetation indices and partial least squares regression [J]. Remote Sensing Environment,2003,86(4):542-553
    [62]Hung T N and Byun W L. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regress[J]. European Journal of Agronomy,2006, 24(4):349-356
    [63]Pearson RL, Miller DL. Remote mapping of standing crop biomass for estimation of the productivity of the short grass prairie. Proceedings of the Eighth International Symposium on Remote Sensing of Environment,1972(2):1357-1381.
    [64]Rouse JW, Haas RH, Schell JA,el at. Monitoring the vernal advancement of retrogradation of natural vegetation[R]. NASA/GSFC, TypeⅢ, Final report, Greenbelt, MD, USA,1974:1-371
    [65]Richardson AJ, Wiegand CL. Distinguishing vegetation from soil background information[J]. Photogrammetric Engineering and Remote Sensing,1977(43):1541-1552.
    [66]Patel NK, Patnaik C, Dutta S, el at.Study of crop growth parameters using airborne imaging spectrometer[J]. international Journal of Remote Sensing,2001(22):2401-2411
    [67]Abou-Ismail O, Huang J F, Wang R C. Rice Yield Estimation by Integrating Remote Sensing with Rice Growth Simulation Model[J].Pedosphere,2004,14 (4):519-526.
    [68]Boschetti M, Confalonieri R, Stroppiana D,et al. Agro-ecological modelling for monitoring rice productions:contribution of field experiment and multi-temporal EO data [C]. Proceedings of SPIE,2005
    [69]REE Jongschaap. Run-time calibration of simulation modls by integrating remote sensing estimates of leaf area index and canopy nitrogen[J]. Europ Journal of Agronomy,2006, 24(4):316-324
    [70]Daughtry C S T, Walthall C L, Kim M. S.,et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment,2000,74:229-239..
    [71]Broge N H, Mortensen J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data[J]. Remote Sensing of Environment,2002,81:45-57
    [72]Dash J, Curran PJ.The MERIS terrestrial chlorophyll index[J]. International Journal of Remote Sensing,2004,25(23):5403-5413
    [73]SIMS D A, GAMON J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and development stages[J].Remote Sensing of Environment,2002,81:337-354
    [74]Gitelson A A., Vina A., Ciganda V., et al. Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters,2005,32:L08403
    [75]William L Bauerle, David J Weston, Joseph D Bowden, et al.Leaf absorptance of photosynthetically active radiation in relation to chlorophyll meter estimates among woody plant species. Scientia Horticulturae,2004,101:169-178
    [76]Horler D N H, Barber J, Barringer A R. Effects of heavy metals on the absorbance and reflectance spectra of plants[J]. International Journal of Remote Sensing,1980,1(2):121-136.
    [77]Curran P J, Dungan J 1, Gholz H 1. Explorong the relationship between reflectance red edge and chlorophyll content in slash pine[J]. Tree Physiology,1990,7:33-38.
    [78]Matsunaka T, Watanabe Y, Miyawaki T. Prediction of grain protein content in winter wheat through leaf color measurements using a chlorophyll meter. Soil Science and Plant Nutrition, 1997,43(1):127-134
    [79]Frater R N. Hyperspectral Remote Sensing of Turbidity and Chlorophyll a Among Nebraska Sand Hills Lakes [J]. International Journal of Remote Sensing,1998,19(8):1579-1589
    [80]Jacquemoud S, Ustin S L, Verdebout J, et al. Estimating Leaf Biochemistry Using the prospect Leaf optical Properties Model [J]. Remote Sensing of Environment,1996,56:194-202
    [81]Blackburn G A. Quantifying chlorophylls and caroteniods at leaf and canopy scales:An evaluation of some hyperspectral approaches. Remote Sensing of Environment,1998,66:273-285
    [82]Carter GA, Spiering BA.Optical properties of intact leaves for estimating chlorophyll concentration.Journal of environmental quality,2002,31:1424-1432
    [83]Prince S D. A model of regional primary p roduction for use with coarse-resolution satellite data [J]. International Journal of Remote Sensing,1991,12:1313-1330
    [84]Roujean J L,Breon EM. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements [J].Remote Sensing of Environment,1995,51:375-384
    [85]Huemmrich K F, Goward S N. Vegetation canopy PAR absorbed and NDVI:an assessment for ten tree species with the SAIL Model[J].Remote Sensing of Environment,1997,61:254-269
    [86]王培娟,朱启疆,吴门新,等.冬小麦冠层的FAPAR、LAI、Vis之间关系的研究[J].遥感信息,2003,(3):19-22
    [87]周晓东,朱启疆,王锦地,等.夏玉米冠层内PAR截获及FPAR与LAI的关系[J].自然资源学报,2002,17(1):110-116
    [88]Monteith J L. Solar radiation and productivity in tropical ecosystems [J]. The Journal of Applied Ecology,1972,9:747-766
    [89]Eduardo Ridao, Jose R Conde, M.Ines Minguez. Estimating fAPAR from Nine Vegetation Indices for Irrigated and Nonirrigated Faba Bean and Semileafless Pea Canopies[J]. Remote Sensing of Environment,1998,66:87-100. [90] Friedl M A, Davis F W, Michaelsen J, Moritz M A. Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables:An analysis using a scene simulation model and data from FIFE[J]. Remote Sensing of Environment,1995,54:233-246.
    [91]Myneni R B, Ramakrishna R N, Running S W. Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Transactions on Geoscience and Remote Sensing,1997, 35(66):1380-1393.
    [92]Law B E. Estimation of leaf area index and light intercepted by shrubs from digital videography[J]. Remote Sensing of Environment,1995,51:276-280.
    [93]Daughtry C S T, Gallo K P, Goward S N, et al.Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies[J]. Remote Sensing of Environment,1992, 39:141-152.
    [94]Tian Y, Dickinson R E, Zhou L, et al. Comparison of seasonal and spatial variations of leaf area index and fraction of absorbed photosynthetically active radiation from moderate resolution imaging spectroradiometer (MODIS) and common land model[J]. Journal of Geophysical Research,109:DO 1103.
    [95]Steinberg D C, Goetz S J, Hyer E J. Validation of MODIS FPAR products in boreal rorests of AlaskafJ]. IEEE Transactions on Geoscience and Remote Sensing,2006,44:1818-1827. [96] Huemmrich K F, Privette J L, Mukelabai M,et al. Time-series validation of MODIS land biophysical products in a Kalahari woodland, Africa[J]. International Journal of Remote Sensing. 2005,26:4381-4398.
    [97]Ladha J K, TirolPadre A, Punzalan GC, et al. Nondestructive Estimation of Shoot Nitrogrn in Fifferent Rice Genotypes[J].AgronomyJournal,1998,90(1):33-40.
    [98]Takebe M, Yoneyama T, Inada K,et al.Spectral Reflectance Ratio of Rice Canopy for Estimating Crop Nitrogen Status [J].Plant and Soil,1990,122(2):295-297.
    [99]Zhou QF, Wang JH. Comparison of Adaxial and Abaxial Surface Reflectance under Different Nitrogen Level [J]. Transactions of the CASE,2002,18(5):34-38.
    [100]Eck T, Dye D.Satellite estimation of incident photosynthetically active radiation using ultraviolet reflectance[J]. Remote Sensing of Environment,1991,38(2):135-146
    [101]Goldberg B, Klein W H. A model for determining the spectral quality of daylight on a horizontal surface at any geographical location[J]. Solar Energy,1980,24:351-357
    [102]Frouin R, Lingner D W, Gautier C, et al. A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface[J]. Journal of Geophysical Research,1989,94:9731-9742
    [103]Pinker R T, Laszlo I. Modeling surface solar irradiance for satellite applications on a global scale[J]. Journal of Applied Meteorolog,1992,31(2):194-211
    [104]Pinker R T, Ewing J A. Modeling surface solar radiation:model formulation and validation[J]. Journal of Applied Meteorology,1985,24(5):389-401
    [105]Gobron N, Pinty B, Aussedat O, et al. Evaluation of FAPAR products for different canopy radiation transfer regimes:methodology and results using JRC products derived from SeaWIFS against ground-based estimations[J]. Journal of Geophysical Research,2006,111:D13110
    [106]Potter C S, Randerson J T, Field C B, et al. TerrestrialEcosystem Production:A ProcessModel based on Globe Satelliteand Surface Data [J]. Global B iogeochem ical Cycles,1993,7:811-841.
    [107]Prince S D, Goward SN. Global Priomary Production:a RemoteSensing App roach [J]. Journal of Biogeography,1995,22:815—835.
    [108]Xiao X, Zhang Q, Braswell B, et al. Modeling Gross PrimaryProduction of Temperate Deciduous Broadleaf Forest UsingSatellite Images and Climate Data [J]. Remote Sensing Environment, 2004,91:256-270.
    [109]Ruimy A, Saugier B, Dedieu G. Methodology for the Estimationof Terrestrial Net Primary Production from Remotely Sensed Data[J]. Journal of Geophysical Research,1994,99:5263-5283
    [110]Field C B, Randerson J T, Malmstrom CM. GlobalNet PrimaryProduction:Combining Ecology and Remote Sensing[J]. Remote Sensing of Environment,1995,51(1):75-88.
    [111]高彦华,陈良富,柳钦火.叶绿素吸收的光合有效辐射比率的遥感估算模型研究[J].遥感学报,2006,10(5):798-803
    [112]Running SW, Nemani R R, Heinsch F A, et al. A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production[J]. Bioscience,200,54(6):547-560.
    [113]Asrar G, Fuchs M, Kanemasu E T, et al. Estimating Absorbed Photosynthetic Radiation and Leaf Area Index from Spectral Reflectance in Wheat[J]. Agronomy Journal,1984,76:300-306
    [114]Paul J, Pinter Jr. Solar angle independence in the relationship betweenabsorbed PAR and remotely sensed data for alfalfa[J]. Remote sensing of environment,1993,46:19—25
    [115]Turner D P, Gower S T, Cohen W B, et al. Effects of spatial variability in light use efficiency on satellitebased NPP monitoring[J]. Remote sensing of environment,2002,80:397—405
    [116]Tian Y H, Dickinson R E, Zhou L, et al.Comparison of seasonal and spatial variations of leaf area index and fraction of absorbed photosynthetically active radiation from Moderate Resolution Imaging Spectroradiometer (MODIS) and Common Land Model.Journal of Geophysical Research,2004,109:1103-1117
    [117]Knyazikhin Y, Martonchik J V, Diner D J, et al. Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data[J]. Journal of Geophysical Research,1998,103:32239-32256
    [118]C.T.de Wit. Photosynt hesis of leaf canopies [R].Agricultural research reports,1965
    [119]Brouwer R, Dewit CT, A simulation model of plant growth with special attention to root growth and its consequences. In:Whittington WJ (eds.). Root Growth. Butterworth, London.1969
    [120]Fick G W, Williams W A, Loosis R S. Computer Simalation of dry matter distribution during sugar beet growth[J]. Crop Science,1973(13):413-417
    [121]W.R.W. Shawcroft, E.R. Lemon, L.H. Allen Jr.et al. The soil-plant-atmosphere model and some of its predictions[J].Agricultural Meteorology.1974,14(1-2):287-307
    [122]McCree KJ. Equations for the Rate of Dark Respiration of White Clover and Grain Sorghum, as Functions of Dry Weight, Photosynthetic Rate, and Temperature[J].Crop Science,1974,14 (4):509-514
    [123]Penning de Vries,F W T王馥棠译.植物生长与作物生产的模拟[M].北京:科学出版社,1998
    [124]Arkin G.F., R.L. Vanderlip, J.T. Ritchie. A dynamic grain sorghum growth model[J]. Transactions of the ASABE,1976,19(4):622-624,630
    [125]严力蛟,沈秀芬,周熙朝,等.作物模拟模型研究概况与展望[J].农业系统科学与综合研究,1998,14(2):126-132
    [126]刘伟东,项月琴,郑兰芬,等.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析[J1.遥感学报,2000,4(4):279-283
    [127]申广荣,王人潮.水稻多组分双向反射模型的研究[J].应用生态学报.2003,14(3):394-398
    [128]王秀珍,黄敬峰,李云梅,等.高光谱数据与水稻农学参数之间的相关分析[J].浙江大学学报.农业与生命科学版,2002,28(3):283-288
    [129]宋开山,张柏,李方,等.高光谱反射率与大豆叶面积及地上鲜生物量的相关分析[J].农业工程学报,2005,21(1):36-40.
    [130]薛利红,曹卫星,罗卫红,等.光谱植被指数与水稻叶面积指数相关性的研究[J].植物生态学报,2004,28(1):47-52
    [131]谭昌伟,黄义德,黄文江,等.夏玉米叶面积指数的高光谱遥感植被指数法研究[J].安徽农业大学学报,2004,31(4):392-397
    [132]唐延林,王秀珍,王福民,等.农作物LAI和生物量的高光谱法测定[J].西北农林科技大学学报(自然科学版),2004,32(11):100-104.
    [133]刘占宇,黄敬峰,吴新宏,等.草地生物量的高光谱遥感估算模型[J].农业工程学报,2006,22(2):111-115.
    [134]王秀珍.水稻生物物理与生物化学参数的光谱遥感估算模型研究[D].浙江大学,2001
    [135]程乾,黄敬峰,王人潮等MODIS植被指数与水稻叶面积指数及叶片叶绿素含量相关性的研究[J].应用生态学报,2004,15(8):1363-1367.
    [136]吴炳方.中国农情遥感监测研究[J].中国科学院院刊,2004,19(3):202-205.
    [137]王婷,胡亮,郭晓敏,等.毛竹叶片N含量与SPAD值的相关性研究[J].安徽农业科学,2006,34(15):3670-3671
    [138]肖关丽,郭华春.不同温光条件下马铃薯不同叶位(?)SPAD值变化规律研究[J].中国马铃薯,2007,21(3):146-148
    [139]苏云松,郭华春,杨雪兰.甘薯、薯蓣和魔芋叶片SPAD值与叶绿素含量的相关性研究[J].西南农业学报,2009,22(1):64-66
    [140]刘飞,王莉,何勇,等.基于可见近红外光谱技术的黄瓜叶片SPAD值检测[J].红外与毫米波学报,2009,28(4):272-276
    [141]曾建敏,姚恒,李天福.烤烟叶片叶绿素含量的测定及其与SPAD值的关系[J].分子植物育种,2009,7(1):56-62
    [142]李映雪,徐德福,谢晓金,等小麦叶片SPAD空间分布及其与氮素营养状况的关系[J].中国农业气象,2009,30(2):164-168
    [143]唐延林,王人潮,黄敬峰,等.不同供氮水平下水稻高光谱及其红边特征研究[J].遥感学报,2004,8(2):185-192.
    [144]薛利红,曹卫星,李映雪,等.水稻冠层反射光谱特征与籽粒品质指标的相关性研究[J].中国水稻学,2004,18(5):431-436
    [145]唐延林,黄敬峰,王人潮,等.利用高光谱数据预测水稻籽粒粗蛋白含量研究[J].农业工程学报,2006,22(7):114-118
    [146]Tang Y L, Wang R C, Huang J F. Relations between red edge characteristics and agronomic parameters of crops[J].Pedosphere,2004,14(4):467-474
    [147]宋开山,张柏,王宗明等.大豆叶绿素含量高光谱反演模型研究[J].农业工程学报.2006,22(8):16-21
    [148]赵春江,黄文江,王纪华,等.不同品种、肥水条件下冬小麦光谱红边参数研究[J].中国农业科学,2002,35(8):980-987
    [149]黄文江,王纪华,刘良云,等.小麦品质指标与冠层光谱特征的相关性的初步研究[J].农业工程学报,2004,20(4):203-207
    [150]金震宇,田庆久,惠凤鸣,等.水稻叶绿素浓度与光谱反射率关系研究[J].遥感技术与应 用,2003,6:134-137
    [151]王秀珍,王人潮,黄敬峰.微分光谱遥感及其在水稻农学参数测定上的应用研究[J].农业工程学报,,2002,,18(1):9-13
    [152]唐延林,王人潮,张金恒,等.高光谱与叶绿素计快速测定大麦氮素营养状况研究[J].麦类作物学报,2003,23(1):63-66.
    [153]谢华,沈荣开,等.水、氮效应与叶绿素关系试验研究[J].中国农村水利水电,2003,8:40-43
    [154]李素菊,吴倩,王学军等.巢湖浮游植物叶绿素含量与反射光谱特征的关系[J].湖泊科学,2002,14(3):228-234.
    [155]疏小舟,尹球,匡定波.内陆水体藻类叶绿素浓度与反射光谱特征的关系[J].遥感学报,2000,4(1):41-45
    [156]王康,沈荣开,唐友生.用叶绿素测值(SPAD)评估夏玉米氮素状况的实验研究[J].灌溉排水,2002,21(4):1-3
    [157]董振国,于沪宁.农田光合有效辐射观测与分析[J].气象,1983(7):23-24
    [158]刘洪顺.光合成有效辐射的观测和计算[J].气象,1980,6(6):526
    [159]K.J. McCree. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data[J].Agricultural Meteorology,1972,10:443-453.
    [160]Stanhill G, FuchsM. The relative flux density of photosynthetically active radiation[J].Journal of Applied Ecology,1977,14:317-322
    [161]L. E. Hipps, G. Asrar, E. T. Kanemasu. Assessing the interception of photosynthetically active radiation in winter wheat [J].Agricultural Meteorology,1983,28:253-259.
    [162]Gallo K.P, Daughtry C.S.T.Techniques formeasuring intercepted and absorbed photosynthetically active radiation in corn canopies[J].Agronomy journal,1986,78(4):752-756
    [163]项月琴,田国良.遥感估算水稻产量-Ⅰ.产量与辐射截获量间关系的研究[J].环境遥感,1988,3(4):308-316
    [164]潘学标,邓绍华,王延琴等.麦棉套种对棉行太阳辐射和温度的影响[J].棉花学报,1996,8(1):44-49
    [165]刘晓东,朱春全,雷静品,等.杨树人工林冠层光合辐射分布的研究[J].林业科学,2000,36(3):2-7
    [166]王建林,徐正进.穗型和行距对水稻冠层受光态势的影响[J].中国水稻科学,2005,19(5):422-426
    [167]于强,王天铎,刘建栋,等.玉米株型与冠层光合作用的数学模拟研究-Ⅰ.模型与验证[J].作物学报,1998,24(1):7-15
    [168]Chen SG, Shao BY, Impens I, et al. Effects of plant canopy structure on light interception and photosynthesis[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1994,52:115-123
    [169]陈进红,张国平,郭恒德,等.杂交粳稻超高产群体的冠层结构特点研究[J].应用生态学 报,2003,14(6):913-916
    [170]申广荣,王人潮,李云梅,等.水稻群丛结构和辐射传输分析[J].作物学报,2001,27(6):769-775
    [171]吕丽华,赵明,赵久然,等.不同施氮量下夏玉米冠层结构及光合特性的变化[J].中国农业科学,2008,41(9):2624-2632
    [172]吕丽华,陶洪斌,夏来坤,等.种植密度对夏玉米碳氮代谢和氮利用率的影响[J].作物学报,2008,34(3):447-455
    [173]Sassenrath-Cole GF.Dependence of canopy light distribution on leaf and canopy structure for two cotton (Gossypium) species[J]. Agricultural and Forestry Meteorology,1995,77:55-72.
    [174]杨长明,杨林章,韦朝领,等.不同品种水稻群体冠层光谱特征比较研究[J].应用生态学报,2002,13(6):689-692
    [175]邹江石,姚克敏,吕川根,等.水稻两优培九株型特征研究[J].作物学报,2003,29(5):652-657
    [176]郎有忠,张祖建,顾兴友,等.水稻卷叶性状生理生态效应的研究Ⅰ.叶片姿态、群体构成及光分布特征[J].作物学报,2004,30(8):739-744
    [177]吕川根,邹江石,胡凝.两系杂交稻两优培九稻米品质性状的变异分析[J].江苏农业学报.2007,23(6):501-508
    [178]祁红彦,周广胜,许振柱.北方玉米冠层光合有效辐射垂直分布及影响因子分析[J].气象与环境学报.2008,24(1):22-26
    [179]Takahashi T, Nakaseko K. Varietal difference in morphologyand photosynthetically active radiation distributionin spring wheat canopy[J].Japanese Journal of CropScience, 1993,62:554-559
    [180]赵会杰,李有,邹琦.两个不同穗型小麦品种的冠层辐射和光合特征的比较研究[J].作物学报.2002,28(5):654-659
    [181]Chen WF, Xu ZJ, Zhang LB, et al. Effects of differentpanicle type on canopy properties light distribution and dry matter production of rice population. Acta AgronomicaSinica,1995,21:83-89
    [182]于强,王天铎,孙菽芬.玉米株型与冠层光合作用的数学模拟研究—Ⅱ数值分析[J].作物学报.1998,24(3):272-279
    [183]Stewart DW, Costa C, Dwyer LM, et al. Canopy structure, light interception, and photosynthesis in maize[J].Agronomy Journal,2003,95:1465-1474
    [184]胡凝,吕川根,姚克敏.卷叶水稻的光分布模拟及适宜叶面卷曲度分析[J].中国水稻科学,2008,22(6):617-624
    [185]高亮之,金之庆,张更生.水稻最佳株型群体受光量与光合量的数值模拟[J].江苏农业学报,2000,16(1):1-9
    [186]Zheng BY, Shi LJ, Ma YT, et al. Comparison of architectureamong different cultivars of hybrid rice using aspatial light model based on 3-D digitizing[J]. FunctionalPlant Biology, 2008,35:900-910
    [187]高亮之,金之庆.中国不同类型水稻生育期的农业气象生态模式及其应用[J].农业气象,1982,,8(2):1-8
    [188]高亮之,金之庆,黄耀等.水稻计算机模拟模型及其应用之一:水稻钟模型-水稻发育的计算机模型[J].中国农业气象,1989,10(2):3-10
    [189]戚昌瀚,殷新佑,刘桃菊等.水稻生长日历模拟模型(RICAM)的调控决策系统(RICOS)研究[J].江西农业大学学报,1994,16(4):323-327
    [190]殷新佑,戚昌瀚.水稻生长日历模拟模型及应用研究[J].作物学报,1994,20(3):339-346
    [191]黄耀,高亮之.水稻群体茎蘖动态的计算机模型[J].生态学杂志,1994,13(4):27-32
    [192]张宇,陶炳炎.冬小麦生长发育的模拟研究[J].南京气象学院学报,1991,14(1):113-121
    [193]李自珍,王万雄.多种环境外力作用下作物生长系统的动力学模型及过程数值模拟[J].应用数学和力学,2003,24(6):644-652
    [194]孙忠富,陈人杰.温室番茄生长发育动态模型与计算机模拟系统初探[J].中国生态农业学报,2003,11(2):84-88
    [195]王世耆,程延平.作物产量与天气气候[M].北京:科学出版社,1991,16-30
    [196]王亚莉,贺立源.作物生长模拟模型研究和应用综述[J].华中农业大学学报.2005,529-535
    [197]李杰,郑爱军,宋振伟等.农业专家系统与模拟优化农业模型结合初探[J].天津科技,2002,18(4):269-272
    [198]Haboudanea D, Miller J R, Pattey E, Zarco-Tejadad P J.Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies:Modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment,2004,90:337-352.
    [199]Moulin S, Bondeau A, Delecolle R. Combining Agricultural Crop Models and Satellite Observations:from Field to Regional Scales[J]. International Journal of Remote Sensing,1998, 19(6):1021-1036
    [200]Barton C V M, North P R J. Remote Sensing of Canopy Light Use Efficiency Using the Photochemical Reflectance Index Model and Sensitivity Analysis [J].Remote Sensing of Environment,2001,78:264-273
    [201].张佳华,符淙斌,延晓冬,等.全球植被叶而积指数对温度和降水的响应研究[J].地球物理学报,2002,45(5):631-637
    [202]Inoue Y. Synergy of Remote Sensing and Modeling for Estimating Ecophysiological Processes in Plant Production [J].Plant Production Science,2003,6:3-16
    [203]Darishzadeh R, Skidmore A, Schlerf M, et al. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements[J]. ISPRS Journal of Photogrammetry & Remote Sensing,2008,63(4):409-426.
    [204]Anderson G L, Hanson J D, Haas R H. Evaluating landsat thematic mapper derived vegetation indices for estimating above-ground biomass on semisrid rangelands[J]. Remote sensing of Environment,1993,45(2):165-175
    [205]李小文,刘素红.遥感原理与应用[M].北京:科学出版社.2008
    [206]Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance l.An inverted-Gaussian reflectance model[J]. International Journal of Remote Sensing,1990, 11(10):1755-1773
    [207]Huete A R.A soil vegetation adjusted index(SAVI).Reomte sensing of Environment, 1988,25:295-309
    [208]冯伟,朱艳,田永强等.基于高光谱遥感的小麦叶片氮积累量[J].生态学报,2008,28(1):23-32
    [209]童庆禧,张兵,郑兰芬.高光谱遥感的多学科应用[M].北京:电子工业出版社,2006
    [210]方慧,宋海燕,曹芳,等.油菜叶片的光谱特征与叶绿素含量之间的关系研究[J].光谱学与光谱分析,2007,27(9):1731-1734
    [211]黄敬峰,王秀珍,胡新博.新疆北部不同类型天然草地产草量遥感监测模型[J].中国草地,1999,1:7-11
    [212]Blackburn G A. Spectral indices for estimating photosynthetic pigment concentrations:a test using senescent tree leaves[J].Inter national Journal of Remote Sensing,1998,19(4):657-675
    [213]郑丕尧,蒋钟怀,王经武.夏播“京早七号”玉米叶片叶绿紊含量消长规律的研究[J].华北农学报,1988,3(1):21-27
    [214]姜丽芬,石福臣,王化田,等.叶绿素计SPAD-502在林业上应用[J].生态学杂志,2005,24(12):1543-1548
    [215]李海云,任秋萍,孙书娥,等.10种园林树木叶绿素与SPAD值相关性研究[J].林业科技,2009,34(3):68-70
    [216]Tobias D J, Yosihkawa K, Ikemoto A, et al. Seasonal changes of leaf chlorophyll content in the crowns of several broad-leaved tree species [J]. J Jap Soc Reveget Technoogyl,1994,20(1):21-32
    [217]Leshem Y Y. Oxygen free radicals and plant senescence[J].Plant Physiol,1981,12:124
    [218]Van Staden J, Cook E,Nooden L D. Cytokinins and Senescence. In:Senescence and Aging in Plants. Edited by Nooden L. D, Leopold A. C,San D,Academic Press,1988
    [219]谢晓金,中双和,李映雪,等.高温胁迫下水稻红边特征及SPAD和LAI的监测[J].农业工程学报.2010,26(3):183-190
    [220]朱新开,盛海君,顾晶,等.应用SPAD值预测小麦叶片叶绿素和氮含量的初步研究[J].麦类作物 学报.2005,25(2):46-50
    [221]董晶晶,王力,牛铮.植被冠层水平叶绿素含量的高光谱估测[J].光谱学与光谱分析.2009,29(11):3003-3006
    [222]王厚麟,缪绅裕,陈建辉,等.不同类群植物叶片SPAD值的比较[J].安徽农业科学,2010,38(7):3408-3411
    [223]陈防,鲁剑巍SPAD-502叶绿素计在作物营养快速诊断上的应用初报[J].湖北农业科学,1996,(2):31-34
    [224]艾天成,李方敏,周治安,等.作物叶片叶绿素含量与SPAD值相关性研究[J].湖北农学院学报,2000,20(1):6-8
    [225]艾天成,周治安.小麦等作物叶绿素速测方法研究[J].甘肃农业科技,2001,4:16-18
    [226]冯伟,朱艳,姚霞等.小麦叶片色素含量的高光谱监测[J].应用生态学报.2008,19(5):992-999
    [227]Miguel Pagola, Ruben Ortiz, Ignacio Irigoyen,et al. New method to assess barley nitrogen nutrition status based on image colour analysis Comparison with SPAD-502[J]. computers and electronics in agriculture.2009:213-218
    [228]于振文.作物栽培学各论[M].中国农业出版社,2003
    [229]赵时英.遥感应用分析原理与方法[M].北京:科学出版社,2003
    [230]Smith, K. L., Steven, M. D. and Colls, J. J..Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks[J]. Remote Sensing of Environment, 2004,92(2):207-217
    [231]江东,王乃斌,杨小唤.吸收光合有效辐射的时序变化特征及与作物产量的响应关系[J].农业系统科学与综合研究.2002,18(1):51-54
    [232]Cramer W, Kicklighter D W, Bondeau A, et al. Comparing global models of terrestrial net primary productivity (NPP):overview and key results[J].Global Changing Biology,1999, (Suppl.1):1-15.
    [233]Reich P B, Turner D P, Bolstad P. An approach to spatially distributed modeling of net primary production (NPP) at the landscape scale and its application in validation of EOS NPP products[J]. Remote Sensing of Environment,1999,70:69-81.
    [234]Myneni R B, Knyazikhin Y, Privette J L,el at. MODIS leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) product (MOD 15).Algorithm Theoretical Basis Document. Version 4.0.1999, April 30.
    [235]杨飞,张柏,宋开山.玉米光合有效辐射分量高光谱估算的初步研究[Jl.中国农业科学.2008,41(7):1947-1954
    [236]Sauer T. J., Singer J. W., Prueger J. H., et al. Hatfield, radiation balance and evaporation partitioning in a narrow-row soybean canopy[J]. Agricultural and Forest Meteology,2007,145: 206-214
    [237]王涛,吕昌河,于伯华.基于WOFOST模型的京津冀地区冬小麦潜力评价.自然资源学报.2010,25(3):475-487
    [238]Lu C H, van IttersumM K, Rabbinge R. Quantitative assessment of resource use efficient cropp ing systems:A case study for Ansai in the Loess Plateau of China[J].European Journal of Agronom y,2003,19 (2):311-326.
    [239]曹云者,刘宏,王中义,等.基于作物生长模拟模型的河北省玉米生产潜力研究[J].农业环境科学学报,2008,27(2):826-832.
    [240]褚金翔,孙忠富,杜克明,等.基于TOMSIM模型的温室番茄中杂9号生产潜力的空间分析[J].中国农业气象,2009,(1):49-53
    [241]姜志伟,武雪萍,华,等.洛阳旱地夏玉米生产潜力长周期定量模拟与评价[J].生态学报,2009,29(1):315-324.
    [242]居煇,李三爱,严昌荣.我国北方旱区雨养小麦生产潜力研究[J].中国生态农业学报,2008,16(3):728-731.
    [243]李军,王立祥,邵明安,等.黄土高原地区小麦生产潜力模拟研究[J].自然资源学报,2001,16(2):161-165.
    [244]李军,王立祥,邵明安,等.黄土高原地区玉米生产潜力模拟研究[J].作物学报,2002,28(4):555-560.
    [245]刘建栋,于强,傅抱璞.黄淮海地区冬小麦光温生产潜力数值模拟研究[J].自然资源学报,1999,14(2):169-174
    [246]刘毅,李世清,陈新平,等.黄土旱塬Hybrid-Maize模型适应性及春玉米生产潜力估算[J].农业工程学报,2008,24(12):302-308.
    [247]吴绍洪,戴尔阜,靳京.山东省禹城市粮食生产资源利用效率评价[J].资源科学,2007,29(1):21-26.
    [248]李军,邵明安,张兴昌.黄土高原地区EPIC模型数据库组建[J].西北农林科技大学学报,2004,32(8):21-26.
    [249]尹云鹤.中国干湿状况变化与生态地理区域对气候变化的响应[D].北京:中国科学院研究生院,2006
    [250]Boogaard H L. Van Diepen C A.et al. User's guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control 1.5[M]. DLO Wageningen:Winand Staring Centre,1998,1-40
    [251]Bouman B A M, van Keulen, van Laar H H, et al. The school of deWit crop growth simulation models:A pedigree and historical overview[J]. Agricultural System,1996,52 (223):171-198
    [252]Penning DeVries FW T, Jansen DM, Ten Berge H FM, et al. Simulation of Ecophysiological Processes of Growth in Several Annual Crop [M].Wageningen:Centre forAgricultural Publishing and Documentation,1989
    [253]曹学昌,赵君实,任德昌,等.济南旱地土壤水分动态研究[J].山东农业科学.1992,5:47-49
    [254]徐玉新,陈玉,张卫.山东济南高新农业开发区土壤状况研究[J].环境科学与技术.2009,32(3):103-107
    [255]吴文斌,唐华俊,杨鹏,等.基于空间模型的全球粮食安全评价[J].地理学报.2010,65(8):907-918
    [256]Rosegrant M W, Cline S A. Global food security:Challenges and policies[J].Science,2003, 302:1917-1918
    [257]王铮,郑一萍.全球变化对中国粮食安全的影响分析[J].地理研究,2001,20(3):281-289
    [258]李晓明,孙红敏.作物生长模型的研究与应用[J].东北农业大学学报.2005,36(6):812-815
    [259]Ewert F,Reounsevell M D A,Reginster I et al.Future Scenarios of European agricultural land use:I.Estimating changes in crop productivity[J].Agriculture Ecosystems and Environment, 2005,107:101-116
    [260]唐国平,李秀彬,Fischer G,等.气候变化对中国农业生产的影响[J].地理学报,2000,55(2):129-138
    [261]熊伟,居辉,许吟隆,等.两种气候变化情境下中国未来的粮食供给[J].气象,2006,32(11):36-41
    [262]Battisti D S, Naylor R.Historical warnings of future food insecurity with unprecedented seasonal heat[J].Science,2009,323:204-244
    [263]傅泽强,蔡运龙,杨友孝,等.中国粮食安全与耕地资源变化的相关分析[J].自然资源学报,2001,16(4):313-319
    [264]曾科军,陈逸,高中贵,等.长江三角洲土地利用变化与粮食安全分析[J].地理与地理信息科学,2006,22(6):58-61
    [265]谢文霞,王光火,张奇春WOFOST模型的发展及应用[J].土壤通报.2006,37(1):154-158
    [266]农村社会经济调查司.我国粮食安全评价指标体系研究[J].统计研究.2005,8:3-9
    [267]岳坤,杨香合,梁山.我国粮食安全评价及保障对策研究-以河北省为例[J].安徽农业科学.2010,38(6):3165-3166,3120
    [268]张丽慧,赵先贵,赵达伟等.内蒙古粮食生产动态分析与粮食安全评价[J].干旱地区农业研究.2010,28(5):190-195
    [269]刘晓梅.关于我国粮食安全评价指标体系的探讨[J].财贸经济.2004.9:56-61
    [270]陆慧.发展中国家的粮食安全评价指标体系建立[J].对外经济实务.2008,3:35-38
    [271]张少杰,杨学利.基于可持续发展的中国粮食安全评价体系构建[J].经济论坛.2010,2:82-84
    [272]李玉平,蔡运龙.区域粮食安全状况测算方法研究-以河北省为例[J].干旱区资源与环 境.2008,22(8):159-164
    [273]刘景辉,李立军,王志敏.中国粮食安全指标的探讨[J].中国农业科技导报.2004,6(4):10-16
    [274]Hijmans R J, Guiking-Lens I M, Van Diepen C A. User guide for the WOFOST6.0 crop growth simulation model[C].Wagenningen. The Netherlands,1994
    [275]张宪政.植物叶绿素含量测定:丙酮乙醇混合液法[J].辽宁农业科学,1986(3):26-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700